On Bidigare's proof of Solomon's theorem

Mark Wildon
http://www.ma.rhul.ac.uk/~uvah099/Maths/Bidigare4.pdf version of 6 February 2019
Errata and addenda by Darij Grinberg

1. Errata

- page 1: As usual, I think it's worth explaining that your functions (or permutations, at least) act on the right of their values and are multiplied accordingly (so that $\alpha \beta$ sends i to (ia) β).
- page 1: Also, I think "natural number" should be defined (to warn the reader that 0 doesn't count as a natural number).
- page 1: Also, the Young subgroup S_{p} should be defined.
- page 1 and later: You occasionally use " Ξ_{p} " as a synonym for " Ξ^{p} ". (Probably, a search for " $\backslash \mathrm{Xi}_{-}$" will quickly locate all the instances of this.)
- page 1: In the definition of $\operatorname{Des}(g)$, replace " $x g<(x+1) g$ " by " $x g>$ $(x+1) g^{\prime \prime}$ (or does gravity, too, work the other way round in Britain?).
- page 1: "Given compositions p, q and r of \mathbf{N} such that p has k parts and q has ℓ parts" \rightarrow "Given compositions $p=\left(p_{1}, p_{2}, \ldots, p_{k}\right), q=\left(q_{1}, q_{2}, \ldots, q_{\ell}\right)$ and r of $n \in \mathbf{N}$ ". (Two things corrected here: "of \mathbf{N} " became "of $n \in \mathbf{N}$ ", and the notations p_{i} and q_{j} have been defined explicitly since you refer to them later.)
- page 1, Theorem 1: "If p, q and r " \rightarrow "If p and q ".
- page 1, §2: "the sets P_{1}, \ldots, P_{n} are disjoint" \rightarrow "the sets P_{1}, \ldots, P_{k} are disjoint".
- page 1, §2: In the first displayed equation of $\S 2$, add a comma after " $P_{1} g^{\prime}$ " in " $\left(P_{1} g \ldots, P_{k} g\right)$ ".
- page 1, §2: It might be worth saying a few words about why this product \wedge is associative. To me, this becomes really clear when I identify each set composition $P=\left(P_{1}, \ldots, P_{k}\right)$ of n with a total pre-order on the set $\{1,2, \ldots, n\}$ (namely, the pre-order under which two elements i and j satisfy $i \leq j$ if and only if $i \in P_{u}$ and $j \in P_{v}$ for some $u \leq v$), and then the product \wedge becomes a "lexicographic order" product (i.e., two elements i and j of $\{1,2, \ldots, n\}$ satisfy $i \leq j$ in $P \wedge Q$ if and only if they satisfy $i \leq j$ in P and (if $i \sim j$ in P, then $i \leq j$ in Q). Thus, $P \wedge Q$ means "order the elements according to P, and use Q to break ties".
- page 2, basic property (2): Here, " $\{1, \ldots, n\}$ " should be replaced by " $(\{1, \ldots, n\})$ ".
- page 2, basic property (3): This statement relies on a somewhat unusual concept of "refinement", as you explain a few paragraphs below; with the normal concept of refinement for compositions, it is false ${ }^{11}$.
Let me, however, suggest to replace (3) by the weaker claim that "If $Q \in \Pi_{n}$ has type $\left(1^{n}\right)$, then $P \wedge Q$ has type $\left(1^{n}\right)$ for any $P \in \Pi_{n} .{ }^{\prime \prime}$. This is all you need in the following, and it has the advantage of being obviously true.
- page 2, basic property (C): "By (3) above" \rightarrow "By (3) and (4) above" (at least if you follow my suggestion in nerfing (3)).
- page 2, basic property (D): "If q has ℓ parts" \rightarrow "If $q=\left(q_{1}, \ldots, q_{\ell}\right)$ ".
- page 2, basic property (D): In the displayed equation that defines T^{q}, replace " $\left\{1 \ldots q_{1}\right\}$ " by " $\left\{1, \ldots, q_{1}\right\},\left\{q_{1}+1, \ldots, q_{1}+q_{2}\right\}$ " (I've added missing commas and also added a second set to make the construction clearer).
- page 3, proof of Proposition 3: "Let p be a composition with k parts" \rightarrow "Let $p=\left(p_{1}, \ldots, p_{k}\right)$ be a composition".
- page 3, proof of Proposition 3: Remove the "where q has ℓ parts" (you never use ℓ).
- page 3, proof of Proposition 3: "for $1 \leq i<k$ " \rightarrow "for $1 \leq i \leq k$ ".
- page 3, proof of Proposition 3: Replace " T_{q} " by " T ". This, too, appears several times, so it's worth searching for it.
- page 3: You write "is a subalgebra of $\mathbf{Z} S_{n}$ isomorphic to $\left(\mathbf{Z} \Pi_{n}\right)^{S_{n} "}$. You seem to be going a tad too fast here; the isomorphism only follows once you realize that the Ξ^{p} are linearly independent, which follows from the distinctness of their "leading terms" with respect to some order on the permutations; but this isn't really so obvious that it isn't worth further mention, if you ask me.
- page 3: "say that $T \in \Pi_{n}$ is increasing" \rightarrow "say that $T=\left(T_{1}, \ldots, T_{\ell}\right) \in \Pi_{n}$ is increasing".
- page 3: "for $1 \leq i<i^{\prime} \leq \ell^{\prime \prime} \rightarrow$ "for $1 \leq i<j \leq \ell^{\prime \prime}$ (or rename j as i^{\prime} later).

```
\({ }^{1}\) For example, the type of
\[
(\{1,2,3\},\{4\}) \wedge(\{1,4\},\{2,3\})=(\{1\},\{2,3\},\{4\})
\]
```

is $(1,2,1)$, which is a refinement of $(3,1)$ but not a refinement of $(2,2)$ in the usual sense of this word.

- page 3, proof of Proposition 4: "Suppose that p has k parts, q has ℓ parts and that r has m parts" \rightarrow "Suppose that $p=\left(p_{1}, \ldots, p_{k}\right)$ and $q=\left(q_{1}, \ldots, q_{\ell}\right)$. (You don't need m.)

