## A primer of Hopf algebras

Pierre Cartier
Septembre 2006
IHES/M/06/40
Errata and questions - I

- Page 9, §2.1: Here, Cartier claims that "by invariant theory, $\Omega_{p}$ for $p>2 n$ is decomposable as a product of forms of degree $\leq 2 n-1$ ". I don't know what results from invariant theory yield this; however, I think the Amitsur-Levitzki theorem yields that $\Omega_{p}=0$ for $p>2 n$ (and, even stronger, the antisymmetrization of $A_{1} A_{2} \ldots A_{p}$ (and not only of $\operatorname{Tr}\left(A_{1} A_{2} \ldots A_{p}\right)$ ) is 0 for $\left.p>2 n\right)$.
- Page 9, §2.1: Here, Cartier claims that "It follows that the algebra $\mathcal{T} \cdot(U(n))=$ $\underset{p \geq 0}{\bigoplus} \mathcal{T}^{p}(U(n))$ possesses a basis of the form

$$
\Omega_{p_{1}} \wedge \ldots \wedge \Omega_{p_{r}}, \quad 1 \leq p_{1}<\cdots<p_{r}<2 n, \quad \quad p_{i} \text { odd }
$$

" I don't see why this is a basis. It is clear from the above that it is a spanning set, but why is it linearly independent?

- Page 18, §2.4: I don't understand the proof of Lemma 2.4.1. Why can we "select the term of the form $u \otimes t_{r}$ " and be sure that it vanishes? This sounds reasonable only if we already know that all products $t_{i_{1}} \ldots t_{i_{s}}$ for $1 \leq i_{1}<\cdots<i_{s} \leq r$ are linearly independent.
- Page 19, §2.5: Here it is written that "Then there is a natural duality between $P$ and $P$ and more precisely between the homogeneous components $P_{n}$ and $P^{n}$."
I don't think this is true. Take the tensor Hopf algebra $T V$ of a finite-dimensional vector space $V$ in characteristic 0 . Then, the set of primitive elements of $T V$ is (isomorphic to) the free Lie algebra over $V$, whereas the set of primitive elements of the graded dual of $T V$ is $V^{*}$ (this is easily seen since the graded dual of $T V$ is isomorphic to the shuffle Hopf algebra of $V$ ). The free Lie algebra over $V$ has a totally different Hilbert series than $V^{*}$, so there cannot be a natural duality between the homogeneous components $P_{n}$ and $P^{n}$ in this case.
Maybe Cartier is speaking of the case when the conditions of D. are satisfied.
- Page 20, §2.5: Here it is claimed that "Moreover $A$ " is the free graded-commutative algebra over $P$ ". I think this again requires the conditions of $\mathbf{D}$. to be true.
- Page 22, §3.2: The formulae (26), (27) and (28) contradict each other. In fact,
using the formulae (26) and (27), we have

$$
\begin{aligned}
\left(\left(\Delta \otimes 1_{V}\right) \circ \Pi\right)\left(e_{j}\right) & =\left(\Delta \otimes 1_{V}\right)\left(\Pi\left(e_{j}\right)\right)=\left(\Delta \otimes 1_{V}\right)\left(\sum_{i=1}^{d(\pi)} u_{i j, \pi} \otimes e_{i}\right) \\
& =\sum_{i=1}^{d(\pi)} \underbrace{\Delta\left(u_{i j, \pi}\right)}_{=\sum_{\ell=1}^{d(\pi)} u_{i \ell, \pi} \otimes u_{\ell j, \pi}} \otimes e_{i} \\
& =\sum_{i=1}^{d(\pi)} \sum_{\ell=1}^{d(\pi)} u_{i \ell, \pi} \otimes u_{\ell j, \pi} \otimes e_{i}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\left(1_{\mathcal{O}(G)} \otimes \Pi\right) \circ \Pi\right)\left(e_{j}\right) & =\left(1_{\mathcal{O}(G)} \otimes \Pi\right)\left(\Pi\left(e_{j}\right)\right)=\left(1_{\mathcal{O}(G)} \otimes \Pi\right)\left(\sum_{i=1}^{d(\pi)} u_{i j, \pi} \otimes e_{i}\right) \\
& =\sum_{i=1}^{d(\pi)} u_{i j, \pi} \otimes \Pi\left(e_{i}\right)=\sum_{\ell=1}^{d(\pi)} u_{\ell j, \pi} \otimes \underbrace{\Pi\left(e_{\ell}\right)}_{\substack{d(\pi) \\
=\sum_{i=1} u_{i \ell, \pi} \otimes e_{i}}} \\
& =\sum_{\ell=1}^{d(\pi)} \sum_{i=1}^{d(\pi)} u_{\ell j, \pi} \otimes u_{i \ell, \pi} \otimes e_{i},
\end{aligned}
$$

and in general these two terms are not equal (unless $G$ is abelian), so that (28) does not hold.
One possible way to correct this is to replace " $\Pi: V \rightarrow \mathcal{O}(G) \otimes V$ " by " $\Pi: V \rightarrow$ $V \otimes \mathcal{O}(G) "$, replace (27) by

$$
\Pi\left(e_{j}\right)=\sum_{i=1}^{d(\pi)} e_{i} \otimes u_{i j, \pi}
$$

replace (28) by

$$
\left(1_{V} \otimes \Delta\right) \circ \Pi=\left(\Pi \otimes 1_{\mathcal{O}(G)}\right) \circ \Pi,
$$

and replace (29) by

$$
\pi(g)=\left(1_{V} \otimes \delta_{g}\right) \circ \Pi
$$

- Page 24, §3.3: The footnote ${ }^{29}$ (which explains that you use bra-ket notation) should be made much earlier: You already use bra-ket notation in (33) (the $\left\langle v_{1}\right|$ and $\left\langle v_{3}\right|$ are bras; the $\left.v_{2}\right\rangle$ and $\left.v_{4}\right\rangle$ are kets).
- Page 26, §3.3, part (C): Here it is written that:
"Indeed, for $h \in H, h \neq 1$ we can write $h=\exp x$, with $x \in U_{1}, x \neq 0$, hence $h^{2}=\exp 2 x$ belongs to $V$ but not to $V_{1}$, hence not to $H$."

I don't understand why $h^{2}$ does not belong to $V_{1}$. But the argument can be salvaged as follows:
For every $h \in H$ satisfying $h \neq 1$, we can write $h=\exp x$ with $x \in U_{1}, x \neq 0$, and we can find some $n \in \mathbb{N}$ such that $n x \in U \backslash U_{1}$; for this $n$, we then have $h^{n} \in V$ but $h^{n}=\exp (n x) \notin V_{1}$, so that $h^{n} \notin H$, which is absurd.

- Page 27, §3.3, proof of Lemma 3.3.1: Replace "we find a real polynomial" by "we find a real polynomial $P$ ".
- Page 27, §3.3: Here, the notations $G L(m, R)$ and $G L(m ; R)$ are used for one and the same thing.
- Page 36, proof of Theorem 3.7.1: In "by power series $\varphi^{j}(\mathbf{x}, \mathbf{y})=\varphi^{j}\left(x^{1}, \ldots, x^{N} ; y_{1}, \ldots, y^{N}\right)$ ", replace " $y_{1}$ " by " $y^{1 "}$.
- Page 47, Theorem 3.8.3: In footnote ${ }^{48}$, replace " $\bigotimes_{p+q=n}$ " by " $\bigoplus_{p+q=n}$ ".
- Page 47, Theorem 3.8.3: In footnote ${ }^{48}$, replace " $S\left(A_{n}\right)=A_{n}$ " by " $S\left(A_{n}\right) \subset$ $A_{n}$ "
- Page 47, proof of Theorem 3.8.3: Is it really obvious that "An inverse map $\Lambda_{p}$ to $\Theta_{p}$ can be defined as the composition of the iterated coproduct $\bar{\Delta}_{p}$ which maps $\pi_{p}(A)$ to $\pi_{1}(A)^{\otimes p}$ with the natural projection of $\pi_{1}(A)^{\otimes p}$ to $\operatorname{Sym}^{p}\left(\pi_{1}(A)\right)^{\prime \prime}$ ? I don't see a simple reason for this.
- Page 55, (126): Add "where $n=p+q$ " after this equality.
- Page 61, (159): This equality is not literally true for $m=0$. Indeed, for $m=0$, the two addends $1 \otimes\left[\gamma_{1}|\ldots| \gamma_{m}\right]$ and $\left[\gamma_{1}|\ldots| \gamma_{m}\right] \otimes 1$ should be regarded as only one addend. It would be better to replace the right hand side of (159) by $\sum_{i=0}^{m}\left[\gamma_{1}|\ldots| \gamma_{i}\right] \otimes\left[\gamma_{i+1}|\ldots| \gamma_{m}\right]$; this works for all $m$, including $m=0$.
- Page 61, (160): Replace " $n^{r}$ " by " $n_{r}$ ".
- Page 62, §4.1: Replace " $z(\underbrace{1, \ldots, 1}_{r})$ " by " $Z(\underbrace{1, \ldots, 1}_{r})$ " (on the last line of §4.1).
- Page 66: Replace " $z\left(k_{1}, \ldots, k_{r}\right)$ " by " $Z\left(k_{1}, \ldots, k_{r}\right)$ ".
- Page 63: I have a hunch that "where $\Delta_{k}$ is the simplex $\left\{0<t_{1}<t_{2}<\cdots<t_{k}\right\}$ " should be "where $\Delta_{k}$ is the simplex $\left\{0<t_{1}<t_{2}<\cdots<t_{k}<1\right\}$ ".
- Page 73: Replace "and replaces" by "and replace".

