Invariant Theory with Applications
Jan Draisma and Dion Gijswijt

version of 7 December 2009
Errata and addenda by Darij Grinberg

The following is a haphazard list of errors I found in "Invariant Theory with Applications" by Jan Draisma and Dion Gijswijt.

16. Errata

- Page 5, §1.1: Replace "Clearly, the elements of V^{*} are regular of degree" by "Clearly, the elements of V^{*} are regular functions and are homogeneous of degree".
- Page 7, §1.3: "discribed" \rightarrow "described".
- Page 8, Example 1.3.2: "althought" \rightarrow "although".
- Page 8, Example 1.3.3: "with the same exponent" \rightarrow "with the same coefficient".
- Page 9, proof of Proposition 1.4.1: Replace "To each $c=\left(c_{1}, \ldots, c_{n} \in \mathbb{C}^{n "}\right.$ by "To each $c=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{C}^{n "}$.
- Page 9, proof of Proposition 1.4.1: In (1.8), the entries in the last column should be $-c_{n},-c_{n-1}, \ldots,-c_{2},-c_{1}\left(\right.$ not $\left.-c_{n},-c_{n-1}, \ldots, c_{2}, c_{1}\right)$.
- Page 9, proof of Proposition 1.4.1: Replace "shows that $\chi_{A_{c}}(t)=t^{n}+$ $c_{n-1} t^{n-1}+\cdots+c_{1} t+c_{0}$ " by "shows that $\chi_{A_{c}}(t)=t^{n}+c_{1} t^{n-1}+\cdots+$ $c_{n-1} t+c_{n}{ }^{\prime \prime}$.
- Page 9, Exercise 1.4.2: Replace "that $\chi_{A_{c}}(t)=t^{n}+c_{n-1} t^{n-1}+\cdots+c_{1} t+$ c_{0} " by "that $\chi_{A_{c}}(t)=t^{n}+c_{1} t^{n-1}+\cdots+c_{n-1} t+c_{n}$ ".
- Page 9, proof of Proposition 1.4.1: In (1.9), replace " $\left(s_{1}\left(A_{c}\right), s_{2}\left(A_{c}\right), \ldots, s_{n}\left(A_{c}\right)\right.$ " by " $\left(s_{1}\left(A_{c}\right), s_{2}\left(A_{c}\right), \ldots, s_{n}\left(A_{c}\right)\right)$ ".
- Page 9, proof of Proposition 1.4.1: Replace "dense in $\mathcal{O}\left(\operatorname{Mat}_{n}(\mathbb{C})\right)^{\prime \prime}$ by "dense in Mat $_{n}(\mathbb{C})$ ". (This mistake appears twice.)
- Page 9, Exercise 1.4.3: Replace "nonzero eigenvalues" by "eigenvalues".
- Page 10, Exercise 1.4.3: Replace "distinct and nonzero" by "nonzero".
- Page 10, Exercise 1.4.3: It might be worth noticing that "the fact" you are mentioning about the Vandermonde determinant is a consequence of Lemma 2.2.4 below (using the well-known fact that the determinant of a square matrix equals the determinant of its transpose).
- Page 15, Theorem 2.2.9: You misspell "Sylvester" as "Sylverster".
- Page 15, proof of Theorem 2.2.9: Remove the comma in "Since, \widetilde{A} contains".
- Page 15, proof of Theorem 2.2.9: You write: "it follows that $\operatorname{Bez}(f)$ has rank $2 k+r^{\prime \prime}$. How does this follow? I only see that $\operatorname{Bez}(f)$ has rank $\leq 2 k+r$.
- Page 20: Replace "every element $T \in U \otimes V$ " by "every element $t \in U \otimes$ $V^{\prime \prime}$.
- Page 20: Replace "for T to zero" by "for t to zero".
- Page 21: "with of k-tensors" \rightarrow "with k-tensors".
- Page 23: "so that the $v^{\alpha},|\alpha|=k$ a basis of V " should be "so that the v^{α} with $|\alpha|=k$ form a basis of $S^{k} V^{\prime \prime}$.
- Page 23: Replace " $\pi\left(v_{1} \otimes \cdots v_{k}\right)$ " by " $\pi\left(v_{1} \otimes \cdots \otimes v_{k}\right)$ ".
- Page 23, Exercise 3.0.13: Replace " $v \otimes v \cdots \otimes v$ " by " $v \otimes v \otimes \cdots \otimes v$ ".
- Page 24, Exercise 3.1.4: You should require that at least one of U and V is finite-dimensional.
- Page 24, Exercise 3.1.4: Replace "isomorhism" by "isomorphism".
- Page 25: Replace "so that $g(h f)=(h g) f$ " by "so that $g(h f)=(g h) f$ ".
- Page 25, Example 4.0.8: Replace " G module" by " G-module".
- Page 26, Example 4.0.9: Replace " G module" by " G-module".
- Page 27, proof of Proposition 4.0.7: " $(v \mid v)=\sum_{g \in G}(g v \mid g v)$ " should be $"(v \mid v)=\sum_{g \in G}(g v \mid g v)^{\prime} "$.
- Page 28, Lemma 4.1.1: Replace " G modules" by " G-modules".
- Page 28, §4.1: "of the isomorphism classes of G-modules" should be "of the isomorphism classes of irreducible G-modules".
- Page 29, Exercise 4.1.2: Remove the superscript " G ".
- Page 31, Lemma 5.0.9: "Dixon's" \rightarrow "Dickson's".
- Page 32, proof of Hilbert's Basis Theorem: "Dixon's" \rightarrow "Dickson's".
- Page 32: In (5.2), add a whitespace before "for all $f \in V_{1}$ ".
- Page 32: "This a G-module morphism" \rightarrow "This is a G-module morphism".
- Page 33, Exercise 5.0.13: "with zero coefficient" should be "with constant coefficient equal to 0 ".
- Page 33, Exercise 5.0.13: I am wondering whether you really mean "subalgebra" here and not "graded subalgebra".
- Page 34, proof of Theorem 5.1.1: Replace " $|\beta|<=|G|$ " by " $|\beta| \leq|G|$ ".
- Page 34, proof of Theorem 5.1.1: Replace " $p_{j}=\sum_{|\alpha|=j} f_{\alpha} z_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n} "}$ by " $p_{j}=$ $\sum_{|\alpha|=j} f_{\alpha} z_{1}^{\alpha_{1}} \cdots z_{n}^{\alpha_{n} \prime \prime}$.
- Page 34, proof of Theorem 5.1.1: You write: "Recall that p_{j} is a polynomial in $p_{1}, \ldots, p_{|G|}$ ". Did you actually prove this anywhere? (This is a particular case of the following fact: In the polynomial ring $\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, each $S_{n^{-}}$ invariant polynomial $f \in \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{S_{n}}$ can be written as a polynomial in the Newton polynomials $p_{1}, p_{2}, \ldots, p_{n} .{ }^{1}$ This is probably worth stating as an exercise in Chapter 2.
- Page 37, proof of the weak Nullstellensatz: Replace " $f_{k, \xi}:=\left(x_{1}, \ldots, x_{n-1}, \xi\right)$ " by " $f_{k, \xi}:=f_{k}\left(x_{1}, \ldots, x_{n-1}, \xi\right)$ ".
- Page 37, proof of the weak Nullstellensatz: Replace all three " $\sum_{i=1}^{k}$ " signs by " $\sum_{j=1}^{k}$ " signs.
- Page 37: "Nulstellensatz" \rightarrow "Nullstellensatz".
- Page 39, proof of Theorem 6.1.10: Replace the " $\sum_{i=1}^{k}$ " sign by a " $\sum_{j=1}^{k}$ " sign.
- Page 41, Lemma 6.2.6: Replace "from $\mathbb{C}[Y] \mathbb{C}[X]$ " by "from $\mathbb{C}[Y]$ to $\mathbb{C}[X]$ ".

[^0]- Page 41, proof of Lemma 6.2.8: "are a regular maps" \rightarrow "are regular maps".
- Page 42, Example 6.3.3: Replace "act on the W " by "act on the vector space $W^{\prime \prime}$.
- Page 43, Theorem 6.3.4: In property 4 , replace " $\phi: Z \mapsto \mathbb{C}^{m "}$ by " $\phi: Z \rightarrow$ $\mathbb{C}^{m \prime \prime}$.
- Page 43, proof of Theorem 6.3.4: In the proof of property 3, replace " ϕ : $Z \mapsto U$ " by " $\phi: Z \rightarrow \mathbb{C}^{m "}$.
- Page 47, proof of Theorem 7.0.14: Replace "Hence w is in the null-cone N_{V} " by "Hence w is in the null-cone N_{W} ".
- Page 49: Replace "Let $W \oplus_{d=0}^{\infty} W_{d}$ be a direct sum" by "Let $W=\bigoplus_{d=0}^{\infty} W_{d}$ be a direct sum".
- Page 49: In (8.1), replace " V " and " V_{d} " by " W " and " W_{d} ", respectively.
- Page 49, Example 8.0.18: Replace " $H\left(\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]\right)$ " by " $H\left(\mathbb{C}\left[x_{1}, \ldots, x_{n}\right], t\right)$ ".
- Page 50, Theorem 8.1.1: Replace "of a finite group" by "of a finite group $G^{\prime \prime}$.
- Page 50, proof of Theorem 8.1.1: In (8.5), replace "tr $\left(L_{d}(g)\right)$ " by " $t^{d} \operatorname{tr}\left(L_{d}(g)\right)$ ".
- Page 50, proof of Theorem 8.1.1: Replace "lets fix" by "let's fix".
- Page 50, proof of Theorem 8.1.1: Replace "the inner sum $\sum_{d=0}^{\infty} \operatorname{tr}\left(L_{d}(g)\right)$ " by "the inner sum $\sum_{d=0}^{\infty} t^{d} \operatorname{tr}\left(L_{d}(g)\right)^{\prime}$.
- Page 50, proof of Theorem 8.1.1: You write: "Pick a basis x_{1}, \ldots, x_{n} of V^{*} that is a system of eigenvectors for $L_{1}(g)$ ". It is worth justifying why such a basis exists. (Namely, you are using the apocryphal theorem from linear algebra that says that if U is a finite-dimensional \mathbb{C}-vector space, and if α is an element of GL (U) having finite order, then α is diagonalizable. You are applying this theorem to $U=V^{*}$ and $\alpha=L_{1}(g)$, which is allowed because the element $L_{1}(g)$ of GL $\left(V^{*}\right)$ has finite order (since the element g of G has finite order). This is not a difficult argument, but I don't think it is obvious enough to be entirely left to the reader.)
- Page 50, proof of Theorem 8.1.1: Replace "for a system" by "form a system".
- Page 50, proof of Theorem 8.1.1: On the first line of the computation (8.7), replace " $\left(1+\lambda_{n} t+\lambda_{n} t^{2}+\cdots\right)$ " by " $\left(1+\lambda_{n} t+\lambda_{n}^{2} t^{2}+\cdots\right)$ ".
- Page 50, proof of Theorem 8.1.1: On the first line of the computation (8.8), replace " $\operatorname{tr}\left(L_{d}(g)\right)$ " by " $t^{d} \operatorname{tr}\left(L_{d}(g)\right)$ ".
- Page 50, proof of Theorem 8.1.1: On the third line of the computation (8.8), replace " $\operatorname{det}(I-\rho(g) t$ " by " $\operatorname{det}(I-\rho(g) t)$ ".
- Page 51, §8.2: Replace "which u and v, differ" by "which u and v differ".
- Page 51, §8.1: It is worth pointing out that you use the word "code" to mean "linear code".
- Page 52: "Furhermore" \rightarrow "Furthermore".
- Page 53, Theorem 8.2.6: Replace " $\left(x^{4}-y^{4}\right)$ " by " $\left(x^{4}-y^{4}\right)^{4 "}$.
- Page 57, Example 9.1.8: Replace " $\prod_{k} \prod_{l}$ " by " $\sum_{k} \sum_{l}$ ".
- Page 59, §9.2: Replace "Consider the map $\lambda: G \rightarrow \operatorname{GL}\left[\mathbb{C}\left[x_{i j}, 1 / \operatorname{det}(x)\right]\right)$ " by "Consider the map $\lambda: G \rightarrow \operatorname{GL}\left(\mathbb{C}\left[x_{i j}, 1 / \operatorname{det}(x)\right]\right)$ ".
- Page 65, Exercise 10.0.12: Replace "larger enough" by "large enough".
- Page 65, proof of Proposition 10.0.13: Replace "standard basis $\mathbb{C}^{2 "}$ by "standard basis of \mathbb{C}^{2} ".
- Page 65, proof of Proposition 10.0.13: Replace "induced basis of $S^{d}(V)$ " by "induced basis of $S^{k}(V)$ ".
- Page 65, proof of Proposition 10.0.13: Replace " $\sum_{i} d(\lambda) x^{i} y^{k-i}$ " by " $\sum_{i} d_{i}(\lambda) x^{i} y^{k-i "}$.
- Page 65, proof of Proposition 10.0.13: You claim that " d_{0} and every d_{i} with $c_{i} \neq 0$ are nonzero polynomials with $\lambda^{\prime \prime}$. I would suggest explaining why they are nonzero. (Namely, the polynomial d_{0} is nonzero because $d_{0}=\sum_{i} c_{i} \lambda^{i} y^{k}$ (and because not all c_{i} are 0); meanwhile, the polynomials d_{i} with $c_{i} \neq 0$ are nonzero because they satisfy $d_{i}(0)=c_{i} \neq 0$.)
- Page 66, proof of Proposition 10.0.13: Replace "Then for every i the vector $\mu^{k}\left(\begin{array}{cc}\mu & 0 \\ 0 & \mu^{-1}\end{array}\right) u=\sum_{i} \lambda^{i} c_{i} x^{i} y^{k-i}$ belongs to $U^{\prime \prime}$ by "Then for every $\mu \in$ $\left\{\mu_{0}, \mu_{1}, \ldots, \mu_{k}\right\}$ the vector $\mu^{k}\left(\begin{array}{cc}\mu & 0 \\ 0 & \mu^{-1}\end{array}\right) u=\sum_{i} \lambda^{i} c_{i} x^{i} y^{k-i}$ (with $\lambda=\mu^{2}$) belongs to $U^{\prime \prime}$.
- Page 66, proof of Proposition 10.0.13: In (10.4), replace " $S^{d}\left(\operatorname{End}\left(S^{2}(V) \oplus \mathbb{C}\right)\right)$ " by " $S^{d}\left(S^{2}(V) \oplus \mathbb{C}\right)$ ".
- Page 66, Exercise 10.0.14: Replace " $\mathrm{SL}_{2}(\mathbb{C})$ module" by " $\mathrm{SL}_{2}(\mathbb{C})$-module".
- Page 68, §11.1: Replace "it identifies the space End $\left(V^{\otimes k}\right)^{S_{k}}$ with $\left(\text { End }(V)^{\otimes k}\right)^{S_{k}}$ of symmetric tensors" by "it identifies the space End $\left(V^{\otimes k}\right)^{S_{k}}$ with the space $\left(\text { End }(V)^{\otimes k}\right)^{S_{k}}$ of symmetric tensors".
- Page 68, §11.1: Replace "Applying the following theorem to $H=S_{n}$ " by "Applying the following theorem to $H=S_{k}$ ".
- Page 69, proof of Theorem 11.2.1: "represations" \rightarrow "representations".
- Page 69, proof of Theorem 11.2.1: You write: "By complete reducibility, the map $\left(\left(U^{*}\right)^{\otimes d}\right)^{G} \rightarrow\left(S^{d} U^{*}\right)^{G}$ is surjective". Actually, you don't need to use complete reducibility here: The projection map

$$
\pi:\left(U^{*}\right)^{\otimes d} \rightarrow S^{d} U^{*}, \quad u_{1} \otimes u_{2} \otimes \cdots \otimes u_{d} \mapsto u_{1} u_{2} \cdots u_{d}
$$

has a G-equivariant section - namely, the linear map

$$
\psi: S^{d} U^{*} \rightarrow\left(U^{*}\right)^{\otimes d}, \quad u_{1} u_{2} \cdots u_{d} \mapsto \frac{1}{d!} \sum_{\sigma \in S_{d}} u_{\sigma(1)} \otimes u_{\sigma(2)} \otimes \cdots \otimes u_{\sigma(d)}
$$

Hence, the restriction $\left(\left(U^{*}\right)^{\otimes d}\right)^{G} \rightarrow\left(S^{d} U^{*}\right)^{G}$ of the map π to the G invariants has a section as well (namely, the restriction of the section ψ : $S^{d} U^{*} \rightarrow\left(U^{*}\right)^{\otimes d}$ to the G-invariants). Therefore, this restriction is surjective.
I like this argument more not just because it avoids the use of complete reducibility, but also because it is more general (it works for any subgroup G of GL_{n}, including those for which the representations involved fail to be completely reducible).

- Page 70, proof of Theorem 11.2.1: "If $d=k$ " should be "If $k=d-k$ ".
- Page 74: "a fix a stochastic" \rightarrow "we fix a stochastic".
- Page 75, §12.3: Replace "formal linear combinations of the alphabet V " by "formal linear combinations of the alphabet B ".
- Page 75, §12.3: Replace "Next we define a polynomial map ψ_{T} : $\operatorname{rep}(T) \rightarrow$ $\otimes_{p \in \operatorname{leaf}(T)}$ " by "Next we define a polynomial map $\Psi_{T}: \operatorname{rep}(T) \rightarrow \bigotimes_{p \in \operatorname{leaf}(T)} V_{p}$ ". (There were two typos here: " ψ_{T} " should be " Ψ_{T} ", and the " V_{p} " was missing.)
- Page 76, $\S 12.3:$ I suppose that " $\otimes_{p \in \operatorname{leaf}(T) f(p)}$ " should be " $\otimes_{p \in \operatorname{leaf}(T)} f(p)$ ".

[^0]: ${ }^{1}$ The proof of this fact is easy: By Theorem 2.1.1, it suffices to show that the $s_{1}, s_{2}, \ldots, s_{n}$ are polynomials in $p_{1}, p_{2}, \ldots, p_{n}$. In other words, it suffices to show that s_{k} is a polynomial in $p_{1}, p_{2}, \ldots, p_{n}$ for each $k \in\{1,2, \ldots, n\}$. But this easily follows by strong induction over k (indeed, (2.18) gives a way to write each s_{k} for $k \in\{1,2, \ldots, n\}$ as a polynomial in $p_{1}, p_{2}, \ldots, p_{n}$, provided that $s_{1}, s_{2}, \ldots, s_{k-1}$ have already been written in this form).

