Higher Lie idempotents

Frédéric Patras and Christophe Reutenauer
http://lacim.uqam.ca/~christo/idempotents.pdf (version November 18, 1998)

Errata and questions - I (version 2)

- Page 1: Typo: "caracteristic" should be "characteristic".
- Pages 1 and 2: Typo: "envelopping" should be "enveloping" (this typo appears several times).
- Page 2 and further: Typo: "familly" should be "family" (this typo appears several times).
- Page 2: Maybe "Given a familly of Lie idempotents" should be "Given an arbitrary Lie idempotent"? I think the constructions of the higher Lie idempotents depend only on one Lie idempotent ι and (in the case of higher Lie idempotents of the third kind) on a family of coefficients a_{μ}^{ι}.
- Page 3: Typo: "reodering" should be "reordering".
- Page 4: Between Definition 2.2 and the Example, you write that "the ι-descent algebra decomposes as a direct sum

$$
\mathcal{D}_{\iota}=\bigoplus_{n=0}^{\infty} \mathcal{D}_{\iota n}
$$

". It might be useful to notice here that this is a direct sum of vector spaces, not of algebras (under the convolution $*$).

- Page 5: In the proof of Lemma 3.1, you write: "More generally, for any $l \geq 2$ and $k \geq 3$, let $\Delta_{l 2}$ be [...]". I don't see any reason to require $l \geq 2$ and $k \geq 3$ here; everything is just as correct for any $l \geq 0$ and $m \geq 0$.
- Page 6: In the proof of Lemma 3.1, the $\sum_{\sigma \in S_{n}}$ should be $\sum_{\sigma \in S_{k}}$.
- Page 6: In the proof of Lemma 3.1, you write: "If we apply Π_{k} to the whole sum" (in the fourth line of page 6). I think you are applying $\Pi_{k}^{\otimes k}$ here, not Π_{k}.
- Page 6: In the proof of Lemma 3.1, you have a typo: "Aplying" should be "Applying".
- Page 6: In the proof of Lemma 3.1, you write: "Now,this sum is equal to $\sum\left(\iota_{\mu_{1}} \otimes \ldots \otimes \iota_{\mu_{k}}\right) \circ \sigma\left(x_{1} \otimes \ldots \otimes x_{k}\right)$, where σ denotes here the natural action of the symmetric group on $A^{\otimes n "}$. First, there should be a whitespace after "Now,". Second, the $\sigma\left(x_{1} \otimes \ldots \otimes x_{k}\right)$ should be a $\sigma^{-1}\left(x_{1} \otimes \ldots \otimes x_{k}\right)$, because $\sigma\left(x_{1} \otimes \ldots \otimes x_{k}\right)$ is $x_{\sigma^{-1}(1)} \otimes \ldots \otimes x_{\sigma^{-1}(k)}$ rather than $x_{\sigma(1)} \otimes \ldots \otimes x_{\sigma(k)}$. Third, I think you mean $A^{\otimes k}$ instead of $A^{\otimes n}$ (unless you want to talk about general n).
- Page 6: In the proof of Lemma 3.1, you write: "Since the coproduct is cocommutative, we deduce that
$\left(\iota_{\mu_{1}} \otimes \ldots \otimes \iota_{\mu_{k}}\right) \circ\left(\Pi_{k}^{\otimes k}\right) \circ \Delta_{k k} \circ\left(\iota_{\lambda_{1}} \otimes \ldots \otimes \iota_{\lambda_{k}}\right)=\sum\left(\iota_{\mu_{1}} \otimes \ldots \otimes \iota_{\mu_{k}}\right) \circ \sigma \circ \Delta_{k}=\sum\left(\iota_{\mu_{1}} \otimes \ldots \otimes \iota_{\mu_{k}}\right) \circ \Delta_{k}$,
which implies (ii)." The σ here should be a σ^{-1}. (Also, what somewhat confused me is that cocommutativity is used in the passage from $\sum\left(\iota_{\mu_{1}} \otimes \ldots \otimes \iota_{\mu_{k}}\right) \circ \sigma \circ \Delta_{k}$ to $\sum\left(\iota_{\mu_{1}} \otimes \ldots \otimes \iota_{\mu_{k}}\right) \circ \Delta_{k}$, not in the passage from $\left(\iota_{\mu_{1}} \otimes \ldots \otimes \iota_{\mu_{k}}\right) \circ\left(\Pi_{k}^{\otimes k}\right) \circ \Delta_{k k} \circ$ $\left(\iota_{\lambda_{1}} \otimes \ldots \otimes \iota_{\lambda_{k}}\right)$ to $\sum\left(\iota_{\mu_{1}} \otimes \ldots \otimes \iota_{\mu_{k}}\right) \circ \sigma \circ \Delta_{k}$. It thus would probably better to mention cocommutativity after the long equation rather than before it.)
- Page 7: In the proof of Theorem 3.4, you write: "Thus f is idempotent if and only if [...]". But in general, only the "if" part of this is true (and fortunately, only the "if" part is needed), since nobody has told us that the ι_{α} are linearly independent.
- Page 7: In the proof of Theorem 3.4, it would be clearer if you replace $\left(n_{1}+\ldots+n_{k}\right)!/ n_{1}!\ldots n_{k}$! by $\left(n_{1}+\ldots+n_{k}\right)!/\left(n_{1}!\ldots n_{k}!\right)$. (I consider the notation $a / b_{1} b_{2} \ldots b_{k}$ for $a /\left(b_{1} b_{2} \ldots b_{k}\right)$ outdated and ambiguous, although it seems to be still in use.)
- Page 7: In Definition 4.1, I feel it would be good to point out three things explicitly:
- The " 1 " in " $F_{\lambda}^{\iota}:=\left(1-\sum_{l(\mu)<l(\lambda)} F_{\mu}^{\iota}\right) \circ E_{\lambda}^{\iota}$ " means the identity map $\operatorname{id}_{A_{n}} \in$ End $\left(A_{n}\right)$, not the unity of the algebra $\mathcal{L}(A)$.
- For $n=0$, the element $F_{()}^{\iota}$ is defined as $E_{()}^{\iota}=\operatorname{id}_{A_{0}}=\eta \circ \epsilon$ (here we are using the identification of End $\left(A_{0}\right)$ with the space of all graded endomorphisms of A whose image is $\subseteq A_{0}$). (While this can be seen as a consequence of the formula $F_{\lambda}^{\iota}:=\left(1-\sum_{l(\mu)<l(\lambda)} F_{\mu}^{\iota}\right) \circ E_{\lambda}^{\iota}$ applied to $\lambda=()$, it would be helpful to point this out explicitly).
- The maps F_{λ}^{ι} are called the "higher Lie idempotents of the second kind".
- Page 7: In Definition 4.1, it wouldn't harm to say that the "induction base" $F_{(n)}^{\iota}:=E_{(n)}^{\iota}=\iota_{n}$ is, itself, a particular case of the "induction step" $F_{\lambda}^{\iota}:=$ $\left(1-\sum_{l(\mu)<l(\lambda)} F_{\mu}^{\iota}\right) \circ E_{\lambda}^{\iota}$. In fact, if we substitute $\lambda=(n)$ in $F_{\lambda}^{\iota}:=\left(1-\sum_{l(\mu)<l(\lambda)} F_{\mu}^{\iota}\right) \circ$ E_{λ}^{ι}, then we get $F_{(n)}^{\iota}=\left(1-\sum_{l(\mu)<l((n))} F_{\mu}^{\iota}\right) \circ E_{(n)}^{\iota}$, but the sum $\sum_{l(\mu)<l((n))} F_{\mu}^{\iota}$ is empty since $l((n))=1$, and thus this becomes $F_{(n)}^{\iota}=E_{(n)}^{\iota}$.
This fact allows us to use $F_{\lambda}^{\iota}=\left(1-\sum_{l(\mu)<l(\lambda)} F_{\mu}^{\iota}\right) \circ E_{\lambda}^{\iota}$ not only for $\lambda \neq(n)$ but also for all λ. This is used in several proofs in your paper.
- Page 7: In the Remark 1) at the end of page 7, you made a typo: "othogonal" should be "orthogonal".
- Page 9: On the first line of this page, you write: " $F_{\mu}^{\iota} \circ F_{\beta}^{\iota}=\delta_{\mu \beta}$ ". This should be $F_{\mu}^{\iota} \circ F_{\beta}^{\iota}=\delta_{\mu \beta} F_{\mu}^{\iota}$. (The only thing you actually use, though, is that $F_{\mu}^{\iota} \circ F_{\beta}^{\iota}=0$ for $\mu \neq \beta$ when $l(\mu)$ and $l(\beta)$ are both $<k$.)
- Page 9: In the proof of Theorem 4.3, you write: "we have by Def.4.1 that $E_{\lambda}^{\iota}(x)=F_{\lambda}^{\iota}(x)$ plus a sum of $E_{\lambda_{1}}^{\iota} \circ \ldots \circ E_{\lambda_{k}}^{\iota}$ ". First, either you should replace the $E_{\lambda}^{\iota}(x)$ and $F_{\lambda}^{\iota}(x)$ here by E_{λ}^{ι} and F_{λ}^{ι}, or you should replace the $E_{\lambda_{1}}^{\iota} \circ \ldots \circ E_{\lambda_{k}}^{\iota}$ by an $\left(E_{\lambda_{1}}^{\iota} \circ \ldots \circ E_{\lambda_{k}}^{\iota}\right)(x)$. Second, "sum" is slightly imprecise; you mean a linear combination rather than a sum (the coefficients in this combination can be both +1 and -1).
- Page 9: In the proof of Theorem 4.3, you write: "the elements $\left(a_{1}, \ldots, a_{k}\right)=$ $(1 / k!) \sum_{k \in S_{k}} a_{\sigma(1)} \ldots a_{\sigma(k)} "$. Replace $\sum_{k \in S_{k}}$ by $\sum_{\sigma \in S_{k}}$ here.
- Page 9: In the proof of Theorem 4.3, you write:
"Since A is a graded cocommutative connected bialgebra of characteristic zero, it is by the Cartier-Milnor-Moore theorem isomorphic to the envelopping algebra of $\operatorname{Prim}(A)$. Hence, by the Poincaré-Birkhoff-Witt theorem it is the direct sum of its subspaces A^{λ}, where for any partition λ, the latter subspace is spanned by the elements $\left(a_{1}, \ldots, a_{k}\right)=(1 / k!) \sum_{k \in S_{k}} a_{\sigma(1)} \ldots a_{\sigma(k)}$, for any choice of homogeneous primitive elements a_{i}, with $\operatorname{deg}\left(a_{i}\right)=\lambda_{i}$ and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$."
This is a correct argument (up to the typos I mentioned above), but somewhat an overkill. In fact, you only need the easy part of the Cartier-Milnor-Moore theorem ${ }^{1}$ and only the easy part of the Poincaré-Birkhoff-Witt theorem ${ }^{2}$ to show that A is the sum of its subspaces A^{λ} (we don't yet know that it is the direct sum), and this is already enough for your proof of Theorem 4.3. (I can detail this argument better if you wish, but I have a feeling that you already know this). Maybe you need something stronger (like the direct sum assertion) to prove Corollary 4.4 though (I don't understand your proof at the moment), but I would always try to do without - maybe this will net us an explicit constructive proof of Poincaré-Birkhoff-Witt or Cartier-Milnor-Moore at the end...
- Page 9: In the proof of Theorem 4.3, you write: "It is equal to $\sum_{\mu} \Pi_{k} \circ \iota_{\mu_{1}} \otimes$ $\ldots \otimes \iota_{\mu_{k}} \circ \Delta_{k}\left(a_{1} \ldots a_{k}\right) "$. I would put the $\iota_{\mu_{1}} \otimes \ldots \otimes \iota_{\mu_{k}}$ term in brackets here.
- Page 9: In the last absatz of page 9, you write: "the cofree cocommutative coalgebra on a vector space V ". But I think it is more common to say "over a vector space V " rather than "on a vector space V ". (You yourself say "over" in Corollary 4.4.)
- Page 10: In Corollary 4.4, replace " $\bigoplus_{n \in \mathbf{N}} \iota^{\otimes n} \circ \Delta_{n} "$ by " $\bigoplus_{n \in \mathbf{N}} \frac{1}{n!} \iota^{\otimes n} \circ \Delta_{n}$ " (otherwise, this map would not be a coalgebra homomorphism).
- Page 10: In Corollary 4.4, replace the \mapsto arrow by a \rightarrow arrow.

[^0]- Page 10: In Corollary 4.4, replace " $\frac{1}{l(\lambda)!}\left(1-\sum_{l(\mu)<l(\lambda)} F_{\mu}^{\iota}\right) \circ \Pi_{k} "$ by " $\left(1-\sum_{l(\mu)<l(\lambda)} F_{\mu}^{\iota}\right) \circ$ $\Pi_{k} "$ (this change is needed to "balance out" the $\frac{1}{n!}$ factor I added to " $\bigoplus_{n \in \mathbf{N}} \iota^{\otimes n} \circ$ $\left.\Delta_{n} "\right)$.
- Page 10: You write that"The corollary follows, once it is noted that $\operatorname{Sym}^{\lambda}(\operatorname{Prim}(A))$ is canonically isomorphic to A^{λ}, through the map Π_{k} ". I do understand why $\operatorname{Sym}^{\lambda}(\operatorname{Prim} A)$ is canonically isomorphic to A^{λ} through the map $\Pi_{k} \quad{ }^{3}$. But I don't understand how Corollary 4.4 follows from this! In particular, I don't see how the $\frac{1}{l(\lambda)!}\left(1-\sum_{l(\mu)<l(\lambda)} F_{\mu}^{\iota}\right)$ term appears.
- Page 11: In the proof of Theorem 5.1, you write: "We multiply this by e_{n} on the right in $\mathcal{L}(A)$ ". I think this is confusing: Multiplying something in $\mathcal{L}(A)$

[^1](here, we renamed x_{i} as a_{i}). In other words,
\[

$$
\begin{align*}
& \left\langle\left\{\left.\frac{1}{k!} \sum_{\sigma \in S_{k}} a_{\sigma(1)} \otimes a_{\sigma(2)} \otimes \ldots \otimes a_{\sigma(k)} \right\rvert\, \text { all } a_{i}\right.\right. \text { are primitive and homogeneous } \\
& \left.\left.\quad \text { elements of } A \text { and satisfy } \operatorname{deg}\left(a_{i}\right)=\lambda_{i} \text { for all } i \in\{1,2, \ldots, k\}\right\}\right\rangle \\
& =\operatorname{Sym}^{\lambda}(\operatorname{Prim} A) \tag{A1}
\end{align*}
$$
\]

By the definition of A^{λ}, we know that A^{λ} is the F-linear span of the elements $\frac{1}{k!} \sum_{\sigma \in S_{k}} a_{\sigma(1)} a_{\sigma(2)} \ldots a_{\sigma(k)}$ where $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ ranges over all k-tuples of primitive homogeneous el-
means convolution, but you want composition. Maybe you could just say "We compose this with e_{n} on the right"?

- Page 11: In the proof of Theorem 5.1, you write:
"Thus we obtain $e_{n}=\alpha e_{n}$, since $e_{\mu} \circ e_{n}=0$ by Lemma 3.2. Thus, in case $e_{n} \neq 0$, $\alpha=1$; and in case $e_{n}=0$, we must have also $\iota_{n}=0$, and we may take $\alpha=1$ in (*)."
This argument is correct, but I think it can be simplified as follows:
"Thus we obtain $e_{n}=\alpha e_{n}$, since $e_{\mu} \circ e_{n}=0$ by Lemma 3.2. Thus, we can replace αe_{n} by e_{n} in $\left(^{*}\right)$, and get $\iota_{n}=e_{n}+\sum_{\mu} * e_{\mu}$."
ements of A satisfying $\left(\operatorname{deg}\left(a_{i}\right)=\lambda_{i}\right.$ for all $\left.i \in\{1,2, \ldots, k\}\right)$. In other words,

$$
\begin{aligned}
& A^{\lambda}=\left\langle\left\{\left.\frac{1}{k!} \sum_{\sigma \in S_{k}} a_{\sigma(1)} a_{\sigma(2)} \ldots a_{\sigma(k)} \right\rvert\, \text { all } a_{i}\right.\right. \text { are primitive and homogeneous } \\
& \text { elements of } \left.\left.A \text { and satisfy } \operatorname{deg}\left(a_{i}\right)=\lambda_{i} \text { for all } i \in\{1,2, \ldots, k\}\right\}\right\rangle \\
& =\left\langle\left\{\left.\Pi_{k}\left(\frac{1}{k!} \sum_{\sigma \in S_{k}} a_{\sigma(1)} \otimes a_{\sigma(2)} \otimes \ldots \otimes a_{\sigma(k)}\right) \right\rvert\, \text { all } a_{i}\right.\right. \text { are primitive and homogeneous } \\
& \text { elements of } \left.\left.A \text { and satisfy } \operatorname{deg}\left(a_{i}\right)=\lambda_{i} \text { for all } i \in\{1,2, \ldots, k\}\right\}\right\rangle \\
& \binom{\text { since } \frac{1}{k!} \sum_{\sigma \in S_{k}} a_{\sigma(1)} a_{\sigma(2)} \ldots a_{\sigma(k)}=\Pi_{k}\left(\frac{1}{k!} \sum_{\sigma \in S_{k}} a_{\sigma(1)} \otimes a_{\sigma(2)} \otimes \ldots \otimes a_{\sigma(k)}\right)}{\text { for any }\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in A^{k}} \\
& =\left\langle\Pi _ { k } \left(\left\{\left.\frac{1}{k!} \sum_{\sigma \in S_{k}} a_{\sigma(1)} \otimes a_{\sigma(2)} \otimes \ldots \otimes a_{\sigma(k)} \right\rvert\, \text { all } a_{i}\right.\right.\right. \text { are primitive and homogeneous } \\
& \text { elements of } \left.\left.\left.A \text { and satisfy } \operatorname{deg}\left(a_{i}\right)=\lambda_{i} \text { for all } i \in\{1,2, \ldots, k\}\right\}\right)\right\rangle \\
& =\Pi_{k}\left(\left\langle\left\{\left.\frac{1}{k!} \sum_{\sigma \in S_{k}} a_{\sigma(1)} \otimes a_{\sigma(2)} \otimes \ldots \otimes a_{\sigma(k)} \right\rvert\, \text { all } a_{i} \text { are primitive and homogeneous }\right)\right.\right. \\
& \text { elements of } \left.\left.\left.A \text { and satisfy } \operatorname{deg}\left(a_{i}\right)=\lambda_{i} \text { for all } i \in\{1,2, \ldots, k\}\right\}\right\rangle\right) \\
& \text { (since } \Pi_{k} \text { is } F \text {-linear) } \\
& =\Pi_{k}\left(\operatorname{Sym}^{\lambda}(\operatorname{Prim} A)\right) \quad(\text { by }(\mathrm{A} 1)) .
\end{aligned}
$$

Hence, Π_{k} restricts to a surjective homomorphism $\operatorname{Sym}^{\lambda}(\operatorname{Prim} A) \rightarrow A^{\lambda}$.
Moreover, let $\widetilde{\Pi}$ be the homomorphism $\underset{n \in \mathbb{N}}{\bigoplus_{n}} \Pi_{\left((\operatorname{Prim} A)^{\otimes n}\right)^{S_{n}}}: \underset{n \in \mathbb{N}}{ }\left((\operatorname{Prim} A)^{\otimes n}\right)^{S_{n}} \rightarrow A$ (composed of the homomorphisms $\left.\Pi_{n}\right|_{\left((\operatorname{Prim} A)^{\otimes n}\right)^{S_{n}}}:\left((\operatorname{Prim} A)^{\otimes n}\right)^{S_{n}} \rightarrow A$ for all $\left.n \in \mathbb{N}\right)$. This homomorphism $\widetilde{\Pi}$ sends $\frac{1}{n!} \sum_{\sigma \in S_{n}} a_{\sigma(1)} \otimes a_{\sigma(2)} \otimes \ldots \otimes a_{\sigma(n)}$ to $\frac{1}{n!} \sum_{\sigma \in S_{n}} a_{\sigma(1)} a_{\sigma(2)} \ldots a_{\sigma(n)}$ for every $n \in \mathbb{N}$ and $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in(\operatorname{Prim} A)^{n}$. According to the Poincaré-Birkhoff-Witt theorem, this homomorphism $\widetilde{\Pi}$ is an isomorphism (since the Cartier-Milnor-Moore theorem yields $A \cong U(\operatorname{Prim} A)$, and under the identification of A with $U(\operatorname{Prim} A)$ the homomorphism $\widetilde{\Pi}$ becomes the symmetrization map $S(\operatorname{Prim} A) \rightarrow U(\operatorname{Prim} A))$. Hence, $\widetilde{\Pi}$ is injective.

This simplified argument has the additional advantage of being valid when k is not necessarily a field.

- Page 11: In the proof of Theorem 5.1, you made a typo: "matrix fom" should be "matrix form".
- Page 11: In the proof of Theorem 5.1, you write: "It is clear that (i) implies (iv)". But is this really clear on its own, or is it clear using the fact that $\mathcal{D}(A)$ is closed under convolution (a consequence of Theorem 9.2 in [R2], but [R2] only considers the case when A is the tensor algebra of an alphabet)?
- Page 12: In the proof of Lemma 5.3, replace $\iota_{\mu 2}$ by $\iota_{\mu_{2}}$ (you forgot to make the 2 an index).
- Pages 12 and 13: In the proof of Theorem 5.4, you write: "Moreover:

$$
\left(\sum_{\mu<[n]} \mathcal{E}_{\mu}^{\iota}\right)^{2}=\left(1-\mathcal{E}_{[n]}^{\iota}\right)^{2}=1-\mathcal{E}_{[n]}^{\iota}=\sum_{\mu<[n]} \mathcal{E}_{\mu}^{\iota}
$$

and:

$$
\left(\sum_{\mu<[n]} \mathcal{E}_{\mu}^{\iota}\right) \circ \mathcal{E}_{[n]}^{\iota}=\left(1-\mathcal{E}_{[n]}^{\iota}\right) \circ \mathcal{E}_{[n]}^{\iota}=0
$$

"
These formulas are not literally true, because $\sum_{\mu<[n]} \mathcal{E}_{\mu}^{\iota}$ is $p_{n}-\mathcal{E}_{[n]}^{\iota}$ rather than
Now, since $\operatorname{Sym}^{\lambda}(\operatorname{Prim} A) \subseteq\left((\operatorname{Prim} A)^{\otimes k}\right)^{S_{k}}$, we have

$$
\begin{aligned}
\left.\widetilde{\Pi}\right|_{\operatorname{Sym}^{\lambda}(\operatorname{Prim} A)}= & \left.\underbrace{\left(\left.\widetilde{\Pi}\right|_{\left((\operatorname{Prim} A)^{\otimes k}\right)^{S_{k}}}\right)}_{=\left.\Pi_{k}\right|_{\left.(\operatorname{Prim} A)^{\otimes k}\right)^{S_{k}}}}\right|_{\operatorname{Sym}^{\lambda}(\operatorname{Prim} A)} \\
& \left(\text { since } \widetilde{\Pi}=\left.\bigoplus_{n \in \mathbb{N}} \Pi_{n}\right|_{\left.\left((\operatorname{Prim} A)^{\otimes n}\right)^{S_{n}}\right)}\right. \\
= & \left.\left(\left.\Pi_{k}\right|_{\left((\operatorname{Prim} A)^{\otimes k}\right)^{S_{k}}}\right)\right|_{\operatorname{Sym}^{\lambda}(\operatorname{Prim} A)}=\left.\Pi_{k}\right|_{\operatorname{Sym}^{\lambda}(\operatorname{Prim} A)}
\end{aligned}
$$

Since $\left.\widetilde{\Pi}\right|_{\operatorname{Sym}^{\lambda}(\operatorname{Prim} A)}$ is injective (because $\widetilde{\Pi}$ is injective), this yields that $\left.\Pi_{k}\right|_{\operatorname{Sym}^{\lambda}(\operatorname{Prim} A)}$ is injective.
Now, consider the surjective homomorphism $\operatorname{Sym}^{\lambda}(\operatorname{Prim} A) \rightarrow A^{\lambda}$ to which Π_{k} restricts. This homomorphism is also injective (since $\left.\Pi_{k}\right|_{\operatorname{Sym}^{\lambda}(\operatorname{Prim} A)}$ is injective), and thus it is an isomorphism. Thus, Π_{k} restricts to an isomorphism $\operatorname{Sym}^{\lambda}(\operatorname{Prim} A) \rightarrow A^{\lambda}$. Hence, $\operatorname{Sym}^{\lambda}(\operatorname{Prim} A)$ is isomorphic to A^{λ} through the map Π_{k}, qed.
$1-\mathcal{E}_{[n]}^{\iota}$ (since

$$
\begin{aligned}
& \sum_{\mu<[n]} \mathcal{E}_{\mu}^{\iota}+\mathcal{E}_{[n]}^{\iota}=\sum_{\mu \leq[n]} \mathcal{E}_{\mu}^{\iota}=\sum_{\substack{\text { is a partition } \\
\text { of } n}} \mathcal{E}_{\mu}^{\iota}=\sum_{\substack{\lambda \text { is a partition } \\
\text { of } n}} \underbrace{\mathcal{E}_{\lambda}^{\iota}}_{\substack{\sum_{\mu \text { is a composition of } n ;}\left(a_{\mu}^{\iota} \cdot \iota_{\mu} \\
p(\mu)=\lambda\right.}}
\end{aligned}
$$

). Only if you restrict all maps to the n-th graded component of A, these equations become true. Alternatively, you could replace these equations by

$$
\left(\sum_{\mu<[n]} \mathcal{E}_{\mu}^{\iota}\right)^{2}=\left(p_{n}-\mathcal{E}_{[n]}^{\iota}\right)^{2}=\underbrace{p_{n}^{2}}_{=p_{n}}-\underbrace{\mathcal{E}_{[n]}^{\iota} \circ p_{n}}_{=\mathcal{E}_{[n]}^{\iota}}-\underbrace{p_{n} \circ \mathcal{E}_{[n]}^{\iota}}_{=\mathcal{E}_{[n]}^{\iota}}+\underbrace{\left(\mathcal{E}_{[n]}^{\iota}\right)^{2}}_{=\mathcal{E}_{[n]}^{\iota}}=p_{n}-\mathcal{E}_{[n]}^{\iota}=\sum_{\mu<[n]} \mathcal{E}_{\mu}^{\iota},
$$

and:

$$
\left(\sum_{\mu<[n]} \mathcal{E}_{\mu}^{\iota}\right) \circ \mathcal{E}_{[n]}^{\iota}=\left(p_{n}-\mathcal{E}_{[n]}^{\iota}\right) \circ \mathcal{E}_{[n]}^{\iota}=\underbrace{p_{n} \circ \mathcal{E}_{[n]}^{\iota}}_{=\mathcal{E}_{[n]}^{\iota}}-\underbrace{\left(\mathcal{E}_{[n]}^{\iota}\right)^{2}}_{=\mathcal{E}_{[n]}^{\iota}}=0 .
$$

A similar inaccuracy appears at the end of page 13: There you write

$$
h \circ 1=h \circ(h+g+k)=b h+h \circ g .
$$

This is not wrong, but not exactly clear: Probably you want to say

$$
h=h \circ p_{n}=h \circ(h+g+k)=b h+h \circ g .
$$

- Page 13: You write: "In other words, $\mathcal{E}_{[n]}^{\iota}$ and $\sum_{\mu<[n]} \mathcal{E}_{\mu}^{\iota}$ are two orthogonal idempotents." But in order to show this, you must not only prove that $\left(\mathcal{E}_{[n]}^{\iota}\right)^{2}=\mathcal{E}_{[n]}^{\iota}$, $\left(\sum_{\mu<[n]} \mathcal{E}_{\mu}^{\iota}\right)^{2}=\sum_{\mu<[n]} \mathcal{E}_{\mu}^{\iota}$ and $\left(\sum_{\mu<[n]} \mathcal{E}_{\mu}^{\iota}\right) \circ \mathcal{E}_{[n]}^{\iota}=0$ (this you have proven), but also prove that $\mathcal{E}_{[n]}^{\iota} \circ\left(\sum_{\mu<[n]} \mathcal{E}_{\mu}^{\iota}\right)=0$. This is easy, of course:

$$
\mathcal{E}_{[n]}^{\iota} \circ\left(\sum_{\mu<[n]} \mathcal{E}_{\mu}^{\iota}\right)=\mathcal{E}_{[n]}^{\iota} \circ\left(p_{n}-\mathcal{E}_{[n]}^{\iota}\right)=\underbrace{\mathcal{E}_{[n]}^{\iota} \circ p_{n}}_{=\mathcal{E}_{[n]}^{\iota}}-\underbrace{\left(\mathcal{E}_{[n]}^{\iota}\right)^{2}}_{=\mathcal{E}_{[n]}^{\iota}}=0 .
$$

But it should be mentioned, I think.

- Page 14: You write: "It follows that the coefficients $a_{\mu}^{\iota^{\epsilon}}$ of the higher Lie idempotents of the third kind depend polynomially of ϵ."
First, I don't understand how this follows from $p_{n}=\sum_{|\mu|=n} F_{\mu}^{\iota^{\epsilon}}$. While all $F_{\mu}^{\epsilon^{\epsilon}}$ are (by definition) linear combinations (with constant coefficients) of compositions of various ι_{ν}^{ϵ}, it is not clear (to me) why they are linear combinations (with coefficients polynomial in ϵ) of convolutions of various ι_{ν}^{ϵ}. I do know that $\mathcal{D}_{\iota^{\epsilon}}$ is closed under convolution (by Theorem 5.1, since $\iota^{\epsilon} \in\langle\iota, e\rangle \subseteq \mathcal{D}(A)$), and this yields that they are linear combinations of convolutions of various ι_{ν}^{ϵ}, but why with coefficients polynomial in ϵ ?
Second, even if we can show that we can write p_{n} as a linear combination of ι_{μ}^{ϵ} with coefficients polynomial in ϵ, then it is not clear to me why these coefficients, when specializing at $\epsilon=1$, become our a_{μ}^{ι} - in fact, the a_{μ}^{ι} are not always uniquely determined by $p_{n}=\sum_{|\mu|=n} a_{\mu}^{\iota} \iota_{\mu}$ (since the ι_{μ} are not always linearly independent), so the a_{μ}^{l} you have started with might not be the same as the a_{μ}^{ι} you get by writing p_{n} as a linear combination of ι_{μ}^{ϵ} and specializing at $\epsilon=1$ (although both families of a_{μ}^{ι} satisfy $\left.p_{n}=\sum_{|\mu|=n} a_{\mu}^{\iota} \iota_{\mu}\right)$.
I am interested in how you actually show that the $a_{\mu}^{\iota^{\epsilon}}$ depend polynomially of ϵ in such a way that specialization at $\epsilon=1$ yields our initial a_{μ}^{ι}. I think I can show this (with some handwaving) under the additional condition that $a_{[n]}^{L}=1$ for every n. Here is how my proof (roughly) goes:
Start with the equations $p_{n}=\sum_{|\mu|=n} a_{\mu}^{\iota} \iota_{\mu}$. By repeated convolution, these equations yield equations of the form $p_{\nu}=\sum_{\substack{|\mu|=|\nu| ; \\ \mu \geq \nu}} a_{\mu, \nu}^{\iota} \iota_{\mu}$ (with $a_{\mu, \nu}^{\iota}$ being scalars, and $\left.a_{\mu,[n]}^{\iota}=a_{\mu}^{\iota}\right)$ for all partitions ν, where $\mu \geq \nu$ means that the composition μ can be obtained by splitting some parts of ν into smaller parts (this defines a partial order \geq on compositions). Since $a_{[n]}^{L}=1$ for every n, we find that $a_{\nu, \nu}^{\iota}=1$ for every composition ν. Now, the equations $p_{\nu}=\sum_{\substack{|\mu|=|\nu| ; \\ \mu \geq \nu}} a_{\mu, \nu}^{\iota} \iota_{\mu}$ show us that $\left(a_{\mu, \nu}^{\iota}\right)_{|\mu|=|\nu|=n}$ is an upper triangular matrix, and the equations $a_{\nu, \nu}^{L}=1$ show that its diagonal entries are $=1$. Hence, it has an inverse matrix $\left(b_{\mu, \nu}^{\iota}\right)_{|\mu|=|\nu|=n}$ which satisfies $\iota_{\nu}=\sum_{\substack{|\mu|=|\nu| ; \\ \mu \geq \nu}} b_{\mu, \nu}^{\iota} p_{\mu}$ for all compositions ν, and again is upper triangular and has diagonal entries $=1$. The same argument, done for e instead of ι, shows that there exists a matrix $\left(b_{\mu, \nu}^{e}\right)_{|\mu|=|\nu|=n}$ which satisfies $e_{\nu}=\sum_{\substack{|\mu|=|\nu| ; \\ \mu \geq \nu}} b_{\mu, \nu}^{e} p_{\mu}$ for all compositions ν, and again is upper triangular and has its diagonal entries $=1$. Now,
the matrix $\left(\epsilon \cdot b_{\mu, \nu}^{\iota}+(1-\epsilon) \cdot b_{\mu, \nu}^{e}\right)_{|\mu|=|\nu|=n}$ satisfies

$$
\begin{aligned}
\iota_{\nu}^{\epsilon} & =\epsilon \cdot \iota_{\nu}+(1-\epsilon) \cdot e_{\nu}=\epsilon \cdot \sum_{\substack{|\mu|=|\nu| ; \\
\mu \geq \nu}} b_{\mu, \nu}^{\iota} p_{\mu}+(1-\epsilon) \cdot \sum_{\substack{|\mu|=|\nu| ; \\
\mu \geq \nu}} b_{\mu, \nu}^{e} p_{\mu} \\
& =\sum_{\substack{|\mu|=|\nu| ; \\
\mu \geq \nu}}\left(\epsilon \cdot b_{\mu, \nu}^{\iota}+(1-\epsilon) \cdot b_{\mu, \nu}^{e}\right) p_{\mu}
\end{aligned}
$$

for all compositions ν, and again is upper triangular and has its diagonal entries $=1$. Hence, its inverse matrix $\left(a_{\mu, \nu}^{\iota^{\epsilon}}\right)_{|\mu|=|\nu|=n}$ satisfies $p_{n}=\sum_{|\mu|=n} a_{\mu,[n]}^{\iota^{\epsilon}} \iota_{\mu}^{\epsilon}$, but its entries $a_{\mu, \nu}^{\iota^{\epsilon}}$ are polynomials in the entries of $\left(\epsilon \cdot b_{\mu, \nu}^{\iota}+(1-\epsilon) \cdot b_{\mu, \nu}^{e}\right)_{|\mu|=|\nu|=n}$ (because if C is an upper triangular matrix with diagonal entries $=1$, then the entries of C^{-1} are polynomials in the entries of C), and thus polynomials in ϵ. This gives us what we want.
But I cannot get rid of the condition that $a_{[n]}^{L}=1$ for every n (not only for the one we are working with, but also for the smaller n, because we need all $a_{\nu, \nu}^{\iota}$ to be 1).
HOWEVER, I think that I can modify your proof of Theorem 5.4 in a different way to make it valid:
First of all, let us generalize the results of Section 3 from one Lie idempotent to two Lie idempotents: ${ }^{4}$
Lemma 5.6. Let ι and ρ be two Lie idempotents. Then, any two compositions λ and μ such that $|\lambda| \neq|\mu|$ satisfy $\iota_{\lambda} \circ \rho_{\mu}=0$.
This is a very obvious fact (it is obvious because the image of ρ_{μ} lies in the $|\mu|$-th graded component of H, whereas ι_{λ} sends every graded component of H except of the $|\lambda|$-th one to 0), and it generalizes the property $\iota_{\lambda} \circ \iota_{\mu}=0$ for $|\lambda| \neq|\mu|$. Less trivially, we have:
Lemma 5.7. Let ι and ρ be two Lie idempotents. Let μ and λ be two compositions of the same weight and the same length k.
(i) If $p(\lambda) \neq p(\mu)$, then $\iota_{\mu} \circ \rho_{\lambda}=0$.
(ii) If $p(\lambda)=p(\mu)$, then $\iota_{\mu} \circ \rho_{\lambda}=N \rho_{\mu}$, where N is the number of permutations of $\{1,2, \ldots, k\}$ which act trivially on the sequence $p(\mu)=p(\lambda)$. (This number N only depends on $p(\lambda)=p(\mu)$, and will often be denoted by $N(p(\lambda))$ or by $N(\lambda)$.)
For the proof of Lemma 5.7, proceed in the same way as in the proof of Lemma 3.1. You will need the identity $\iota \circ \rho=\rho$, which follows from $\left.\iota\right|_{\operatorname{Prim} A}=\operatorname{id}_{\operatorname{Prim} A}$ (because both ι and ρ are Lie idempotents, i. e., projections on Prim A).
Similarly:
Lemma 5.8. Let ι and ρ be two Lie idempotents. Let μ and λ be two compositions of the same weight such that $l(\mu)>l(\lambda)$. Then $\iota_{\mu} \circ \rho_{\lambda}=0$.
This is proven in the same way as Lemma 3.2.
Next, we need a kind of generalization of Lemma 5.3:
Lemma 5.9. Let ι and ρ be two Lie idempotents. Let λ be a partition. For

[^2]every composition μ with $p(\mu)=\lambda$, let b_{μ}^{ι} and b_{μ}^{ρ} be two scalars. Then,
$$
\left(\sum_{p(\mu)=\lambda} b_{\mu}^{\iota} \iota_{\mu}\right) \circ\left(\sum_{p(\mu)=\lambda} b_{\mu}^{\rho} \rho_{\mu}\right)=\left(\sum_{p(\mu)=\lambda} b_{\mu}^{\iota}\right) N\left(\sum_{p(\mu)=\lambda} b_{\mu}^{\rho} \rho_{\mu}\right)
$$
where N is the number of permutations of $\{1,2, \ldots, k\}$ which act trivially on the sequence λ.
The proof of this lemma proceeds in the same way as the identity $\left(\sum_{p(\mu)=\lambda} b_{\mu} \iota_{\mu}\right)^{2}=$ $\left(\sum_{p(\mu)=\lambda} b_{\mu}\right) N\left(\sum_{p(\mu)=\lambda} b_{\mu} \iota_{\mu}\right)$ was proven in the proof of Lemma 5.3. Here are the details of the proof:
Proof of Lemma 5.9. For every composition μ satisfying $p(\mu)=\lambda$, we know that N is the number of permutations of $\{1,2, \ldots, k\}$ which act trivially on the sequence $p(\mu)$ (because N is defined as the number of permutations of $\{1,2, \ldots, k\}$ which act trivially on the sequence λ, but we have $\lambda=p(\mu)$). Hence, for every composition μ satisfying $p(\mu)=\lambda$, we have $i_{\mu} \circ \rho_{\mu}=N \rho_{\mu}$ (by Lemma 5.7 (ii), applied to μ instead of λ). Since composition of linear maps is bilinear, we have
\[

$$
\begin{aligned}
& \left(\sum_{p(\mu)=\lambda} b_{\mu}^{\iota} \iota_{\mu}\right) \circ\left(\sum_{p(\mu)=\lambda} b_{\mu}^{\rho} \rho_{\mu}\right) \\
& =\sum_{p(\mu)=\lambda} \sum_{p(\mu)=\lambda} b_{\mu}^{\iota} b_{\mu}^{\rho} \underbrace{\iota_{\mu} \circ \rho_{\mu}}_{=N \rho_{\mu}}=N \sum_{p(\mu)=\lambda} \sum_{p(\mu)=\lambda} b_{\mu}^{\iota} b_{\mu}^{\rho} \rho_{\mu} \\
& =\left(\sum_{p(\mu)=\lambda} b_{\mu}^{\iota}\right) N\left(\sum_{p(\mu)=\lambda} b_{\mu}^{\rho} \rho_{\mu}\right) \quad \text { (since composition of linear maps is bilinear). }
\end{aligned}
$$
\]

This proves Lemma 5.9.
Now to the proof of Theorem 5.4. We proceed in the same way as you do (with one exception: we don't have to assume $h \neq 0$) until your Claim 5.5 (which we cannot make anymore, since we haven't assumed that $h \neq 0$). Then, just as you, we prove $h \circ g=(1-b) h$ and $k \circ g=(b-1) h$. Now I am going to show that $h^{2}=h$.
First of all, we have $p_{n}=\sum_{|\mu|=n} \frac{1}{n!} e_{\mu} \quad{ }^{5}$. Let us define a scalar a_{μ}^{e} by $a_{\mu}^{e}=\frac{1}{n!}$ for every partition μ. Then, $p_{n}=\sum_{|\mu|=n} \underbrace{\frac{1}{n!}}_{=a_{\mu}^{e}} e_{\mu}=\sum_{|\mu|=n} a_{\mu}^{e} e_{\mu}$. Hence, in the same way as we defined an element $\mathcal{E}_{\lambda}^{\iota}$ for every partition λ in Definition 5.2, we can define

[^3] It can be easily derived from the fact that $e=\log _{*}(\mathrm{id})$, so that id $=\exp _{*} e=\exp _{*}\left(e_{1}+e_{2}+e_{3}+\ldots\right)$.
an element $\mathcal{E}_{\lambda}^{e}$ for every partition λ by the formula
\[

$$
\begin{gathered}
\mathcal{E}_{\lambda}^{e}:=\sum_{p(\mu)=\lambda} \underbrace{a_{\mu}^{e}}_{=\frac{1}{n!}} \cdot e_{\mu}=\sum_{p(\mu)=\lambda} \frac{1}{n!} e_{\mu} .
\end{gathered}
$$
\]

From Lemmas 5.7 and 5.8 (applied to e and ι instead of ι and ρ), we conclude that $\mathcal{E}_{\lambda}^{e} \circ \mathcal{E}_{\mu}^{\iota}=0$ for every partition $\mu<\lambda$. Hence,

$$
\mathcal{E}_{\lambda}^{e} \circ \underbrace{k}_{=\sum_{\mu<\lambda} \mathcal{E}_{\mu}^{\iota}}=\mathcal{E}_{\lambda}^{e} \circ\left(\sum_{\mu<\lambda} \mathcal{E}_{\mu}^{\iota}\right)=\sum_{\mu<\lambda} \underbrace{\mathcal{E}_{\lambda}^{e} \circ \mathcal{E}_{\mu}^{\iota}}_{\substack{=0 \\(\text { since } \mu<\lambda)}}=0 .
$$

On the other hand, for every partition λ, let $N(\lambda)$ denote the number of permutations of $\{1,2, \ldots, k\}$ which act trivially on the sequence λ. We have $\mathcal{E}_{\lambda}^{e}=$ $\sum_{p(\mu)=\lambda} \frac{1}{n!} e_{\mu}$ and $h=\mathcal{E}_{\lambda}^{\iota}=\sum_{p(\mu)=\lambda} a_{\mu}^{\iota} e_{\mu}$, so that
$\mathcal{E}_{\lambda}^{e} \circ h=\left(\sum_{p(\mu)=\lambda} \frac{1}{n!} e_{\mu}\right) \circ\left(\sum_{p(\mu)=\lambda} a_{\mu}^{\iota} \iota_{\mu}\right)=\left(\sum_{p(\mu)=\lambda} \frac{1}{n!}\right) N(\lambda) \cdot \underbrace{\left(\sum_{p(\mu)=\lambda} a_{\mu}^{\iota} \iota_{\mu}\right)}_{=h}$

$$
\begin{aligned}
& \left(\text { by Lemma 5.9, applied to } N(\lambda), \frac{1}{n!}, a_{\mu}^{\iota}, e \text { and } \iota \text { instead of } N, b_{\mu}^{\iota}, b_{\mu}^{\rho}, \iota \text { and } \rho\right) \\
= & \left(\sum_{p(\mu)=\lambda} \frac{1}{n!}\right) N(\lambda) h .
\end{aligned}
$$

Now, compare

$$
\underbrace{\mathcal{E}_{\lambda}^{e} \circ k}_{=0} \circ g=0 \circ g=0
$$

with

$$
\begin{aligned}
\mathcal{E}_{\lambda}^{e} \circ \underbrace{k \circ g}_{=(b-1) h}=(b-1) \underbrace{\mathcal{E}_{\lambda}^{e} \circ h}=(b-1)\left(\sum_{p(\mu)=\lambda} \frac{1}{n!}\right) N(\lambda) h . \\
=\left(\sum_{p(\mu)=\lambda} \frac{1}{n!}\right) N(\lambda) h
\end{aligned}
$$

This yields

$$
(b-1)\left(\sum_{p(\mu)=\lambda} \frac{1}{n!}\right) N(\lambda) h=0
$$

Since $\left(\sum_{p(\mu)=\lambda} \frac{1}{n!}\right) N(\lambda)$ is invertible in k (in fact, $\left(\sum_{p(\mu)=\lambda} \frac{1}{n!}\right) N(\lambda) \neq 0$ obviously; we can even prove that $\left(\sum_{p(\mu)=\lambda} \frac{1}{n!}\right) N(\lambda)=1$, but we don't need this),
this becomes $(b-1) h=0$, so that $h=b h$. Compared with $h \circ h=b h$ (which follows from the proof of Lemma 5.3), this yields $h \circ h=h$, so that h is an idempotent.
Since $g^{2}=g$ (because $g=\sum_{\mu>\lambda} \mathcal{E}_{\mu}^{\iota}$, and by the induction assumption the $\mathcal{E}_{\mu}^{\iota}$ are orthogonal idempotents), $h \circ g=(1-b) h=-\underbrace{(b-1) h}_{=0}=0$ and $k \circ g=(b-1) h=$ 0, we can continue the proof as you do after you prove Claim 5.5. This proves Theorem 5.4.

- Page 14: There is a typo: $b_{\lambda}^{i^{\epsilon}}$ should be $b_{\lambda}^{\epsilon^{\epsilon}}$.
- Page 15: You write: "and the proof of theorem 5.3 is complete". The theorem is Theorem 5.4, not 5.3.
- Page 16: In reference [R1], typo: "represntations".

[^0]: ${ }^{1}$ By the "easy part", I mean the statement that a graded cocommutative connected bialgebra over a field of characteristic 0 is always generated as an algebra by its primitive elements.
 ${ }^{2}$ Here, the "easy part" is the statement that the symmetrization map $S(\mathfrak{g}) \rightarrow U(\mathfrak{g})$ is surjective. (This only makes sense in characteristic 0 .)

[^1]: ${ }^{3}$ In fact, let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$. For every F-vector space V and every subset S of V, let $\langle S\rangle$ denote the F-linear span of the set S.

 By the definition of $\operatorname{Sym}^{\lambda}(\operatorname{Prim} A)$, we know that $\operatorname{Sym}^{\lambda}(\operatorname{Prim} A)$ is the F-linear span of the elements $\frac{1}{k!} \sum_{\sigma \in S_{k}} x_{\sigma(1)} \otimes x_{\sigma(2)} \otimes \ldots \otimes x_{\sigma(k)}$ where $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ ranges over all k-tuples of homogeneous elements of Prim A satisfying $\left(\operatorname{deg}\left(x_{i}\right)=\lambda_{i}\right.$ for all $\left.i \in\{1,2, \ldots, k\}\right)$. In other words,
 $\operatorname{Sym}^{\lambda}(\operatorname{Prim} A)=\left\langle\left\{\left.\frac{1}{k!} \sum_{\sigma \in S_{k}} x_{\sigma(1)} \otimes x_{\sigma(2)} \otimes \ldots \otimes x_{\sigma(k)} \right\rvert\,\right.\right.$ all x_{i} are homogeneous elements of Prim A and satisfy $\operatorname{deg}\left(x_{i}\right)=\lambda_{i}$ for all $\left.\left.i \in\{1,2, \ldots, k\}\right\}\right\rangle$ $=\left\langle\left\{\left.\frac{1}{k!} \sum_{\sigma \in S_{k}} x_{\sigma(1)} \otimes x_{\sigma(2)} \otimes \ldots \otimes x_{\sigma(k)} \right\rvert\,\right.\right.$ all x_{i} are primitive and homogeneous elements of A and satisfy $\operatorname{deg}\left(x_{i}\right)=\lambda_{i}$ for all $\left.\left.i \in\{1,2, \ldots, k\}\right\}\right\rangle$ $=\left\langle\left\{\left.\frac{1}{k!} \sum_{\sigma \in S_{k}} a_{\sigma(1)} \otimes a_{\sigma(2)} \otimes \ldots \otimes a_{\sigma(k)} \quad \right\rvert\,\right.\right.$ all a_{i} are primitive and homogeneous elements of A and satisfy $\operatorname{deg}\left(a_{i}\right)=\lambda_{i}$ for all $\left.\left.i \in\{1,2, \ldots, k\}\right\}\right\rangle$

[^2]: ${ }^{4}$ In the following Lemmas 5.6, 5.7, 5.8 and 5.9, we don't assume that $\mathcal{D}(A)=\mathcal{D}_{\iota}$.

[^3]: ${ }^{5}$ This is a known fact (I knew it in the form $\left.p_{n}=\sum_{\ell=0}^{n} \frac{1}{\ell!} \sum_{\substack{\left(a_{1}, a_{2}, \ldots, a_{\ell}\right) \in\{1,2, \ldots, n\}^{\ell} ; \\ n=a_{1}+a_{2}+\ldots+a_{\ell}}}\left(e_{a_{1}} * e_{a_{2}} * \ldots * e_{a_{\ell}}\right)\right)$.

