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Abstract

We show a determinant identity which generalizes both the Chio pivotal
condensation theorem and the Matrix-Tree theorem.

1. Introduction

The Chio pivotal condensation theorem (Theorem 2.1 below, or [Eves68, Theo-
rem 3.6.1]) is a simple particular case of the Dodgson-Muir determinantal iden-
tity ([BerBru08, (4)]), which can be used to reduce the computation of an n × n-
determinant to that of an (n− 1)× (n− 1)-determinant (provided that an entry of
the matrix can be divided by1). On the other hand, the Matrix-Tree theorem (The-
orem 2.12, or [Zeilbe85, Section 4], or [Verstr12, Theorem 1]) expresses the number
of spanning trees of a graph as a determinant2. In this note, we show that these
two results have a common generalization (Theorem 2.13). As we have tried to
keep the note self-contained, using only the well-known fundamental properties of
determinants, it also provides new proofs for both results.

1.1. Acknowledgments

We thank the PRIMES project at MIT, during whose 2015 iteration this paper was
created, and in particular George Lusztig for sponsoring the first author’s mentor-
ship in this project.

1We work with matrices over arbitrary commutative rings, so this is not a moot point. Of course,
if the ring is a field, then this just means that the matrix has a nonzero entry.

2And not just the number; rather, a “weighted number” from which the spanning trees can be
read off if the weights are chosen generically enough.
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2. The theorems

We shall use the (rather standard) notations defined in [Grinbe15]. In particular,
N means the set {0, 1, 2, . . .}. For any n ∈ N, we let Sn denote the group of
permutations of the set {1, 2, . . . , n}. The n× m-matrix whose (i, j)-th entry is ai,j
for each (i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , m} will be denoted by

(
ai,j
)

1≤i≤n, 1≤j≤m.
Let K be a commutative ring. We shall regard K as fixed throughout this note

(so we won’t always write “Let K be a commutative ring” in our propositions); the
notion “matrix” will always mean “matrix with entries in K”.

2.1. Chio Pivotal Condensation

We begin with a statement of the Chio Pivotal Condensation theorem (see, e.g.,
[KarZha16, Theorem 0.1] and the reference therein):

Theorem 2.1. Let n ≥ 2 be an integer. Let A =
(
ai,j
)

1≤i≤n, 1≤j≤n ∈ Kn×n be a
matrix. Then,

det
((

ai,jan,n − ai,nan,j
)

1≤i≤n−1, 1≤j≤n−1

)
= an−2

n,n · det
((

ai,j
)

1≤i≤n, 1≤j≤n

)
.

Example 2.2. If n = 3 and A =

 a a′ a′′

b b′ b′′

c c′ c′′

, then Theorem 2.1 says that

det
(

ac′′ − a′′c a′c′′ − a′′c′

bc′′ − b′′c b′c′′ − b′′c′

)
=
(
c′′
)3−2 · det

 a a′ a′′

b b′ b′′

c c′ c′′

 .

Theorem 2.1 (originally due to Félix Chio in 18533) is nowadays usually regarded
either as a particular case of the Dodgson-Muir determinantal identity ([BerBru08,
(4)]), or as a relatively easy exercise on row operations and the method of universal
identities4. We, however, shall generalize it in a different direction.

3See [Heinig11, footnote 2] and [Abeles14, §2] for some historical background.
4In more detail:

• In order to derive Theorem 2.1 from [BerBru08, (4)], it suffices to set k = n− 1 and recognize
the right hand side of [BerBru08, (4)] as det

((
ai,jan,n − ai,nan,j

)
1≤i≤n−1, 1≤j≤n−1

)
.

• A proof of Theorem 2.1 using row operations can be found in [Eves68, Theorem 3.6.1], up to
a few minor issues: First of all, [Eves68, Theorem 3.6.1] proves not exactly Theorem 2.1 but
the analogous identity

det
((

ai+1,j+1a1,1 − ai+1,1a1,j+1
)

1≤i≤n−1, 1≤j≤n−1

)
= an−2

1,1 · det
((

ai,j
)

1≤i≤n, 1≤j≤n

)
.
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2.2. Generalization, step 1

Our generalization will proceed in two steps. In the first step, we shall replace
some of the n’s on the left hand side by f (i)’s (see Theorem 2.9 below). We first
define some notations:

Definition 2.3. Let n be a positive integer. Let f : {1, 2, . . . , n} → {1, 2, . . . , n} be
any map such that f (n) = n.

We say that the map f is n-potent if for every i ∈ {1, 2, . . . , n}, there exists
some k ∈ N such that f k (i) = n. (In less formal terms, f is n-potent if and only
if every element of {1, 2, . . . , n} eventually arrives at n when being subjected to
repeated application of f .)

(Note that, by definition, any n-potent map f : {1, 2, . . . , n} → {1, 2, . . . , n} must
satisfy f (n) = n.)

Example 2.4. For this example, let n = 3. The map {1, 2, 3} → {1, 2, 3} sending
1, 2, 3 to 2, 1, 3, respectively, is not n-potent (because applying it repeatedly to 1
can only give 1 or 2, but never 3). The map {1, 2, 3} → {1, 2, 3} sending 1, 2, 3
to 3, 3, 2, respectively, is not n-potent (since it does not send n to n). The map
{1, 2, 3} → {1, 2, 3} sending 1, 2, 3 to 3, 1, 3, respectively, is n-potent (indeed,
every element of {1, 2, 3} goes to 3 after at most two applications of this map).

Remark 2.5. Given a positive integer n, the n-potent maps f : {1, 2, . . . , n} →
{1, 2, . . . , n} are in 1-to-1 correspondence with the trees with vertex set
{1, 2, . . . , n}. Namely, an n-potent map f corresponds to the tree whose edges
are {i, f (i)} for all i ∈ {1, 2, . . . , n− 1}. If we regard the tree as a rooted tree
with root n, and if we direct every edge towards the root, then the edges are
(i, f (i)) for all i ∈ {1, 2, . . . , n− 1}.

Remark 2.6. Let n ≥ 2 be an integer. Let f : {1, 2, . . . , n} → {1, 2, . . . , n} be any
n-potent map. Then:

(a) There exists some g ∈ {1, 2, . . . , n− 1} such that f (g) = n.
(b) We have

∣∣ f−1 (n)
∣∣ ≥ 2.

The (very simple) proof of Remark 2.6 can be found in the Appendix (Section 4).

Second, [Eves68, Theorem 3.6.1] assumes a1,1 to be invertible (and all ai,j to belong to a
field); however, assumptions like this can easily be disposed of using the method of universal
identities (see [Conrad09]).

A more explicit and self-contained proof of Theorem 2.1 can be found in [KarZha16]. Refer-
ences to other proofs appear in [Abeles14, §2].
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Definition 2.7. Let n ≥ 2 be an integer. Let A =
(
ai,j
)

1≤i≤n, 1≤j≤n ∈ Kn×n be an
n× n-matrix. Let f : {1, 2, . . . , n} → {1, 2, . . . , n} be any n-potent map.

(a) We define an element weight f A of K by

weight f A =
n−1

∏
i=1

ai, f (i).

(b) We define an element abut f A of K by

abut f A = a| f
−1(n)|−2

n,n ∏
i∈{1,2,...,n−1};

f (i) 6=n

a f (i),n.

(This is well-defined, since Remark 2.6 (b) shows that
∣∣ f−1 (n)

∣∣− 2 ∈N.)

Remark 2.8. Let n, A and f be as in Definition 2.7. Here are two slightly more
intuitive ways to think of abut f A:

(a) If an,n ∈ K is invertible, then abut f A is simply
1

an,n
∏

i∈{1,2,...,n−1}
a f (i),n.

(b) Remark 2.6 (a) shows that there exists some g ∈ {1, 2, . . . , n− 1} such that
f (g) = n. Fix such a g. Then,

abut f A = ∏
i∈{1,2,...,n−1};

i 6=g

a f (i),n.

The (nearly trivial) proof of Remark 2.8 is again found in the Appendix.
Now, we can state our first generalization of Theorem 2.1:

Theorem 2.9. Let n be a positive integer. Let A =
(
ai,j
)

1≤i≤n, 1≤j≤n ∈ Kn×n be an
n× n-matrix. Let f : {1, 2, . . . , n} → {1, 2, . . . , n} be any map such that f (n) = n.

Let B be the (n− 1)× (n− 1)-matrix(
ai,ja f (i),n − ai,na f (i),j

)
1≤i≤n−1, 1≤j≤n−1

∈ K(n−1)×(n−1).

(a) If the map f is not n-potent, then det B = 0.
(b) Assume that n ≥ 2. Assume that the map f is n-potent. Then,

det B =
(
abut f A

)
· det A.
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Example 2.10. For this example, let n = 3 and A =

 a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

.

If f : {1, 2, 3} → {1, 2, 3} is the map sending 1, 2, 3 to 3, 1, 3, respectively, then

the matrix B defined in Theorem 2.9 is
(

a1,1a3,3 − a1,3a3,1 a1,2a3,3 − a1,3a3,2
a2,1a1,3 − a2,3a1,1 a2,2a1,3 − a2,3a1,2

)
.

Since this map f is n-potent, Theorem 2.9 (b) predicts that this matrix B satis-
fies det B =

(
abut f A

)
· det A. This is indeed easily checked (indeed, we have

abut f A = a1,3 in this case).
On the other hand, if f : {1, 2, 3} → {1, 2, 3} is the map sending

1, 2, 3 to 1, 1, 3, respectively, then the matrix B defined in Theorem 2.9 is(
a1,1a1,3 − a1,3a1,1 a1,2a1,3 − a1,3a1,2
a2,1a1,3 − a2,3a1,1 a2,2a1,3 − a2,3a1,2

)
. Since this map f is not n-potent, The-

orem 2.9 (a) predicts that this matrix B satisfies det B = 0. This, too, is easily
checked (and arguably obvious in this case).

Applying Theorem 2.9 (b) to f (i) = n yields Theorem 2.1. (The map f :
{1, 2, . . . , n} → {1, 2, . . . , n} defined by f (i) = n is clearly n-potent, and satisfies
abut f A = an−2

n,n .)
We defer the proof of Theorem 2.9 until later; first, let us see how it can be

generalized a bit further (not substantially, anymore) and how this generalization
also encompasses the matrix-tree theorem.

2.3. The matrix-tree theorem

Definition 2.11. For any two objects i and j, we define an element δi,j ∈ K by

δi,j =

{
1, if i = j;
0, if i 6= j

.

Let us first state the matrix-tree theorem.
To be honest, there is no “the matrix-tree theorem”, but rather a network of

“matrix-tree theorems” (some less, some more general), each of which has a rea-
sonable claim to this name. Here we shall prove the following one:

Theorem 2.12. Let n ≥ 1 be an integer. Let W : {1, 2, . . . , n} × {1, 2, . . . , n} → K

be any function. For every i ∈ {1, 2, . . . , n}, set

d+ (i) =
n

∑
j=1

W (i, j) .

Let L be the matrix
(
δi,jd+ (i)−W (i, j)

)
1≤i≤n−1, 1≤j≤n−1 ∈ K(n−1)×(n−1). Then,

det L = ∑
f :{1,2,...,n}→{1,2,...,n};

f (n)=n;
f is n-potent

n−1

∏
i=1

W (i, f (i)) . (1)
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Since our notation differs from that in most other sources on the matrix-tree
theorem, let us explain the equivalence between our Theorem 2.12 and one of its
better-known avatars: The version of the matrix-tree theorem stated in [Zeilbe85,
Section 4] involves some “weights” ak,m, a determinant of an (n− 1) × (n− 1)-
matrix, and a sum over a set T = T (n). These correspond (respectively) to the
values W (k, m), the determinant det L, and the sum over all n-potent maps f in
our Theorem 2.12. In fact, the only nontrivial part of this correspondence is the
bijection between the trees in T and the n-potent maps f over which the sum in (1)
ranges. This bijection is precisely the one introduced in Remark 2.5.5

It might seem weird to call Theorem 2.12 the “matrix-tree theorem” if the word
“tree” never occurs inside it. However, as we have already noticed in Remark 2.5,
the trees on the set {1, 2, . . . , n} are in bijection with the n-potent maps {1, 2, . . . , n} →
{1, 2, . . . , n}, and therefore the sum on the right hand side of (1) can be viewed as
a sum over all these trees. Moreover, the function W can be viewed as an n× n-
matrix; when this matrix is specialized to the adjacency matrix of a directed graph,
the sum on the right hand side of (1) becomes the number of directed spanning
trees of this directed graph directed towards the root n.

2.4. Generalization, step 2

Now, as promised, we will generalize Theorem 2.9 a step further. While the result
will not be significantly stronger (we will actually derive it from Theorem 2.9 quite
easily), it will lead to a short proof of Theorem 2.12:

5A slightly different version of the matrix-tree theorem appears in [Verstr12, Theorem 1] (and
various other places); it involves a function W, a number v ∈ {1, 2, . . . , n}, a matrix Lv, a set
Tv and a sum τ (W, v). Our Theorem 2.12 is equivalent to the case of [Verstr12, Theorem 1] for
v = n; but this case is easily seen to be equivalent to the general case of [Verstr12, Theorem 1]
(since the elements of {1, 2, . . . , n} can be permuted at will). Our matrix L is the Ln of [Verstr12,
Theorem 1]. Furthermore, our sum over all n-potent maps f corresponds to the sum τ (W, n) in
[Verstr12], which is a sum over all n-arborescences on {1, 2, . . . , n}; the correspondence is again
due to Remark 2.5.
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Theorem 2.13. Let n ≥ 2 be an integer. Let A =
(
ai,j
)

1≤i≤n, 1≤j≤n ∈ Kn×n and

B =
(
bi,j
)

1≤i≤n, 1≤j≤n ∈ Kn×n be n× n-matrices. Write the n× n-matrix BA in

the form BA =
(
ci,j
)

1≤i≤n, 1≤j≤n.
Let G be the (n− 1)× (n− 1)-matrix(

ai,jci,n − ai,nci,j
)

1≤i≤n−1, 1≤j≤n−1 ∈ K(n−1)×(n−1).

Then,

det G =

 ∑
f :{1,2,...,n}→{1,2,...,n};

f (n)=n;
f is n-potent

(
weight f B

) (
abut f A

)
 · det A.

To obtain Theorem 2.9 from Theorem 2.13, we have to define B by B =
(

δj, f (i)

)
1≤i≤n, 1≤j≤n

.

Below we shall show how to obtain the matrix-tree theorem from Theorem 2.13.

Example 2.14. Let us see what Theorem 2.13 says for n = 3. There are three
n-potent maps f : {1, 2, 3} → {1, 2, 3}:

• one map f33 which sends both 1 and 2 to 3;

• one map f23 which sends 1 to 2 and 2 to 3;

• one map f31 which sends 2 to 1 and 1 to 3.

The definition of the ci,j as the entries of BA shows that ci,j = bi,1a1,j + bi,2a2,j +
bi,3a3,j for all i and j. We have

G =

(
a1,1c1,3 − c1,1a1,3 a1,2c1,3 − c1,2a1,3
a2,1c2,3 − c2,1a2,3 a2,2c2,3 − c2,2a2,3

)
.

Theorem 2.13 says that

det G =
((

weight f33
B
) (

abut f33 A
)
+
(

weight f23
B
) (

abut f23 A
)

+
(

weight f31
B
) (

abut f31 A
))
· det A

= (b1,3b2,3a3,3 + b1,2b2,3a2,3 + b1,3b2,1a1,3) · det A.
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3. The proofs

3.1. Deriving Theorem 2.13 from Theorem 2.9

Let us see how Theorem 2.13 can be proven using Theorem 2.9 (which we have not
proven yet). We shall need two lemmas:

Lemma 3.1. Let n ∈ N and m ∈ N. Let bi,k be an element of K for every
i ∈ {1, 2, . . . , m} and every k ∈ {1, 2, . . . , n}. Let di,j,k be an element of K for
every i ∈ {1, 2, . . . , m}, j ∈ {1, 2, . . . , m} and k ∈ {1, 2, . . . , n}. Let G be the

m×m-matrix
(

n
∑

k=1
bi,kdi,j,k

)
1≤i≤m, 1≤j≤m

. Then,

det G = ∑
f :{1,2,...,m}→{1,2,...,n}

(
m

∏
i=1

bi, f (i)

)
det

((
di,j, f (i)

)
1≤i≤m, 1≤j≤m

)
.

Lemma 3.1 is merely a scary way to state the multilinearity of the determinant
as a function of its rows. See the Appendix for a proof.

Let us specialize Lemma 3.1 in a way that is closer to our goal:

Lemma 3.2. Let n be a positive integer. Let bi,k be an element of K for every
i ∈ {1, 2, . . . , n− 1} and every k ∈ {1, 2, . . . , n}. Let di,j,k be an element of K for
every i ∈ {1, 2, . . . , n− 1}, j ∈ {1, 2, . . . , n− 1} and k ∈ {1, 2, . . . , n}. Let G be the

(n− 1)× (n− 1)-matrix
(

n
∑

k=1
bi,kdi,j,k

)
1≤i≤n−1, 1≤j≤n−1

. Then,

det G = ∑
f :{1,2,...,n}→{1,2,...,n};

f (n)=n

(
n−1

∏
i=1

bi, f (i)

)
det

((
di,j, f (i)

)
1≤i≤n−1, 1≤j≤n−1

)
.

Proof of Lemma 3.2. Lemma 3.1 (applied to m = n− 1) shows that

det G = ∑
f :{1,2,...,n−1}→{1,2,...,n}

(
n−1

∏
i=1

bi, f (i)

)
det

((
di,j, f (i)

)
1≤i≤n−1, 1≤j≤n−1

)
.

The only difference between this formula and the claim of Lemma 3.2 is that the
sum here is over all f : {1, 2, . . . , n− 1} → {1, 2, . . . , n}, whereas the sum in the
claim of Lemma 3.2 is over all f : {1, 2, . . . , n} → {1, 2, . . . , n} satisfying f (n) = n.
But this is not much of a difference: Each map {1, 2, . . . , n− 1} → {1, 2, . . . , n} is
a restriction (to {1, 2, . . . , n− 1}) of a unique map f : {1, 2, . . . , n} → {1, 2, . . . , n}
satisfying f (n) = n, and therefore the two sums are equal.



A generalization of Chio Pivotal Condensation page 9

Proof of Theorem 2.13. For every i ∈ {1, 2, . . . , n− 1}, j ∈ {1, 2, . . . , n− 1} and k ∈
{1, 2, . . . , n}, define an element di,j,k of K by

di,j,k = ai,jak,n − ai,nak,j. (2)

For every f : {1, 2, . . . , n} → {1, 2, . . . , n} satisfying f (n) = n, we have

det



 di,j, f (i)︸ ︷︷ ︸
=ai,ja f (i),n−ai,na f (i),j

(by (2))


1≤i≤n−1, 1≤j≤n−1


= det

((
ai,ja f (i),n − ai,na f (i),j

)
1≤i≤n−1, 1≤j≤n−1

)
=

{
0, if f is not n-potent;(
abut f A

)
· det A, if f is n-potent

(3)

(by Theorem 2.9, applied to the matrix
(

ai,ja f (i),n − ai,na f (i),j

)
1≤i≤n−1, 1≤j≤n−1

in-

stead of B).
We have (

ci,j
)

1≤i≤n, 1≤j≤n = BA =

(
n

∑
k=1

bi,kak,j

)
1≤i≤n, 1≤j≤n

(by the definition of the product of two matrices). Thus,

ci,j =
n

∑
k=1

bi,kak,j for every (i, j) ∈ {1, 2, . . . , n}2 . (4)

Now, for every (i, j) ∈ {1, 2, . . . , n− 1}2, we have

ai,j ci,n︸︷︷︸
=

n
∑

k=1
bi,kak,n

(by (4), applied to n
instead of j)

−ai,n ci,j︸︷︷︸
=

n
∑

k=1
bi,kak,j

(by (4))

= ai,j

n

∑
k=1

bi,kak,n − ai,n

n

∑
k=1

bi,kak,j =
n

∑
k=1

bi,k
(
ai,jak,n − ai,nak,j

)︸ ︷︷ ︸
=di,j,k

(by (2))

=
n

∑
k=1

bi,kdi,j,k.

Hence,

G =

ai,jci,n − ai,nci,j︸ ︷︷ ︸
=

n
∑

k=1
bi,kdi,j,k


1≤i≤n−1, 1≤j≤n−1

=

(
n

∑
k=1

bi,kdi,j,k

)
1≤i≤n−1, 1≤j≤n−1

.
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Hence, Lemma 3.2 yields

det G = ∑
f :{1,2,...,n}→{1,2,...,n};

f (n)=n

(
n−1

∏
i=1

bi, f (i)

)
︸ ︷︷ ︸

=weight f B
(by the definition

of weight f B)

det
((

di,j, f (i)

)
1≤i≤n−1, 1≤j≤n−1

)
︸ ︷︷ ︸

=

0, if f is not n-potent;(
abut f A

)
· det A, if f is n-potent

= ∑
f :{1,2,...,n}→{1,2,...,n};

f (n)=n

(
weight f B

){0, if f is not n-potent;(
abut f A

)
· det A, if f is n-potent

= ∑
f :{1,2,...,n}→{1,2,...,n};

f (n)=n;
f is n-potent

(
weight f B

) (
abut f A

)
· det A

=

 ∑
f :{1,2,...,n}→{1,2,...,n};

f (n)=n;
f is n-potent

(
weight f B

) (
abut f A

)
 · det A.

3.2. Deriving Theorem 2.12 from Theorem 2.13

Now let us see why Theorem 2.13 generalizes the matrix-tree theorem.

Proof of Theorem 2.12. WLOG assume that n ≥ 2 (since the case n = 1 is easy to
check by hand). Define an n× n-matrix A by A =

(
ai,j
)

1≤i≤n, 1≤j≤n, where

ai,j = δi,j + δj,n (1− δi,n) .

(This scary formula hides a simple idea: this is the matrix whose entries on the
diagonal and in its last column are 1, and all other entries are 0. Thus,

A =



1 0 0 0 · · · 0 1
0 1 0 0 · · · 0 1
0 0 1 0 · · · 0 1
0 0 0 1 · · · 0 1
...

...
...

... . . . ...
...

0 0 0 0 · · · 1 1
0 0 0 0 · · · 0 1


.
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) Note that every (i, j) ∈ {1, 2, . . . , n− 1}2 satisfies

ai,j = δi,j + δj,n︸︷︷︸
=0

(since j 6=n
(since j∈{1,2,...,n−1}))

(1− δi,n) = δi,j. (5)

Also, every i ∈ {1, 2, . . . , n− 1} satisfies

ai,n = δi,n︸︷︷︸
=0

(since i 6=n)

+ δn,n︸︷︷︸
=1

(since n=n)

1− δi,n︸︷︷︸
=0

(since i 6=n)

 (by the definition of ai,n)

= 0 + 1 (1− 0) = 1. (6)

Also, let B be the n× n-matrix (W (i, j))1≤i≤n, 1≤j≤n. Write the n× n-matrix BA
in the form BA =

(
ci,j
)

1≤i≤n, 1≤j≤n. Then, it is easy to see that every (i, j) ∈
{1, 2, . . . , n}2 satisfies

ci,j = W (i, j) + δj,n
(
d+ (i)−W (i, n)

)
(7)

6.

6Proof of (7): For every i ∈ {1, 2, . . . , n}, we have

d+ (i) =
n

∑
j=1

W (i, j)
(
by the definition of d+ (i)

)
=

n−1

∑
j=1

W (i, j) + W (i, n) =
n−1

∑
k=1

W (i, k) + W (i, n)

(here, we renamed the summation index j as k) and thus

n−1

∑
k=1

W (i, k) = d+ (i)−W (i, n) . (8)

But (
ci,j
)

1≤i≤n, 1≤j≤n = BA =

(
n

∑
k=1

W (i, k) ak,j

)
1≤i≤n, 1≤j≤n

(by the definition of the product of two matrices, since B = (W (i, j))1≤i≤n, 1≤j≤n and A =
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Thus, for every (i, j) ∈ {1, 2, . . . , n− 1}2, we have

ai,j︸︷︷︸
=δi,j

(by (5))

ci,n︸︷︷︸
=W(i,n)+δn,n(d+(i)−W(i,n))

(by (7), applied
to j instead of n)

− ai,n︸︷︷︸
=1

(by (6))

ci,j︸︷︷︸
=W(i,j)+δj,n(d+(i)−W(i,n))

(by (7))

= δi,j

W (i, n) + δn,n︸︷︷︸
=1

(
d+ (i)−W (i, n)

)−
W (i, j) + δj,n︸︷︷︸

=0
(since j<n)

(
d+ (i)−W (i, n)

)


= δi,j
(
W (i, n) +

(
d+ (i)−W (i, n)

))︸ ︷︷ ︸
=d+(i)

−W (i, j) = δi,jd+ (i)−W (i, j) .

Hence,(
ai,jci,n − ai,nci,j

)
1≤i≤n−1, 1≤j≤n−1 =

(
δi,jd+ (i)−W (i, j)

)
1≤i≤n−1, 1≤j≤n−1 = L.

In other words, L is the matrix
(
ai,jci,n − ai,nci,j

)
1≤i≤n−1, 1≤j≤n−1 ∈ K(n−1)×(n−1).

(
ai,j
)

1≤i≤n, 1≤j≤n). Hence, every (i, j) ∈ {1, 2, . . . , n}2 satisfies

ci,j =
n

∑
k=1

W (i, k) ak,j︸︷︷︸
=δk,j+δj,n(1−δk,n)

(by the definition of ak,j)

=
n

∑
k=1

W (i, k)
(

δk,j + δj,n (1− δk,n)
)

=
n

∑
k=1

W (i, k) δk,j︸ ︷︷ ︸
=W(i,j)

(because the factor δk.j in the sum
kills every addend except the one for k=j)

+δj,n

n

∑
k=1

W (i, k) (1− δk,n)︸ ︷︷ ︸
=

n−1
∑

k=1
W(i,k)(1−δk,n)+W(i,n)(1−δn,n)

= W (i, j) + δj,n

n−1

∑
k=1

W (i, k)

1− δk,n︸︷︷︸
=0

(since k<n)

+ W (i, n) (1− δn,n)︸ ︷︷ ︸
=0

(since δn,n=1)



= W (i, j) + δj,n

n−1

∑
k=1

W (i, k) (1− 0)︸ ︷︷ ︸
=1

+W (i, n) 0︸ ︷︷ ︸
=0


= W (i, j) + δj,n

n−1

∑
k=1

W (i, k)︸ ︷︷ ︸
=d+(i)−W(i,n)

(by (8))

= W (i, j) + δj,n
(
d+ (i)−W (i, n)

)
,

and thus (7) is proven.
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Thus, Theorem 2.13 (applied to G = L) yields

det L =

 ∑
f :{1,2,...,n}→{1,2,...,n};

f (n)=n;
f is n-potent

(
weight f B

)
︸ ︷︷ ︸
=

n−1
∏
i=1

W(i, f (i))

(
abut f A

)︸ ︷︷ ︸
=1

 · det A︸ ︷︷ ︸
=1

= ∑
f :{1,2,...,n}→{1,2,...,n};

f (n)=n;
f is n-potent

n−1

∏
i=1

W (i, f (i)) .

This proves Theorem 2.12.

3.3. Some combinatorial lemmas

We still owe the reader a proof of Theorem 2.9. We prepare by proving some
properties of maps f : {1, 2, . . . , n} → {1, 2, . . . , n}.

Proposition 3.3. Let n ∈ N. Let f : {1, 2, . . . , n} → {1, 2, . . . , n} be a map. Let
i ∈ {1, 2, . . . , n}. Then,

f k (i) ∈ { f s (i) | s ∈ {0, 1, . . . , n− 1}} for every k ∈N.

Proposition 3.3 is a classical fact; we give the proof in the Appendix below.
The following three results can be easily derived from Proposition 3.3; we shall

give more detailed proofs in the Appendix:

Proposition 3.4. Let n be a positive integer. Let f : {1, 2, . . . , n} → {1, 2, . . . , n}
be a map such that f (n) = n. Let i ∈ {1, 2, . . . , n}. Then, f n−1 (i) = n if and only
if there exists some k ∈N such that f k (i) = n.

Proposition 3.5. Let n be a positive integer. Let f : {1, 2, . . . , n} → {1, 2, . . . , n}
be a map such that f (n) = n. Then, the map f is n-potent if and only if
f n−1 ({1, 2, . . . , n}) = {n}.

Corollary 3.6. Let n be a positive integer. Let f : {1, 2, . . . , n} → {1, 2, . . . , n} be
a map such that f (n) = n. Let i ∈ {1, 2, . . . , n}. Then, δ f n−1(i),n = δ f n(i),n.

One consequence of Proposition 3.5 is the following: If n is a positive integer,
and if f : {1, 2, . . . , n} → {1, 2, . . . , n} is a map such that f (n) = n, then we can
check in finite time whether the map f is n-potent (because we can check in finite
time whether f n−1 ({1, 2, . . . , n}) = {n}). Thus, for any given positive integer n, it
is possible to enumerate all n-potent maps f : {1, 2, . . . , n} → {1, 2, . . . , n}.

Next, we shall show a property of n-potent maps:
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Lemma 3.7. Let n be a positive integer. Let f : {1, 2, . . . , n} → {1, 2, . . . , n} be a
map such that f (n) = n. Assume that f is n-potent.

Let σ ∈ Sn be a permutation such that σ 6= id. Then, there exists some i ∈
{1, 2, . . . , n} such that σ (i) /∈ {i, f (i)}.

Proof of Lemma 3.7. Assume the contrary. Thus, σ (i) ∈ {i, f (i)} for every i ∈
{1, 2, . . . , n}.

We have σ 6= id. Hence, there exists some h ∈ {1, 2, . . . , n} such that σ (h) 6= h.
Fix such a h. We shall prove that

σj (h) = f j (h) for every j ∈N. (9)

Indeed, we shall prove this by induction over j. The induction base (the case
j = 0) is obvious. For the induction step, fix J ∈N, and assume that σJ (h) = f J (h).
We need to prove that σJ+1 (h) = f J+1 (h).

We have assumed that σ (i) ∈ {i, f (i)} for every i ∈ {1, 2, . . . , n}. Applying this
to i = σJ (h), we obtain σ

(
σJ (h)

)
∈
{

σJ (h) , f
(
σJ (h)

)}
. In other words, σJ+1 (h) ∈{

σJ (h) , f
(
σJ (h)

)}
. Thus, either σJ+1 (h) = σJ (h) or σJ+1 (h) = f

(
σJ (h)

)
. Since

σJ+1 (h) = σJ (h) is impossible (because in light of the invertibility of σ, this would
yield σ (h) = h, which contradicts σ (h) 6= h), we thus must have σJ+1 (h) =

f
(
σJ (h)

)
. Hence, σJ+1 (h) = f

σJ (h)︸ ︷︷ ︸
= f J(h)

 = f
(

f J (h)
)
= f J+1 (h). This completes

the induction step.
Thus, (9) is proven.
But f is n-potent. Hence, there exists some k ∈N such that f k (h) = n. Consider

this k. Applying (9) to j = k, we obtain σk (h) = f k (h) = n.

But applying (9) to j = k + 1, we obtain σk+1 (h) = f k+1 (h) = f

 f k (h)︸ ︷︷ ︸
=n

 =

f (n) = n. Hence, n = σk+1 (h) = σk (σ (h)), so that σk (σ (h)) = n = σk (h).
Since σk is invertible, this entails σ (h) = h, which contradicts σ (h) 6= h. This
contradiction proves that our assumption was wrong. Thus, Lemma 3.7 is proven.

3.4. The matrix Z f and its determinant

Next, we assign a matrix Z f to every such f : {1, 2, . . . , n} → {1, 2, . . . , n}:

Definition 3.8. Let n be a positive integer. Let f : {1, 2, . . . , n} → {1, 2, . . . , n} be
a map. Then, we define an n× n-matrix Z f ∈ Kn×n by

Z f =
(

δi,j − (1− δi,n) δ f (i),j

)
1≤i≤n, 1≤j≤n

.



A generalization of Chio Pivotal Condensation page 15

Example 3.9. For this example, set n = 4, and define a map f : {1, 2, 3, 4} →
{1, 2, 3, 4} by ( f (1) , f (2) , f (3) , f (4)) = (2, 4, 1, 4). Then,

Z f =


1 −1 0 0
0 1 0 −1
−1 0 1 0
0 0 0 1

 .

Now, we claim the following:

Proposition 3.10. Let n be a positive integer. Let f : {1, 2, . . . , n} →
{1, 2, . . . , n} be a map such that f (n) = n. Let v f be the column vector(

1− δ f n−1(i),n

)
1≤i≤n, 1≤j≤1

∈ Kn×1. Then, Z f v f = 0n×1.

(Recall that 0n×1 denotes the n× 1 zero matrix, i.e., the column vector with n
entries whose all entries are 0.)

Proof of Proposition 3.10. We shall prove that

n

∑
k=1

(
δi,k − (1− δi,n) δ f (i),k

) (
1− δ f n−1(k),n

)
= 0 (10)

for every i ∈ {1, 2, . . . , n}.
Proof of (10): Let i ∈ {1, 2, . . . , n}. Corollary 3.6 yields δ f n−1(i),n = δ f n(i),n.
On the other hand, f (n) = n. Thus, it is straightforward to see (by induction over

h) that f h (n) = n for every h ∈N. Applying this to h = n, we obtain f n (n) = n.
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Now,

n

∑
k=1

(
δi,k − (1− δi,n) δ f (i),k

) (
1− δ f n−1(k),n

)
=

n

∑
k=1

δi,k

(
1− δ f n−1(k),n

)
︸ ︷︷ ︸

=1−δ f n−1(i),n
(because the factor δi,k in the sum

kills every addend except the one for k=i)

−
n

∑
k=1

(1− δi,n) δ f (i),k

(
1− δ f n−1(k),n

)
︸ ︷︷ ︸

=(1−δi,n)
(

1−δ f n−1( f (i)),n

)
(because the factor δ f (i),k in the sum

kills every addend except the one for k= f (i))

=

1− δ f n−1(i),n︸ ︷︷ ︸
=δ f n(i),n

− (1− δi,n)

1− δ f n−1( f (i)),n︸ ︷︷ ︸
=δ f n(i),n


=
(

1− δ f n(i),n

)
− (1− δi,n)

(
1− δ f n(i),n

)
= (1− (1− δi,n))︸ ︷︷ ︸

=δi,n

(
1− δ f n(i),n

)
= δi,n

(
1− δ f n(i),n

)

=

{
0, if i 6= n;
1− δ f n(n),n, if i = n

=

{
0, if i 6= n;
0, if i = n(

since f n (n) = n and thus δ f n(n),n = δn,n = 1 and hence 1− δ f n(n),n = 0
)

= 0.

This proves (10).
Recall now that

Z f =
(

δi,j − (1− δi,n) δ f (i),j

)
1≤i≤n, 1≤j≤n

and v f =
(

1− δ f n−1(i),n

)
1≤i≤n, 1≤j≤1

. Hence, the definition of the product of two

matrices yields

Z f v f =


n

∑
k=1

(
δi,k − (1− δi,n) δ f (i),k

) (
1− δ f n−1(k),n

)
︸ ︷︷ ︸

=0
(by (10))


1≤i≤n, 1≤j≤1

= (0)1≤i≤n, 1≤j≤1 = 0n×1.

This proves Proposition 3.10.



A generalization of Chio Pivotal Condensation page 17

Now, we recall the following well-known properties of determinants7:

Lemma 3.11. Let n ∈ N. Let A be an n × n-matrix. Let v be a column vector
with n entries. If Av = 0n×1, then det A · v = 0n×1.

Lemma 3.12. Let n be a positive integer. Let A =
(
ai,j
)

1≤i≤n, 1≤j≤n be an n× n-
matrix. Assume that

ai,n = 0 for every i ∈ {1, 2, . . . , n− 1} . (11)

Then, det A = an,n · det
((

ai,j
)

1≤i≤n−1, 1≤j≤n−1

)
.

Now, we can prove the crucial property of the matrix Z f :

Proposition 3.13. Let n be a positive integer. Let f : {1, 2, . . . , n} → {1, 2, . . . , n}
be a map satisfying f (n) = n.

(a) If f is n-potent, then det
(
Z f
)
= 1.

(b) If f is not n-potent, then det
(
Z f
)
= 0.

Proof of Proposition 3.13. Write the matrix Z f in the form
(
zi,j
)

1≤i≤n, 1≤j≤n. Thus,

(
zi,j
)

1≤i≤n, 1≤j≤n = Z f =
(

δi,j − (1− δi,n) δ f (i),j

)
1≤i≤n, 1≤j≤n

.

Hence, every (i, j) ∈ {1, 2, . . . , n}2 satisfies

zi,j = δi,j − (1− δi,n)︸ ︷︷ ︸
=

1, if i < n;
0, if i = n

δ f (i),j = δi,j −
{

1, if i < n;
0, if i = n

δ f (i),j (12)

= δi,j −
{

δ f (i),j, if i < n;
0, if i = n

=

{
δi,j − δ f (i),j, if i < n;
δi,j, if i = n

. (13)

(a) Assume that f is n-potent.
Let σ ∈ Sn be a permutation such that σ 6= id. Then, there exists some i ∈
{1, 2, . . . , n} such that σ (i) /∈ {i, f (i)} (by Lemma 3.7). Hence, there exists some

i ∈ {1, 2, . . . , n} such that zi,σ(i) = 0 8. Hence, the product
n
∏
i=1

zi,σ(i) has at least

one zero factor, and thus equals 0.

7For the sake of completeness: Lemma 3.11 is [Grinbe15, Corollary 5.102]; Lemma 3.12 is
[Grinbe15, Corollary 5.45].

8Proof. We have just shown that there exists some i ∈ {1, 2, . . . , n} such that σ (i) /∈ {i, f (i)}.
Consider this i. We have σ (i) /∈ {i, f (i)}, thus σ (i) 6= i, and thus δi,σ(i) = 0. Also, σ (i) /∈
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Now, forget that we fixed σ. We thus have shown that
n

∏
i=1

zi,σ(i) = 0 for every σ ∈ Sn such that σ 6= id . (14)

On the other hand, it is easy to see that
n

∏
i=1

zi,i = 1. (15)

9

Now, the definition of det
(
Z f
)

yields

det
(
Z f
)
= ∑

σ∈Sn

(−1)σ
n

∏
i=1

zi,σ(i)

(
since Z f =

(
zi,j
)

1≤i≤n, 1≤j≤n

)
= (−1)id︸ ︷︷ ︸

=1

n

∏
i=1

zi,id(i)︸ ︷︷ ︸
=zi,i

+ ∑
σ∈Sn;
σ 6=id

(−1)σ
n

∏
i=1

zi,σ(i)︸ ︷︷ ︸
=0

(by (14))

=
n

∏
i=1

zi,i + ∑
σ∈Sn;
σ 6=id

(−1)σ 0

︸ ︷︷ ︸
=0

=
n

∏
i=1

zi,i = 1 (by (15)) .

This proves Proposition 3.13 (a).
(b) Assume that f is not n-potent. Then, there exists some i ∈ {1, 2, . . . , n} such

that f n−1 (i) 6= n 10. Fix such an i, and denote it by u. Thus, u ∈ {1, 2, . . . , n} is
such that f n−1 (u) 6= n.

{i, f (i)}, thus σ (i) 6= f (i), and thus δ f (i),σ(i) = 0. Now, (12) (applied to (i, σ (i)) instead of (i, j))
yields

zi,σ(i) = δi,σ(i)︸ ︷︷ ︸
=0

−
{

1, if i < n;
0, if i = n

δ f (i),σ(i)︸ ︷︷ ︸
=0

= 0− 0 = 0,

qed.
9Proof of (15): To prove this, it is sufficient to show that zi,i = 1 for every i ∈ {1, 2, . . . , n}. This is

obvious when i = n (using the formula (13)), so we only need to consider the case when i < n.
In this case, (13) (applied to (i, i) instead of (i, j)) shows that zi,i = δi,i︸︷︷︸

=1

−δ f (i),i = 1 − δ f (i),i.

Hence, in order to prove that zi,i = 1, we need to show that δ f (i),i = 0. In other words, we need
to prove that f (i) 6= i.

Indeed, assume the contrary. Thus, f (i) = i. Hence, by induction over k, we can easily see
that f k (i) = i for every k ∈ N. Hence, for every k ∈ N, we have f k (i) = i 6= n. This contradicts
the fact that there exists some k ∈N such that f k (i) = n (since f is n-potent). This contradiction
proves that our assumption was wrong. Hence, (15) is proven.

10Proof. Assume the contrary. Thus, for every i ∈ {1, 2, . . . , n}, we have f n−1 (i) = n. Hence,
for every i ∈ {1, 2, . . . , n}, there exists some k ∈ N such that f k (i) = n (according to the =⇒
direction of Proposition 3.4). In other words, the map f is n-potent. This contradicts the fact that
f is not n-potent. This contradiction shows that our assumption was wrong, qed.
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Define the vector v f as in Proposition 3.10. Proposition 3.10 yields Z f v f = 0n×1.
Lemma 3.11 (applied to Z f and v f instead of A and v) thus yields det

(
Z f
)
· v f =

0n×1. Thus,

(0)1≤i≤n, 1≤j≤1 = 0n×1 = det
(
Z f
)
· v f︸︷︷︸
=
(

1−δ f n−1(i),n

)
1≤i≤n, 1≤j≤1

= det
(
Z f
)
·
(

1− δ f n−1(i),n

)
1≤i≤n, 1≤j≤1

=
(

det
(
Z f
)
·
(

1− δ f n−1(i),n

))
1≤i≤n, 1≤j≤1

.

In other words, 0 = det
(
Z f
)
·
(

1− δ f n−1(i),n

)
for each i ∈ {1, 2, . . . , n}. Applying

this to i = u, we obtain

0 = det
(
Z f
)
·

1− δ f n−1(u),n︸ ︷︷ ︸
=0

(since f n−1(u) 6=n)

 = det
(
Z f
)
· 1 = det

(
Z f
)

.

This proves Proposition 3.13 (b).

3.5. Proof of Theorem 2.9

Let us finally recall a particularly basic property of determinants:

Lemma 3.14. Let m ∈ N. Let A =
(
ai,j
)

1≤i≤m, 1≤j≤m ∈ Km×m be an m × m-
matrix. Let b1, b2, . . . , bm be m elements of K. Then,

det
((

biai,j
)

1≤i≤m, 1≤j≤m

)
=

(
m

∏
i=1

bi

)
det A.

(Again, see the Appendix for the proof of this lemma.)
We can now finally prove Theorem 2.9:

Proof of Theorem 2.9. The identities we want to prove (both for part (a) and for part
(b)) are polynomial identities in the entries of A. Thus, we can WLOG assume that
all these entries are invertible.11 In other words, we can assume that ai,j is invertible
for each (i, j) ∈ {1, 2, . . . , n}2. Assume this.

11Here is a more detailed justification for this “WLOG”:
Let us restrict ourselves to Theorem 2.9 (b). (The argument for Theorem 2.9 (a) is analogous.)
Assume that Theorem 2.9 (b) is proven in the case when all entries of A are invertible. We

now must show that Theorem 2.9 (b) always holds.
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Let C be the (n− 1)× (n− 1)-matrix(
ai,j

ai,n
−

a f (i),j

a f (i),n

)
1≤i≤n−1, 1≤j≤n−1

∈ K(n−1)×(n−1).

Let n be a positive integer such that n ≥ 2. Let f : {1, 2, . . . , n} → {1, 2, . . . , n} be an n-potent
map. Then, Theorem 2.9 (b) claims that

det B =
(

abut f A
)
· det A (16)

for every n× n-matrix A =
(
ai,j
)

1≤i≤n, 1≤j≤n ∈ Kn×n, where B is as defined in Theorem 2.9. The
equality (16) rewrites as

∑
σ∈Sn−1

n−1

∏
i=1

(
ai,σ(i)a f (i),n − ai,na f (i),σ(i)

)

=

a| f
−1(n)|−2

n,n ∏
i∈{1,2,...,n−1};

f (i) 6=n

a f (i),n

 · ∑
σ∈Sn

n

∏
i=1

ai,σ(i) (17)

(because we have

det B︸︷︷︸
=(ai,ja f (i),n−ai,na f (i),j)1≤i≤n−1, 1≤j≤n−1

= det
((

ai,ja f (i),n − ai,na f (i),j

)
1≤i≤n−1, 1≤j≤n−1

)

= ∑
σ∈Sn−1

n−1

∏
i=1

(
ai,σ(i)a f (i),n − ai,na f (i),σ(i)

)

and abut f A = a| f
−1(n)|−2

n,n ∏
i∈{1,2,...,n−1};

f (i) 6=n

a f (i),n and det A = ∑
σ∈Sn

n
∏
i=1

ai,σ(i)). Thus, Theorem 2.9

(b) (for our given n and f ) is equivalent to the claim that (17) holds for every n × n-matrix(
ai,j
)

1≤i≤n, 1≤j≤n ∈ Kn×n.

Now, let P be the polynomial ring Z
[

Xi,j | (i, j) ∈ {1, 2, . . . , n}2
]

in the n2 indetermi-

nates Xi,j for (i, j) ∈ {1, 2, . . . , n}2. Let F be the quotient field of P; this is the field

Q
(

Xi,j | (i, j) ∈ {1, 2, . . . , n}2
)

of rational functions in the same indeterminates (but over Q).

Let AX be the n× n-matrix
(
Xi,j
)

1≤i≤n, 1≤j≤n ∈ Pn×n. If we regard AX as a matrix in Fn×n,
then all entries of AX are invertible (because they are nonzero elements of the field F). Hence,
Theorem 2.9 (b) can be applied to F, AX , Xi,j and BX instead of K, A, ai,j and B (because we
have assumed that Theorem 2.9 (b) is proven in the case when all entries of A are invertible). As
we know, this means that (17) holds for ai,j = Xi,j. In other words, we have

∑
σ∈Sn−1

n−1

∏
i=1

(
Xi,σ(i)X f (i),n − Xi,nX f (i),σ(i)

)

=

X| f
−1(n)|−2

n,n ∏
i∈{1,2,...,n−1};

f (i) 6=n

X f (i),n

 · ∑
σ∈Sn

n

∏
i=1

Xi,σ(i). (18)
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Thus, Lemma 3.14 (applied to n− 1, C,
ai,j

ai,n
−

a f (i),j

a f (i),n
and ai,na f (i),n instead of m, A,

ai,j and bi) yields

det

(ai,na f (i),n

(
ai,j

ai,n
−

a f (i),j

a f (i),n

))
1≤i≤n−1, 1≤j≤n−1


=

(
n−1

∏
i=1

(
ai,na f (i),n

))
det C.

Comparing this with

det


ai,na f (i),n

(
ai,j

ai,n
−

a f (i),j

a f (i),n

)
︸ ︷︷ ︸

=ai,ja f (i),n−ai,na f (i),j


1≤i≤n−1, 1≤j≤n−1



= det

(ai,ja f (i),n − ai,na f (i),j

)
1≤i≤n−1, 1≤j≤n−1︸ ︷︷ ︸

=B

 = det B,

we find

det B =

(
n−1

∏
i=1

(
ai,na f (i),n

))
det C. (19)

It remains to compute det C.
For every (i, j) ∈ {1, 2, . . . , n}2, define an element di,j ∈ K by

di,j =


ai,j

ai,n
−

a f (i),j

a f (i),n
, if i < n;

ai,j

ai,n
, if i = n

.

Now, let
(
ai,j
)

1≤i≤n, 1≤j≤n ∈ Kn×n be an n× n-matrix. The equality (18) is an identity between
polynomials in the polynomial ring P. Thus, we can substitute ai,j for each Xi,j in this equality.
As a result, we obtain the equality (17).

Thus we have shown that (17) holds for every n× n-matrix
(
ai,j
)

1≤i≤n, 1≤j≤n ∈ Kn×n. As we
have already explained, this is just a restatement of Theorem 2.9 (b); hence, Theorem 2.9 (b) is
proven in full generality.

(The justification above is a typical use of the “method of universal identities”. See [Conrad09]
for examples of similar justifications, albeit used in different settings.)
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For every i ∈ {1, 2, . . . , n− 1}, the definition of di,n yields

di,n =


ai,n

ai,n
−

a f (i),n

a f (i),n
, if i < n;

ai,n

ai,n
, if i = n

=
ai,n

ai,n︸︷︷︸
=1

−
a f (i),n

a f (i),n︸ ︷︷ ︸
=1

(since i < n)

= 1− 1 = 0.

Moreover, the definition of dn,n yields

dn,n =


an,n

an,n
−

a f (n),n

a f (n),n
, if n < n;

an,n

an,n
, if n = n

=
an,n

an,n
(since n = n)

= 1.

Finally, every i ∈ {1, 2, . . . , n− 1} and j ∈ {1, 2, . . . , n} satisfy

di,j =


ai,j

ai,n
−

a f (i),j

a f (i),n
, if i < n;

ai,j

ai,n
, if i = n

=
ai,j

ai,n
−

a f (i),j

a f (i),n
(20)

(since i < n).
Now, let D be the n× n-matrix(

di,j
)

1≤i≤n, 1≤j≤n ∈ Kn×n.

Recall that di,n = 0 for every i ∈ {1, 2, . . . , n− 1}. Hence, Lemma 3.12 (applied to
D and di,j instead of A and ai,j) shows that

det D = dn,n︸︷︷︸
=1

det




di,j︸︷︷︸

=
ai,j

ai,n
−

a f (i),j

a f (i),n
(by (20))


1≤i≤n−1, 1≤j≤n−1


= det

( ai,j

ai,n
−

a f (i),j

a f (i),n

)
1≤i≤n−1, 1≤j≤n−1


︸ ︷︷ ︸

=C

= det C.
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Hence, (19) becomes

det B =

(
n−1

∏
i=1

(
ai,na f (i),n

))
det C︸ ︷︷ ︸
=det D

=

(
n−1

∏
i=1

(
ai,na f (i),n

))
det D. (21)

Hence, we only need to compute det D. How do we do this?

Let E be the n× n-matrix
(

ai,j

ai,n

)
1≤i≤n, 1≤j≤n

∈ Kn×n.

Recall that A =
(
ai,j
)

1≤i≤n, 1≤j≤n. Lemma 3.14 (applied to m = n and bi =
1

ai,n
)

thus yields

det

((
1

ai,n
ai,j

)
1≤i≤n, 1≤j≤n

)
=

(
n

∏
i=1

1
ai,n

)
det A.

Compared with

det




1

ai,n
ai,j︸ ︷︷ ︸

=
ai,j

ai,n


1≤i≤n, 1≤j≤n


= det


(

ai,j

ai,n

)
1≤i≤n, 1≤j≤n︸ ︷︷ ︸
=E

 = det E,

this yields

det E =

(
n

∏
i=1

1
ai,n

)
det A. (22)

On the other hand, recall that we have defined an n× n-matrix Z f in Definition
3.8. We now claim that

D = Z f E. (23)

Proof of (23): We have Z f =
(

δi,j − (1− δi,n) δ f (i),j

)
1≤i≤n, 1≤j≤n

and

E =

(
ai,j

ai,n

)
1≤i≤n, 1≤j≤n

. Thus, the definition of the product of two matrices yields

Z f E =

(
n

∑
k=1

(
δi,k − (1− δi,n) δ f (i),k

) ak,j

ak,n

)
1≤i≤n, 1≤j≤n

.
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Since every (i, j) ∈ {1, 2, . . . , n}2 satisfies

n

∑
k=1

(
δi,k − (1− δi,n) δ f (i),k

) ak,j

ak,n

=
n

∑
k=1

δi,k
ak,j

ak,n︸ ︷︷ ︸
=

ai,j

ai,n
(because the factor δi,k in the sum

kills every addend except the one for k=i)

−
n

∑
k=1

(1− δi,n) δ f (i),k
ak,j

ak,n︸ ︷︷ ︸
=(1−δi,n)

a f (i),j

a f (i),n
(because the factor δ f (i),k in the sum

kills every addend except the one for k= f (i))

=
ai,j

ai,n
− (1− δi,n)︸ ︷︷ ︸

=

1, if i < n;
0, if i = n

a f (i),j

a f (i),n
=

ai,j

ai,n
−
{

1, if i < n;
0, if i = n

a f (i),j

a f (i),n

=


ai,j

ai,n
−

a f (i),j

a f (i),n
, if i < n;

ai,j

ai,n
, if i = n

= di,j
(
by the definition of di,j

)
,

this rewrites as
Z f E =

(
di,j
)

1≤i≤n, 1≤j≤n .

Comparing this with D =
(
di,j
)

1≤i≤n, 1≤j≤n, we obtain D = Z f E. This proves (23).
Now, we can prove parts (a) and (b) of Theorem 2.9:
(a) Assume that the map f is not n-potent. Taking determinants on both sides of

(23), we obtain

det D = det
(
Z f E

)
= det

(
Z f
)︸ ︷︷ ︸

=0
(by Proposition 3.13 (b))

·det E = 0.

Thus, (21) becomes

det B =

(
n−1

∏
i=1

(
ai,na f (i),n

))
det D︸ ︷︷ ︸
=0

= 0.

This proves Theorem 2.9 (a).
(b) Assume that the map f is n-potent. Taking determinants on both sides of
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(23), we obtain

det D = det
(
Z f E

)
= det

(
Z f
)︸ ︷︷ ︸

=1
(by Proposition 3.13 (a))

·det E = det E

=

(
n

∏
i=1

1
ai,n

)
︸ ︷︷ ︸

=

(
n−1
∏
i=1

1
ai,n

)
·

1
an,n

det A (by (22))

=

(
n−1

∏
i=1

1
ai,n

)
· 1

an,n
det A.

Thus, (21) becomes

det B =

(
n−1

∏
i=1

(
ai,na f (i),n

))
det D︸ ︷︷ ︸

=

(
n−1
∏
i=1

1
ai,n

)
·

1
an,n

det A

=

(
n−1

∏
i=1

(
ai,na f (i),n

))(n−1

∏
i=1

1
ai,n

)
︸ ︷︷ ︸

=
n−1
∏
i=1

a f (i),n= ∏
i∈{1,2,...,n−1}

a f (i),n

· 1
an,n

det A

=

 ∏
i∈{1,2,...,n−1}

a f (i),n

 · 1
an,n︸ ︷︷ ︸

=
1

an,n
∏

i∈{1,2,...,n−1}
a f (i),n=abut f A

(by Remark 2.8 (a))

det A =
(
abut f A

)
det A.

This proves Theorem 2.9 (b).

3.6. Further questions

The above – rather indirect – road to the matrix-tree theorem suggests the following
two questions:

• Is there a combinatorial proof of Theorem 2.9? Or, at least, is there a “division-
free” proof (i.e., a proof that does not use a WLOG assumption that some of
the ai,j are invertible or a similar trick)?

• Can we similarly obtain some of the various generalizations and variants of
the matrix-tree theorem, such as the all-minors matrix-tree theorem ([Chaiken82,
(2)] and [Sahi13, Theorem 6])?
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4. Appendix: some standard proofs

For the sake of completeness, let us give some proofs of standard results that have
been used without proof above.

Proof of Remark 2.6. (a) We have 1 6= n (since n ≥ 2). But the map f is n-potent.
Thus, there exists some k ∈ N such that f k (1) = n. Let h be the smallest such k.
Then, f h (1) = n. Hence, h 6= 0 (since f h (1) = n 6= 1 = f 0 (1)). Therefore, h− 1 ∈
N, so that f h−1 (1) 6= n (because h is the smallest k ∈ N such that f k (1) = n).
Hence, f h−1 (1) ∈ {1, 2, . . . , n− 1}. Thus, f h−1 (1) is a g ∈ {1, 2, . . . , n− 1} such
that f (g) = n (since f

(
f h−1 (1)

)
= f h (1) = n). Therefore, such a g exists. This

proves Remark 2.6 (a).
(b) The map f is n-potent; thus, f (n) = n. Hence, n ∈ f−1 (n). Remark 2.6 (a)

shows that there exists some g ∈ {1, 2, . . . , n− 1} such that f (g) = n. Consider
this g. From f (g) = n, we obtain g ∈ f−1 (n). From g ∈ {1, 2, . . . , n− 1}, we obtain
g 6= n. Hence, g and n are two distinct elements of the set f−1 (n). Consequently,∣∣ f−1 (n)

∣∣ ≥ 2. This proves Remark 2.6 (b).

Proof of Remark 2.8. (b) We have n ∈ f−1 (n) (since f (n) = n) and g ∈ f−1 (n)
(since f (g) = n). Moreover, g 6= n (since g ∈ {1, 2, . . . , n− 1}). Hence, g and n are
two distinct elements of f−1 (n). Hence,

∣∣ f−1 (n) \ {n, g}
∣∣ = ∣∣ f−1 (n)

∣∣− 2. But

{i ∈ {1, 2, . . . , n− 1} \ {g} | f (i) = n}
= f−1 (n) ∩ ({1, 2, . . . , n− 1} \ {g})

= f−1 (n) ∩ {1, 2, . . . , n− 1}︸ ︷︷ ︸
= f−1(n)\{n}

\ {g} =
(

f−1 (n) \ {n}
)
\ {g}

= f−1 (n) \ {n, g}

so that

|{i ∈ {1, 2, . . . , n− 1} \ {g} | f (i) = n}| =
∣∣∣ f−1 (n) \ {n, g}

∣∣∣ = ∣∣∣ f−1 (n)
∣∣∣− 2.

(24)
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Now,

∏
i∈{1,2,...,n−1};

i 6=g

a f (i),n

= ∏
i∈{1,2,...,n−1}\{g}

a f (i),n =

 ∏
i∈{1,2,...,n−1}\{g};

f (i)=n

a f (i),n︸ ︷︷ ︸
=an,n

(since f (i)=n)


 ∏

i∈{1,2,...,n−1}\{g};
f (i) 6=n

a f (i),n



=

 ∏
i∈{1,2,...,n−1}\{g};

f (i)=n

an,n


︸ ︷︷ ︸

=a|{i∈{1,2,...,n−1}\{g} | f (i)=n}|
n,n =a

| f−1(n)|−2
n,n

(by (24))

 ∏
i∈{1,2,...,n−1}\{g};

f (i) 6=n

a f (i),n



= a| f
−1(n)|−2

n,n

 ∏
i∈{1,2,...,n−1};

f (i) 6=n

a f (i),n

 = abut f A

(by the definition of abut f A). This proves Remark 2.8 (b).
(a) Assume that an,n ∈ K is invertible. Fix g ∈ {1, 2, . . . , n− 1} as in Remark 2.8

(b). Then,

∏
i∈{1,2,...,n−1}

a f (i),n = a f (g),n︸ ︷︷ ︸
=an,n

(since f (g)=n)

∏
i∈{1,2,...,n−1};

i 6=g

a f (i),n

︸ ︷︷ ︸
=abut f A

(by Remark 2.8 (b))

= an,n abut f A,

so that abut f A =
1

an,n
∏

i∈{1,2,...,n−1}
a f (i),n. This proves Remark 2.8 (a).

Proof of Lemma 3.1. We have G =

(
n
∑

k=1
bi,kdi,j,k

)
1≤i≤m, 1≤j≤m

. Thus, the definition of
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a determinant yields

det G = ∑
σ∈Sm

(−1)σ
m

∏
i=1

(
n

∑
k=1

bi,kdi,σ(i),k

)
︸ ︷︷ ︸

= ∑
f :{1,2,...,m}→{1,2,...,n}

m
∏
i=1
(bi, f (i)di,σ(i), f (i))

(by the product rule)

= ∑
σ∈Sm

(−1)σ ∑
f :{1,2,...,m}→{1,2,...,n}

m

∏
i=1

(
bi, f (i)di,σ(i), f (i)

)
= ∑

f :{1,2,...,m}→{1,2,...,n}
∑

σ∈Sm

(−1)σ
m

∏
i=1

(
bi, f (i)di,σ(i), f (i)

)
︸ ︷︷ ︸

=

(
m
∏
i=1

bi, f (i)

)(
m
∏
i=1

di,σ(i), f (i)

)

= ∑
f :{1,2,...,m}→{1,2,...,n}

(
m

∏
i=1

bi, f (i)

)
∑

σ∈Sm

(−1)σ

(
m

∏
i=1

di,σ(i), f (i)

)
︸ ︷︷ ︸

=det
(
(di,j, f (i))1≤i≤m, 1≤j≤m

)
(by the definition of a determinant)

= ∑
f :{1,2,...,m}→{1,2,...,n}

(
m

∏
i=1

bi, f (i)

)
det

((
di,j, f (i)

)
1≤i≤m, 1≤j≤m

)
.

Proof of Proposition 3.3. The elements f 0 (i) , f 1 (i) , . . . , f n (i) are n + 1 elements of
the n-element set {1, 2, . . . , n}. Thus, by the pigeonhole principle, we see that two
of these elements must be equal. In other words, there exist two elements u and v
of {0, 1, . . . , n} such that u < v and f u (i) = f v (i). Consider these u and v. We have
v ∈ {0, 1, . . . , n}, so that v ≤ n and thus v− 1 ≤ n− 1. Hence, {0, 1, . . . , v− 1} ⊆
{0, 1, . . . , n− 1}.

We have u < v, so that u ≤ v − 1 (since u and v are integers). Thus, u ∈
{0, 1, . . . , v− 1} (since u is a nonnegative integer). Hence, 0 ≤ u ≤ v− 1, so that
0 ∈ {0, 1, . . . , v− 1}.

Let S be the set
{

f 0 (i) , f 1 (i) , . . . , f v−1 (i)
}

. From u ∈ {0, 1, . . . , v− 1}, we obtain
f u (i) ∈

{
f 0 (i) , f 1 (i) , . . . , f v−1 (i)

}
= S. From 0 ∈ {0, 1, . . . , v− 1}, we obtain

f 0 (i) ∈
{

f 0 (i) , f 1 (i) , . . . , f v−1 (i)
}
= S.

Now,
f (s) ∈ S for every s ∈ S (25)

12.

12Proof of (25): Let s ∈ S.
We have s ∈ S =

{
f 0 (i) , f 1 (i) , . . . , f v−1 (i)

}
. In other words, s = f h (i) for some h ∈
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Now, we can easily see that

f k (i) ∈ S for every k ∈N (26)

13.
On the other hand,

S =
{

f 0 (i) , f 1 (i) , . . . , f v−1 (i)
}
= { f s (i) | s ∈ {0, 1, . . . , v− 1}}

⊆ { f s (i) | s ∈ {0, 1, . . . , n− 1}} (since {0, 1, . . . , v− 1} ⊆ {0, 1, . . . , n− 1}) .

Hence, for every k ∈N, we have

f k (i) ∈ S (by (26))
⊆ { f s (i) | s ∈ {0, 1, . . . , n− 1}} .

This proves Proposition 3.3.

Proof of Proposition 3.4. =⇒: Assume that f n−1 (i) = n. Thus, there exists some
k ∈ N such that f k (i) = n (namely, k = n− 1). This proves the =⇒ direction of
Proposition 3.4.
⇐=: Assume that there exists some k ∈ N such that f k (i) = n. Consider this k.

We must show that f n−1 (i) = n.
We have n = f k (i) ∈ { f s (i) | s ∈ {0, 1, . . . , n− 1}} (by Proposition 3.3). In

other words, n = f s (i) for some s ∈ {0, 1, . . . , n− 1}. Consider this s.

{0, 1, . . . , v− 1}. Consider this h. Thus, f

 s︸︷︷︸
= f h(i)

 = f
(

f h (i)
)
= f h+1 (i).

We want to prove that f (s) ∈ S. We are in one of the following two cases:
Case 1: We have h = v− 1.
Case 2: We have h 6= v− 1.
Let us first consider Case 1. In this case, we have h = v− 1. Hence, h + 1 = v. Now, f (s) =

f h+1 (i) = f v (i) (since h + 1 = v). Compared with f u (i) = f v (i), this yields f (s) = f u (i) ∈ S.
Hence, f (s) ∈ S is proven in Case 1.

Let us now consider Case 2. In this case, we have h 6= v − 1. Combined with h ∈
{0, 1, . . . , v− 1}, this yields h ∈ {0, 1, . . . , v− 1} \ {v− 1} = {0, 1, . . . , (v− 1)− 1}, so that
h + 1 ∈ {0, 1, . . . , v− 1}. Thus, f h+1 (i) ∈

{
f 0 (i) , f 1 (i) , . . . , f v−1 (i)

}
= S. Hence, f (s) =

f h+1 (i) ∈ S. Thus, f (s) ∈ S is proven in Case 2.
We have now proven f (s) ∈ S in each of the two Cases 1 and 2. Thus, f (s) ∈ S always holds.

This proves (25).
13Proof of (26): We shall prove (26) by induction over k:

Induction base: We have f 0 (i) ∈ S. In other words, (26) holds for k = 0. This completes the
induction base.

Induction step: Let K ∈ N. Assume that (26) holds for k = K. We must prove that (26) holds
for k = K + 1.

We have assumed that (26) holds for k = K. In other words, f K (i) ∈ S. Thus, (25) (applied to
s = f K (i)) yields f

(
f K (i)

)
∈ S. Thus, f K+1 (i) = f

(
f K (i)

)
∈ S. In other words, (26) holds for

k = K + 1. This completes the induction step. Hence, (26) is proven by induction.



A generalization of Chio Pivotal Condensation page 30

We have f s (i) = n. Using this fact (and the fact that f (n) = n), we can prove (by
induction over h) that

f h (i) = n for every integer h ≥ s. (27)

But s ∈ {0, 1, . . . , n− 1}, so that s ≤ n − 1 and therefore n − 1 ≥ s. Hence,
(27) (applied to h = n − 1) yields f n−1 (i) = n. This proves the ⇐= direction of
Proposition 3.4.

Proof of Proposition 3.5. ⇐=: Assume that f n−1 ({1, 2, . . . , n}) = {n}. For every i ∈
{1, 2, . . . , n}, we have

f n−1

 i︸︷︷︸
∈{1,2,...,n}

 ∈ f n−1 ({1, 2, . . . , n}) = {n}

and thus f n−1 (i) = n. Hence, for every i ∈ {1, 2, . . . , n− 1}, there exists some
k ∈ N such that f k (i) = n (namely, k = n − 1). In other words, the map f is
n-potent. This proves the⇐= direction of Proposition 3.5.
=⇒: Assume that the map f is n-potent. Let i ∈ {1, 2, . . . , n− 1}. Then, there

exists some k ∈ N such that f k (i) = n (since f is n-potent). Thus, f n−1 (i) = n (by
the⇐= direction of Proposition 3.4).

Now, forget that we fixed i. We thus have shown that f n−1 (i) = n for each
i ∈ {1, 2, . . . , n}. Hence,

{
f n−1 (1) , f n−1 (2) , . . . , f n−1 (n)

}
=

n, n, . . . , n︸ ︷︷ ︸
n times n

 = {n} .

Thus, f n−1 ({1, 2, . . . , n}) =
{

f n−1 (1) , f n−1 (2) , . . . , f n−1 (n)
}
= {n}. This proves

the =⇒ direction of Proposition 3.5.

Proof of Corollary 3.6. We are in one of the following two cases:
Case 1: We have f n−1 (i) = n.
Case 2: We have f n−1 (i) 6= n.
Let us consider Case 1 first. In this case, we have f n−1 (i) = n. Thus, δ f n−1(i),n = 1.

But f n (i) = f

 f n−1 (i)︸ ︷︷ ︸
=n

 = f (n) = n, so that δ f n(i),n = 1. Hence, δ f n−1(i),n = 1 =

δ f n(i),n. Thus, Corollary 3.6 is proven in Case 1.
Let us now consider Case 2. In this case, we have f n−1 (i) 6= n. Thus, δ f n−1(i),n =

0. On the other hand, we have f n (i) 6= n 14. Hence, δ f n(i),n = 0. Hence,
δ f n−1(i),n = 0 = δ f n(i),n. Thus, Corollary 3.6 is proven in Case 2.

14Proof. Assume the contrary. Thus, f n (i) = n. Hence, there exists some k ∈N such that f k (i) = n
(namely, k = n). Thus, f n−1 (i) = n (according to the ⇐= direction of Proposition 3.4). This
contradicts f n−1 (i) 6= n. This contradiction proves that our assumption was wrong, qed.
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Now, we have proven Corollary 3.6 in each of the two Cases 1 and 2. Hence,
Corollary 3.6 always holds.

Proof of Lemma 3.14. The definition of det A yields det A = ∑
σ∈Sm

(−1)σ
m
∏
i=1

ai,σ(i) (since

A =
(
ai,j
)

1≤i≤m, 1≤j≤m). On the other hand, the definition of det
((

biai,j
)

1≤i≤m, 1≤j≤m

)
yields

det
((

biai,j
)

1≤i≤m, 1≤j≤m

)
= ∑

σ∈Sm

(−1)σ
m

∏
i=1

(
biai,σ(i)

)
︸ ︷︷ ︸

=

(
m
∏
i=1

bi

)(
m
∏
i=1

ai,σ(i)

)

= ∑
σ∈Sm

(−1)σ

(
m

∏
i=1

bi

)(
m

∏
i=1

ai,σ(i)

)

=

(
m

∏
i=1

bi

)
∑

σ∈Sm

(−1)σ
m

∏
i=1

ai,σ(i)︸ ︷︷ ︸
=det A

=

(
m

∏
i=1

bi

)
det A.

This proves Lemma 3.14.

References

[Abeles14] Francine F. Abeles, Chiò’s and Dodgson’s determinantal identities, Linear
Algebra and its Applications, Volume 454, 1 August 2014, pp. 130–137.

[BerBru08] Adam Berliner and Richard A. Brualdi, A combinatorial proof of the
Dodgson/Muir determinantal identity, International Journal of Informa-
tion and Systems Sciences, Volume 4 (2008), Number 1, pp. 1–7.

[Chaiken82] Seth Chaiken, A combinatorial proof of the all minors matrix tree theorem,
SIAM J. Alg. Disc. Math., Vol. 3, No. 3, September 1982, pp. 319–329.

[Conrad09] Keith Conrad, Universal identities, 12 October 2009.
http://www.math.uconn.edu/~kconrad/blurbs/linmultialg/
univid.pdf

[Eves68] Howard Eves, Elementary Matrix Theory, Allyn & Bacon, 2nd printing
1968.

[Grinbe15] Darij Grinberg, Notes on the combinatorial fundamentals of algebra, 15
February 2017.
http://www.cip.ifi.lmu.de/~grinberg/primes2015/sols.pdf
The numbering of theorems and formulas in this link might shift

http://www.sciencedirect.com/science/article/pii/S0024379514002249
http://www.sciencedirect.com/science/article/pii/S0024379514002249
http://www.math.ualberta.ca/ijiss/SS-Volume-4-2008/No-1-08/SS-08-01-01.pdf
http://www.math.ualberta.ca/ijiss/SS-Volume-4-2008/No-1-08/SS-08-01-01.pdf
http://www.math.ualberta.ca/ijiss/SS-Volume-4-2008/No-1-08/SS-08-01-01.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.363.8820
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.363.8820
http://www.math.uconn.edu/~kconrad/blurbs/linmultialg/univid.pdf
http://www.math.uconn.edu/~kconrad/blurbs/linmultialg/univid.pdf
http://www.cip.ifi.lmu.de/~grinberg/primes2015/sols.pdf


A generalization of Chio Pivotal Condensation page 32

when the project gets updated; for a “frozen” version whose num-
bering is guaranteed to match that in the citations above, see https:
//github.com/darijgr/detnotes/releases/tag/2017-02-15.

[Heinig11] Peter Christian Heinig, Chio Condensation and Random Sign Matrices,
arXiv:1103.2717v3.

[KarZha16] Karthik Karnik, Anya Zhang, Combinatorial proof of Chio Pivotal Con-
densation, 25 May 2016.

[Sahi13] Siddhartha Sahi, Harmonic vectors and matrix tree theorems,
arXiv:1309.4047v1.

[Verstr12] Jacques Verstraete, Math264A Lecture J, 4 December 2012.
http://www.math.ucsd.edu/~jverstra/264A-LECTUREJ.pdf

[Zeilbe85] Doron Zeilberger, A combinatorial approach to matrix algebra, Discrete
Mathematics 56 (1985), pp. 61–72.

https://github.com/darijgr/detnotes/releases/tag/2017-02-15
https://github.com/darijgr/detnotes/releases/tag/2017-02-15
http://arxiv.org/abs/1103.2717v3
http://arxiv.org/abs/1103.2717v3
http://web.mit.edu/~darij/www/primes2015/kazh-exp.pdf
http://web.mit.edu/~darij/www/primes2015/kazh-exp.pdf
http://arxiv.org/abs/1309.4047v1
http://arxiv.org/abs/1309.4047v1
http://www.math.ucsd.edu/~jverstra/264A-LECTUREJ.pdf
http://www.math.rutgers.edu/~zeilberg/mamarimY/DM85.pdf
http://www.math.rutgers.edu/~zeilberg/mamarimY/DM85.pdf

	Introduction
	Acknowledgments

	The theorems
	Chio Pivotal Condensation
	Generalization, step 1
	The matrix-tree theorem
	Generalization, step 2

	The proofs
	Deriving Theorem 2.13 from Theorem 2.9
	Deriving Theorem 2.12 from Theorem 2.13
	Some combinatorial lemmas
	The matrix Zf and its determinant
	Proof of Theorem 2.9
	Further questions

	Appendix: some standard proofs

