Critical groups for Hopf algebra modules

Darij Grinberg (UMN) joint work with Victor Reiner (UMN) and Jia Huang (UNK)

17 April 2017 University of Wisconsin, Madison

slides:

http:

//www.cip.ifi.lmu.de/~grinberg/algebra/madison17.pdf

paper:

http://www.cip.ifi.lmu.de/~grinberg/algebra/ McKayTensor.pdf or arXiv:1704.03778v1

Chip-firing on digraphs

References:

- Alexander E. Holroyd, Lionel Levine, Karola Mészáros, Yuval Peres, James Propp, David B. Wilson, *Chip-Firing and Rotor-Routing on Directed Graphs*, arXiv:0801.3306.
- Georgia Benkart, Caroline Klivans, Victor Reiner, *Chip firing* on *Dynkin diagrams and McKay quivers*, arXiv:1601.06849.

- *Chip-firing* on a loopless digraph *D* is a "solitaire game" (rigorously: rewriting system, or finite state machine). A brief definition:
 - Start with a finite (nonnegative, integer) number of (undistinguishable) game chips on each vertex on *D*.
 - Each move (i.e., step) consists of picking a vertex v that has at least as many chips as it has outgoing arcs, and "distributing" chips to its out-neighbors (i.e., for each arc a having source v, we move a chip from v to the target of a). This is called "firing v".
- Example:

Start with

(The vertices drawn in red are the ones that can be fired.) Let us fire the top vertex.

- *Chip-firing* on a loopless digraph *D* is a "solitaire game" (rigorously: rewriting system, or finite state machine). A brief definition:
 - Start with a finite (nonnegative, integer) number of (undistinguishable) game chips on each vertex on *D*.
 - Each move (i.e., step) consists of picking a vertex v that has at least as many chips as it has outgoing arcs, and "distributing" chips to its out-neighbors (i.e., for each arc a having source v, we move a chip from v to the target of a). This is called "firing v".

• Example:

After firing the top vertex, obtain

Let us fire the bottom left vertex.

- *Chip-firing* on a loopless digraph *D* is a "solitaire game" (rigorously: rewriting system, or finite state machine). A brief definition:
 - Start with a finite (nonnegative, integer) number of (undistinguishable) game chips on each vertex on *D*.
 - Each move (i.e., step) consists of picking a vertex v that has at least as many chips as it has outgoing arcs, and "distributing" chips to its out-neighbors (i.e., for each arc a having source v, we move a chip from v to the target of a). This is called "firing v".

• Example:

After then firing the bottom left vertex, get

Let us fire the bottom right vertex thrice.

- *Chip-firing* on a loopless digraph *D* is a "solitaire game" (rigorously: rewriting system, or finite state machine). A brief definition:
 - Start with a finite (nonnegative, integer) number of (undistinguishable) game chips on each vertex on *D*.
 - Each move (i.e., step) consists of picking a vertex v that has at least as many chips as it has outgoing arcs, and "distributing" chips to its out-neighbors (i.e., for each arc a having source v, we move a chip from v to the target of a). This is called "firing v".

• Example:

After then firing the bottom right vertex thrice, get

- *Chip-firing* on a loopless digraph *D* is a "solitaire game" (rigorously: rewriting system, or finite state machine). A brief definition:
 - Start with a finite (nonnegative, integer) number of (undistinguishable) game chips on each vertex on *D*.
 - Each move (i.e., step) consists of picking a vertex v that has at least as many chips as it has outgoing arcs, and "distributing" chips to its out-neighbors (i.e., for each arc a having source v, we move a chip from v to the target of a). This is called "firing v".

• Example:

After then firing the bottom right vertex thrice, get

And so on... this game can (and will) go on forever.

- *Chip-firing* on a loopless digraph *D* is a "solitaire game" (rigorously: rewriting system, or finite state machine). A brief definition:
 - Start with a finite (nonnegative, integer) number of (undistinguishable) game chips on each vertex on *D*.
 - Each move (i.e., step) consists of picking a vertex v that has at least as many chips as it has outgoing arcs, and "distributing" chips to its out-neighbors (i.e., for each arc a having source v, we move a chip from v to the target of a). This is called "firing v".

Another example:

Start with

(The vertices drawn in red are the ones that can be fired.)

- *Chip-firing* on a loopless digraph *D* is a "solitaire game" (rigorously: rewriting system, or finite state machine). A brief definition:
 - Start with a finite (nonnegative, integer) number of (undistinguishable) game chips on each vertex on *D*.
 - Each move (i.e., step) consists of picking a vertex v that has at least as many chips as it has outgoing arcs, and "distributing" chips to its out-neighbors (i.e., for each arc a having source v, we move a chip from v to the target of a). This is called "firing v".

Another example:

After firing the bottom left vertex, obtain

- *Chip-firing* on a loopless digraph *D* is a "solitaire game" (rigorously: rewriting system, or finite state machine). A brief definition:
 - Start with a finite (nonnegative, integer) number of (undistinguishable) game chips on each vertex on *D*.
 - Each move (i.e., step) consists of picking a vertex v that has at least as many chips as it has outgoing arcs, and "distributing" chips to its out-neighbors (i.e., for each arc a having source v, we move a chip from v to the target of a). This is called "firing v".

Another example:

After then firing the top left vertex, get

No more firing is possible here; the game has terminated.

- *Chip-firing* on a loopless digraph *D* is a "solitaire game" (rigorously: rewriting system, or finite state machine). A brief definition:
 - Start with a finite (nonnegative, integer) number of (undistinguishable) game chips on each vertex on *D*.
 - Each move (i.e., step) consists of picking a vertex v that has at least as many chips as it has outgoing arcs, and "distributing" chips to its out-neighbors (i.e., for each arc a having source v, we move a chip from v to the target of a). This is called "firing v".
- We see that the chip-firing game will sometimes terminate after finitely many steps, but sometimes never will. There are some nontrivial results (Björner, Lovasz, Shor and others):
 - Whether it terminates depends only on the starting configuration (not on the choices of vertices to fire).
 - If it terminates, the configuration obtained in the end depends only on the starting configuration.

- *Chip-firing* on a loopless digraph *D* is a "solitaire game" (rigorously: rewriting system, or finite state machine). A brief definition:
 - Start with a finite (nonnegative, integer) number of (undistinguishable) game chips on each vertex on *D*.
 - Each move (i.e., step) consists of picking a vertex v that has at least as many chips as it has outgoing arcs, and "distributing" chips to its out-neighbors (i.e., for each arc a having source v, we move a chip from v to the target of a). This is called "firing v".
- A neater situation is obtained if we fix a "global sink" q (a vertex reachable from every vertex), and disallow firing q. Then, the game always terminates.

- *Chip-firing* on a loopless digraph *D* is a "solitaire game" (rigorously: rewriting system, or finite state machine). A brief definition:
 - Start with a finite (nonnegative, integer) number of (undistinguishable) game chips on each vertex on *D*.
 - Each move (i.e., step) consists of picking a vertex v that has at least as many chips as it has outgoing arcs, and "distributing" chips to its out-neighbors (i.e., for each arc a having source v, we move a chip from v to the target of a). This is called "firing v".
- A neater situation is obtained if we fix a "global sink" q (a vertex reachable from every vertex), and disallow firing q. Then, the game always terminates. Again, there are remarkable properties (see Holroyd et al., arXiv:0801.3306):
 - The configuration obtained in the end depends only on the starting configuration.
 - "Sandpile monoid" and "sandpile group".
 - Relations to Eulerian walks and to spanning trees.

- We can describe chip-firing on a loopless digraph *D* via the Laplacian of *D*.
- Label the vertices of D by $1, 2, \ldots, n$.
- The Laplacian of D is the $n \times n$ -matrix L whose (i, j)-th entry is

$$L_{i,j} = \begin{cases} \deg^+ i, & \text{if } j = i; \\ -a_{i,j}, & \text{if } j \neq i \end{cases},$$

where deg⁺ *i* is the outdegree of the vertex *i*, and $a_{i,j}$ is the number of arcs from *i* to *j*.

- We can describe chip-firing on a loopless digraph *D* via the Laplacian of *D*.
- Label the vertices of D by $1, 2, \ldots, n$.
- The Laplacian of D is the $n \times n$ -matrix L whose (i, j)-th entry is

$$L_{i,j} = \begin{cases} \deg^+ i, & \text{if } j = i; \\ -a_{i,j}, & \text{if } j \neq i \end{cases},$$

where deg⁺ *i* is the outdegree of the vertex *i*, and $a_{i,j}$ is the number of arcs from *i* to *j*.

• A configuration (i.e., placement of chips on the vertices of *D*) is modelled by a row vector with *n* entries (the *i*-th entry being the number of chips at vertex *i*).

- We can describe chip-firing on a loopless digraph *D* via the Laplacian of *D*.
- Label the vertices of D by $1, 2, \ldots, n$.
- The Laplacian of D is the $n \times n$ -matrix L whose (i, j)-th entry is

$$L_{i,j} = \begin{cases} \deg^+ i, & \text{if } j = i; \\ -a_{i,j}, & \text{if } j \neq i \end{cases},$$

where deg⁺ *i* is the outdegree of the vertex *i*, and $a_{i,j}$ is the number of arcs from *i* to *j*.

- A configuration (i.e., placement of chips on the vertices of *D*) is modelled by a row vector with *n* entries (the *i*-th entry being the number of chips at vertex *i*).
- Firing the vertex *i* modifies such a vector by subtracting the *i*-th row of *L*.

- We can describe chip-firing on a loopless digraph *D* via the Laplacian of *D*.
- Label the vertices of D by $1, 2, \ldots, n$.
- The Laplacian of D is the $n \times n$ -matrix L whose (i, j)-th entry is

$$L_{i,j} = \begin{cases} \deg^+ i, & \text{if } j = i; \\ -a_{i,j}, & \text{if } j \neq i \end{cases},$$

where deg⁺ *i* is the outdegree of the vertex *i*, and $a_{i,j}$ is the number of arcs from *i* to *j*.

- A configuration (i.e., placement of chips on the vertices of *D*) is modelled by a row vector with *n* entries (the *i*-th entry being the number of chips at vertex *i*).
- Firing the vertex *i* modifies such a vector by subtracting the *i*-th row of *L*.
- The same holds for the variant where we fix a global sink *q* and never fire it...

- We can describe chip-firing on a loopless digraph *D* with a global sink *q* via the **reduced** Laplacian of *D*.
- Label the vertices of *D* by 1, 2, ..., *n* in such a way that the global sink *q* is *n*.
- The reduced Laplacian of D is the (n − 1) × (n − 1)-matrix L
 obtained from L by removing the last row and the last column.

- We can describe chip-firing on a loopless digraph *D* with a global sink *q* via the **reduced** Laplacian of *D*.
- Label the vertices of *D* by 1, 2, ..., *n* in such a way that the global sink *q* is *n*.
- The reduced Laplacian of D is the (n − 1) × (n − 1)-matrix L
 obtained from L by removing the last row and the last column.
- A configuration (i.e., placement of chips on the vertices of D) is modelled by a row vector with n 1 entries (the *i*-th entry being the number of chips at vertex *i*).
 We forget the number of chips on the sink here.

- We can describe chip-firing on a loopless digraph *D* with a global sink *q* via the **reduced** Laplacian of *D*.
- Label the vertices of *D* by 1, 2, ..., *n* in such a way that the global sink *q* is *n*.
- The reduced Laplacian of D is the (n − 1) × (n − 1)-matrix L
 obtained from L by removing the last row and the last column.
- A configuration (i.e., placement of chips on the vertices of D) is modelled by a row vector with n 1 entries (the *i*-th entry being the number of chips at vertex *i*).
 We forget the number of chips on the sink here.
- Firing the vertex *i* modifies such a vector by subtracting the *i*-th row of \overline{L} .

• Restating everything in terms of the Laplacian *L* and forgetting about the digraph allows us to crystallize the important parts of the argument and gain further generality.

A Z-matrix is an ℓ × ℓ-matrix C ∈ Z^{ℓ×ℓ} whose off-diagonal entries C_{i,j} (with i ≠ j) are all ≤ 0.

- A Z-matrix is an ℓ × ℓ-matrix C ∈ Z^{ℓ×ℓ} whose off-diagonal entries C_{i,j} (with i ≠ j) are all ≤ 0.
- A nonsingular M-matrix is a Z-matrix C whose inverse C⁻¹ exists and satisfies C⁻¹ ≥ 0.

Here, inequalities between matrices are entrywise.

- A Z-matrix is an ℓ × ℓ-matrix C ∈ Z^{ℓ×ℓ} whose off-diagonal entries C_{i,j} (with i ≠ j) are all ≤ 0.
- A nonsingular M-matrix is a Z-matrix C whose inverse C⁻¹ exists and satisfies C⁻¹ ≥ 0.

Here, inequalities between matrices are entrywise.

- Theorem (Gabrielov, Benkart, Klivans, Reiner, ...?): For
 - a Z-matrix C, the following are equivalent:
 - C is a nonsingular M-matrix.
 - C^{T} is a nonsingular M-matrix.
 - There exists a column vector $x \in \mathbb{Q}^{\ell}$ with x > 0 and Cx > 0. (Again, entrywise.)
 - The "generalized chip-firing game" in which we start with a row vector r ≥ 0 and keep subtracting rows of C while keeping the vector ≥ 0 is confluent (i.e., terminates, and the final state depends only on the starting state).

- A Z-matrix is an ℓ × ℓ-matrix C ∈ Z^{ℓ×ℓ} whose off-diagonal entries C_{i,j} (with i ≠ j) are all ≤ 0.
- A nonsingular M-matrix is a Z-matrix C whose inverse C⁻¹ exists and satisfies C⁻¹ ≥ 0.

Here, inequalities between matrices are entrywise.

- Theorem (Gabrielov, Benkart, Klivans, Reiner, ...?): For
 - a Z-matrix C, the following are equivalent:
 - C is a nonsingular M-matrix.
 - C^{T} is a nonsingular M-matrix.
 - There exists a column vector $x \in \mathbb{Q}^{\ell}$ with x > 0 and Cx > 0. (Again, entrywise.)
 - The "generalized chip-firing game" in which we start with a row vector r ≥ 0 and keep subtracting rows of C while keeping the vector ≥ 0 is confluent (i.e., terminates, and the final state depends only on the starting state).
- Actually, "depends only on the starting state" follows from "Z-matrix", but termination requires "nonsingular M-matrix".

- Given a digraph *D* with a chosen global sink *q*, we can define a finite abelian monoid as follows:
 - A *chip configuration* is a placement of finitely many chips on the vertices of *D*. (Rigorously: a nonnegative integer vector.)
 - Chips placed on *q* are ignored.

- Given a digraph *D* with a chosen global sink *q*, we can define a finite abelian monoid as follows:
 - A *chip configuration* is a placement of finitely many chips on the vertices of *D*.

(Rigorously: a nonnegative integer vector.)

- Chips placed on *q* are ignored.
- Configurations are added entrywise.
- The stabilization of a configuration x is the configuration obtained from x by repeatedly firing vertices $(\neq q)$ until this no longer becomes possible. We call this stabilization x° .
- A configuration is *stable* if no vertex can be fired in it.

- Given a digraph *D* with a chosen global sink *q*, we can define a finite abelian monoid as follows:
 - A *chip configuration* is a placement of finitely many chips on the vertices of *D*.

(Rigorously: a nonnegative integer vector.)

- Chips placed on *q* are ignored.
- Configurations are added entrywise.
- The stabilization of a configuration x is the configuration obtained from x by repeatedly firing vertices (≠ q) until this no longer becomes possible. We call this stabilization x°.
- A configuration is *stable* if no vertex can be fired in it.
- The sandpile monoid of (D, q) is the monoid of all stable configurations, with monoid operation given by (f,g) → (f + g)°.

- Given a digraph *D* with a chosen global sink *q*, we can define a finite abelian group as follows:
 - If *M* is a finite abelian monoid, then the intersection of all (nonempty) ideals of *M* is a group. (Neat exercise.)
 - Applied to *M* being the sandpile monoid of (*D*, *q*), this yields the *critical group* of (*D*, *q*). (Also known as the sandpile group.)

- Given a digraph *D* with a chosen global sink *q*, we can define a finite abelian group as follows:
 - If *M* is a finite abelian monoid, then the intersection of all (nonempty) ideals of *M* is a group. (Neat exercise.)
 - Applied to *M* being the sandpile monoid of (*D*, *q*), this yields the *critical group* of (*D*, *q*). (Also known as the sandpile group.)
- But again, we can also define this in terms of the Laplacian: Namely, the critical group of (D, q) is $K(D, q) = \operatorname{coker} \left(\overline{L}^T\right) = \mathbb{Z}^{n-1} / \left(\overline{L}^T \mathbb{Z}^{n-1}\right).$

- Given a digraph *D* with a chosen global sink *q*, we can define a finite abelian group as follows:
 - If *M* is a finite abelian monoid, then the intersection of all (nonempty) ideals of *M* is a group. (Neat exercise.)
 - Applied to *M* being the sandpile monoid of (*D*, *q*), this yields the *critical group* of (*D*, *q*). (Also known as the sandpile group.)
- But again, we can also define this in terms of the Laplacian: Namely, the critical group of (D, q) is
 K(D,q) = coker (L^T) = Zⁿ⁻¹/(L^TZⁿ⁻¹).
- When D is Eulerian, this group does not depend on q (up to iso). Thus, we call it just K (D).

free part

torsion part

• When D is Eulerian, we have coker $(L^T) = \mathbb{Z} \oplus K(D)$

- Given a digraph *D* with a chosen global sink *q*, we can define a finite abelian group as follows:
 - If *M* is a finite abelian monoid, then the intersection of all (nonempty) ideals of *M* is a group. (Neat exercise.)
 - Applied to *M* being the sandpile monoid of (*D*, *q*), this yields the *critical group* of (*D*, *q*). (Also known as the sandpile group.)
- But again, we can also define this in terms of the Laplacian: Namely, the critical group of (D, q) is
 K(D,q) = coker (L^T) = Zⁿ⁻¹/(L^TZⁿ⁻¹).
- When D is Eulerian, this group does not depend on q (up to iso). Thus, we call it just K(D).

• When D is Eulerian, we have coker $(L^T) = \underbrace{\mathbb{Z}}_{\text{free part}} \oplus \underbrace{K(D)}_{\text{torsion part}}$

 Much of chip-firing theory doesn't need a digraph. A square matrix over Z is enough... and a nonsingular M-matrix is particularly helpful.

2

The critical group of a group character

References:

- Georgia Benkart, Caroline Klivans, Victor Reiner, *Chip firing* on *Dynkin diagrams and McKay quivers*, arXiv:1601.06849.
- Christian Gaetz, *Critical groups of McKay-Cartan matrices*, honors thesis 2016.
- Victor Reiner's talk slides.

The McKay matrix of a representation, 1

• Where else can we get nonsingular M-matrices from?

The McKay matrix of a representation, 1

Let G be a finite group.
 Let S₁, S₂,..., S_{ℓ+1} be the irreps (= irreducible representations) of G over C. Let χ₁, χ₂,..., χ_{ℓ+1} be their characters.

The McKay matrix of a representation, 1

- Let G be a finite group.
 Let S₁, S₂,..., S_{ℓ+1} be the irreps (= irreducible representations) of G over C. Let χ₁, χ₂,..., χ_{ℓ+1} be their characters.
- Fix any representation V of G over C (not necessarily irreducible), and let χ_V be its character. Set n = dim V = χ_V(e).

The McKay matrix of a representation, 1

- Let G be a finite group.
 Let S₁, S₂,..., S_{ℓ+1} be the irreps (= irreducible representations) of G over C. Let χ₁, χ₂,..., χ_{ℓ+1} be their characters.
- Fix any representation V of G over C (not necessarily irreducible), and let χ_V be its character. Set n = dim V = χ_V(e).
- The *McKay matrix* of V is the $(\ell + 1) \times (\ell + 1)$ -matrix M_V whose (i, j)-th entry is the coefficient $m_{i,j}$ in the expansion

$$\chi_{S_i\otimes V}=\chi_i\chi_V=\sum_{j=1}^{\ell+1}m_{i,j}\chi_j.$$

The McKay matrix of a representation, 1

- Let G be a finite group.
 Let S₁, S₂,..., S_{ℓ+1} be the irreps (= irreducible representations) of G over C. Let χ₁, χ₂,..., χ_{ℓ+1} be their characters.
- Fix any representation V of G over C (not necessarily irreducible), and let χ_V be its character. Set n = dim V = χ_V(e).
- The *McKay matrix* of V is the $(\ell + 1) \times (\ell + 1)$ -matrix M_V whose (i, j)-th entry is the coefficient $m_{i,j}$ in the expansion

$$\chi_{S_i\otimes V}=\chi_i\chi_V=\sum_{j=1}^{\ell+1}m_{i,j}\chi_j.$$

We define a further (l + 1) × (l + 1)-matrix L_V (our "Laplacian") by L_V = nI - M_V.
 Warning: Unlike the digraph case, the matrix L_V neither has row sums 0 nor has column sums 0!

Example: The symmetric group G₄ has 5 irreps S₁, S₂, S₃, S₄, S₅, corresponding to the partitions
 (4), (3,1), (2,2), (2,1,1), (1,1,1,1), respectively. We shall just call them D⁴, D³¹, D²², D²¹¹, D¹¹¹¹ for clarity. Their characters

 $\chi_0 = \chi_{D^4}, \ \chi_1 = \chi_{D^{31}}, \ \chi_2 = \chi_{D^{22}}, \ \chi_3 = \chi_{D^{211}}, \ \chi_4 = \chi_{D^{1111}}$ are the rows of the following character table:

		. ,	(ij)(kl)	(ijk)	(ijkl)
$\begin{array}{c} \chi_{D^4} \ \chi_{D^{31}} \ \chi_{D^{22}} \ \chi_{D^{211}} \end{array}$	(1)	1	1	1	1
$\chi_{D^{31}}$	3	1	0	-1	-1
$\chi_{D^{22}}$	2	0	-1	2	0
$\chi_{D^{211}}$	3	-1	0	-1	1
$\chi_{D^{1111}}$	$\backslash 1$	-1	1	1	_1 /

(these are given by weighted counting of rim hook tableaux, according to the Murnaghan-Nakayama rule).

• Example (cont'd): Let $V = D^{31}$. Then, the McKay matrix M_V is

$$M_{V} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

(these are Kronecker coefficients, since D^{31} too is irreducible).

• Example (cont'd): Let $V = D^{31}$. Then, the McKay matrix M_V is

$$M_V = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}.$$

For example, the second row is because

 $\chi_{D^{31}\otimes D^{31}} = 1\chi_{D^4} + 1\chi_{D^{31}} + 1\chi_{D^{22}} + 1\chi_{D^{211}} + 0\chi_{D^{1111}}.$

• Example (cont'd): Let $V = D^{31}$. Then, the McKay matrix M_V is

$$M_V = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}.$$

For example, the third row is because

 $\chi_{D^{22} \otimes D^{31}} = \mathbf{0}\chi_{D^4} + \mathbf{1}\chi_{D^{31}} + \mathbf{0}\chi_{D^{22}} + \mathbf{1}\chi_{D^{211}} + \mathbf{0}\chi_{D^{1111}}.$

• Example (cont'd): Let $V = D^{31}$. Then, the McKay matrix M_V is

$$M_{V} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}.$$

Hence,

$$L_V = \underbrace{n}_{=\dim V=3} I - M_V = \begin{pmatrix} 3 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & -1 & 0 \\ 0 & -1 & 3 & -1 & 0 \\ 0 & -1 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 3 \end{pmatrix}.$$

The critical group of a representation

- Let *L_V* be the matrix *L_V* with its row and column corresponding to the trivial irrep removed. This is an *ℓ* × *ℓ*-matrix.
- Define the critical group K(V) of V by $K(V) = \operatorname{coker}(\overline{L_V})$.
- Also, coker (L_V) ≅ ℤ ⊕ K (V). That said, K (V) is not always torsion.

The critical group of a representation

- Let L_V be the matrix L_V with its row and column corresponding to the trivial irrep removed. This is an l × l-matrix.
- Define the critical group K(V) of V by $K(V) = \operatorname{coker}(\overline{L_V})$.
- Also, coker $(L_V) \cong \mathbb{Z} \oplus K(V)$. That said, K(V) is not always torsion.
- In our above example,

$$L_V = \begin{pmatrix} 3 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & -1 & 0 \\ 0 & -1 & 3 & -1 & 0 \\ 0 & -1 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 3 \end{pmatrix} \Longrightarrow \overline{L_V} = \begin{pmatrix} 2 & -1 & -1 & 0 \\ -1 & 3 & -1 & 0 \\ -1 & -1 & 2 & -1 \\ 0 & 0 & -1 & 3 \end{pmatrix}$$

(Here, we removed the 1-st row and 1-st column, since they index the trivial irrep.)

The critical group of a representation

- Let L_V be the matrix L_V with its row and column corresponding to the trivial irrep removed. This is an l × l-matrix.
- Define the critical group K(V) of V by $K(V) = \operatorname{coker}(\overline{L_V})$.
- Also, coker $(L_V) \cong \mathbb{Z} \oplus K(V)$. That said, K(V) is not always torsion.
- In our above example,

$$L_{V} = \begin{pmatrix} 3 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & -1 & 0 \\ 0 & -1 & 3 & -1 & 0 \\ 0 & -1 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 3 \end{pmatrix} \Longrightarrow \overline{L_{V}} = \begin{pmatrix} 2 & -1 & -1 & 0 \\ -1 & 3 & -1 & 0 \\ -1 & -1 & 2 & -1 \\ 0 & 0 & -1 & 3 \end{pmatrix}$$

Hence, $K(V) = \operatorname{coker}(\overline{L_V}) \cong \mathbb{Z}/3\mathbb{Z}.$

 (Recall that the cokernel of a square matrix M ∈ Z^{N×N} is ≅ ⊕_i (Z/m_iZ), where the m_i are the diagonal entries in the Smith normal form of M. This is how the above was computed.)

- Theorems (Benkart, Klivans, Reiner, Gaetz):
 - The column vector $\mathbf{s} = (\dim S_1, \dim S_2, \dots, \dim S_{\ell+1})^T$ belongs to ker (L_V) .
 - It spans the \mathbb{Z} -module ker (L_V) if and only if the

G-representation V is faithful.

- Theorems (Benkart, Klivans, Reiner, Gaetz):
 - The column vector s = (dim S₁, dim S₂,..., dim S_{l+1})^T belongs to ker (L_V).
 It spans the Z-module ker (L_V) if and only if the

G-representation *V* is faithful.

• Actually, M_V and L_V can be diagonalized: For each $g \in G$, the vector $\mathbf{s}(g) = (\chi_{S_1}(g), \chi_{S_2}(g), \dots, \chi_{S_{\ell+1}}(g))^T$ (a column of the character table of G) is an eigenvector of M_V (with eigenvalue $\chi_V(g)$) and of L_V (with eigenvalue $n - \chi_V(g)$).

- Theorems (Benkart, Klivans, Reiner, Gaetz):
 - If the G-representation V is faithful, then $\overline{L_V}$ is a nonsingular M-matrix.

(Hence, a theory of "chip-firing" exists. Benkart, Klivans and Reiner have further results on this, but much is still unexplored.

For **some** groups G and representations V, this

"chip-firing" is equivalent to actual chip-firing on certain specific digraphs. See Benkart-Klivans-Reiner paper.)

- Theorems (Benkart, Klivans, Reiner, Gaetz):
 - If the G-representation V is faithful, then L_V is a nonsingular M-matrix.
 - If the G-representation V is faithful, then

$$\#K(V) = \frac{1}{\#G} \prod_{G\text{-conjugacy class } [g] \neq [e]} (n - \chi_V(g)).$$

- Theorems (Benkart, Klivans, Reiner, Gaetz):
 - If the G-representation V is faithful, then L_V is a nonsingular M-matrix.
 - If the G-representation V is faithful, then

$$\#K(V) = \frac{1}{\#G} \prod_{G\text{-conjugacy class } [g]\neq [e]} (n - \chi_V(g)).$$

• For the regular *G*-representation $\mathbb{C}G$, we have $K(\mathbb{C}G)\cong (\mathbb{Z}/n\mathbb{Z})^{\ell-1}$.

Here, $n = \dim (\mathbb{C}G) = \#G$ and $\ell = ($ number of *G*-conjugacy classes) - 1.

• How to generalize this picture?

- How to generalize this picture?
 - $\bullet\ characteristic-0\ representations \rightarrow\ modular\ representations.$

- How to generalize this picture?
 - $\bullet\ characteristic-0\ representations \rightarrow\ modular\ representations.$
 - algebraically closed field $\mathbb{C} \to$ any field.

- How to generalize this picture?
 - characteristic-0 representations \rightarrow modular representations.
 - \bullet algebraically closed field $\mathbb{C} \to$ any field.
 - finite-dimensional \rightarrow arbitrary dimension.

- How to generalize this picture?
 - $\bullet\ characteristic-0\ representations \rightarrow\ modular\ representations.$
 - \bullet algebraically closed field $\mathbb{C} \to$ any field.
 - $\bullet\,$ finite-dimensional $\rightarrow\,$ arbitrary dimension.
 - finite group \rightarrow finite-dimensional Hopf algebra.

- How to generalize this picture?
 - $\bullet\ characteristic-0\ representations \rightarrow\ modular\ representations.$
 - \bullet algebraically closed field $\mathbb{C} \to$ any field.
 - $\bullet~\mbox{finite-dimensional}$ $\rightarrow~\mbox{arbitrary dimension}.$
 - $\bullet~\mbox{finite group} \rightarrow \mbox{finite-dimensional Hopf algebra}.$
- We shall only study the two blue directions. (The others are interesting, too!)

3. The critical group of a Hopf algebra module

3

The critical group of a Hopf algebra module

References:

• Darij Grinberg, Jia Huang, Victor Reiner, *Critical groups for Hopf algebra modules*, arXiv:1704.03778.

Introducing the Hopf algebra A

- Let ${\mathbb F}$ be any algebraically closed field of any characteristic.
- All F-vector spaces in the following are finite-dimensional. dim always means F-vector space dimension.
 ⊗ always means ⊗_F.
- Let A be a finite-dimensional Hopf algebra over F. This means:
 - First of all, A is an \mathbb{F} -algebra.
 - Also, A is finite-dimensional as an \mathbb{F} -vector space.
 - Also, A is equipped with
 - a comultiplication $\Delta : A \rightarrow A \otimes A$,
 - a counit $\epsilon : A \to \mathbb{F}$,
 - an antipode $\alpha : A \rightarrow A$

satisfying certain axioms.

Representations of *A***: generalities**

- In the following, "A-module" means "left A-module".
- Classical results on representations of A:
 - There are finitely many simple A-modules
 S₁, S₂,..., S_{l+1},
 and finitely many indecomposable projective A-modules
 P₁, P₂,..., P_{l+1},
 and they can (and will) be labelled in such a way that P_i
 is the projective cover of S_i.

Representations of *A***: generalities**

- In the following, "A-module" means "left A-module".
- Classical results on representations of A:
 - There are finitely many simple A-modules
 S₁, S₂,..., S_{ℓ+1},
 and finitely many indecomposable projective A-modules
 P₁, P₂,..., P_{ℓ+1},
 and they can (and will) be labelled in such a way that P_i
 is the projective cover of S_i.
 - The left-regular A-module A decomposes as a direct sum

$$A\cong\bigoplus_{i=1}^{\ell+1}P_i^{\dim S_i}.$$

Representations of *A***: generalities**

- In the following, "A-module" means "left A-module".
- Classical results on representations of A:
 - There are finitely many simple A-modules
 S₁, S₂,..., S_{ℓ+1},
 and finitely many indecomposable projective A-modules
 P₁, P₂,..., P_{ℓ+1},
 and they can (and will) be labelled in such a way that P_i
 is the projective cover of S_i.
 - The left-regular A-module A decomposes as a direct sum

$$A\cong\bigoplus_{i=1}^{\ell+1}P_i^{\dim S_i}.$$

• For an *A*-module *V*, if [*V* : *S_i*] denotes the multiplicity of *S_i* as a composition factor of *V*, then

$$[V:S_i] = \dim \operatorname{Hom}_{\mathcal{A}}(P_i, V).$$

Representations of A: tensor category structure

 So far we have just used the F-algebra structure on A (and the algebraic closedness of F).
 What if we take into account the Hopf algebra structure too?

Representations of A: tensor category structure

- So far we have just used the 𝔽-algebra structure on A (and the algebraic closedness of 𝔽).
 What if we take into account the Hopf algebra structure too?
- The Hopf algebra structure on A allows us to
 - make the tensor product V ⊗ W of two A-modules V and W into an A-module as well (using Δ);

Representations of A: tensor category structure

- So far we have just used the 𝔽-algebra structure on A (and the algebraic closedness of 𝔽).
 What if we take into account the Hopf algebra structure too?
- The Hopf algebra structure on A allows us to
 - make the tensor product V ⊗ W of two A-modules V and W into an A-module as well (using Δ);

- So far we have just used the F-algebra structure on A (and the algebraic closedness of F).
 What if we take into account the Hopf algebra structure too?
- The Hopf algebra structure on A allows us to
 - make the tensor product V ⊗ W of two A-modules V and W into an A-module as well (using Δ);

 - make the homspace Hom(V, W) = Hom_F(V, W) (any unadorned Hom sign means Hom_F here and henceforth) of two A-modules V and W into an A-module as well (using Δ and α),

- So far we have just used the 𝔽-algebra structure on A (and the algebraic closedness of 𝔽).
 What if we take into account the Hopf algebra structure too?
- The Hopf algebra structure on A allows us to
 - make the tensor product V ⊗ W of two A-modules V and W into an A-module as well (using Δ);

 - make the homspace Hom(V, W) = Hom_𝔅(V, W) (any unadorned Hom sign means Hom_𝔅 here and henceforth) of two A-modules V and W into an A-module as well (using Δ and α),

and thus in particular define a "dual A-module" V^* of an A-module V (without switching sides).

Hopf algebra examples, 1: the group algebra

• Example 1: Let A be the group algebra $\mathbb{F}G$ of a finite group G.

This becomes a Hopf algebra by setting

$$\epsilon(g) = 1,$$

 $\Delta(g) = g \otimes g,$
 $\alpha(g) = g^{-1}$

for all $g \in G$.

Hopf algebra examples, 1: the group algebra

• Example 1: Let A be the group algebra $\mathbb{F}G$ of a finite group G.

This becomes a Hopf algebra by setting

$$egin{aligned} \epsilon(g) &= 1, \ \Delta(g) &= g \otimes g, \ lpha(g) &= g^{-1} \end{aligned}$$

for all $g \in G$.

The A-modules are precisely the representations of G; the notions of tensor product, trivial module, etc. are the ones we know from group representation theory.

Hopf algebra examples, 1: the group algebra

• Example 1: Let A be the group algebra $\mathbb{F}G$ of a finite group G.

This becomes a Hopf algebra by setting

$$egin{aligned} \epsilon(g) &= 1, \ \Delta(g) &= g \otimes g, \ lpha(g) &= g^{-1} \end{aligned}$$

for all $g \in G$.

The A-modules are precisely the representations of G; the notions of tensor product, trivial module, etc. are the ones we know from group representation theory.

Note that if char $\mathbb{F} = 0$, then A is semisimple, so that the theory dramatically simplifies (e.g., we have $P_i = S_i$ for all *i*).

Hopf algebra examples, 0: the universal enveloping algebra

 "Example 0": This example does not really fit into our framework (yet?), but is too good to omit: Let A be the universal enveloping algebra U(g) of a Lie algebra g.

This becomes a Hopf algebra by setting

$$\epsilon(x) = 0,$$

 $\Delta(x) = x \otimes 1 + 1 \otimes x,$
 $\alpha(x) = -x$

for all $x \in \mathfrak{g}$.

Hopf algebra examples, 0: the universal enveloping algebra

 "Example 0": This example does not really fit into our framework (yet?), but is too good to omit: Let A be the universal enveloping algebra U(g) of a Lie algebra g.

This becomes a Hopf algebra by setting

$$\epsilon(x) = 0,$$

 $\Delta(x) = x \otimes 1 + 1 \otimes x,$
 $\alpha(x) = -x$

for all $x \in \mathfrak{g}$.

The A-modules are precisely the representations of \mathfrak{g} ; the notions of tensor product, trivial module, etc. are the ones we know from Lie algebra representation theory.

Hopf algebra examples, 0: the universal enveloping algebra

 "Example 0": This example does not really fit into our framework (yet?), but is too good to omit: Let A be the universal enveloping algebra U(g) of a Lie algebra g.

This becomes a Hopf algebra by setting

$$\epsilon(x) = 0,$$

 $\Delta(x) = x \otimes 1 + 1 \otimes x,$
 $\alpha(x) = -x$

for all $x \in \mathfrak{g}$.

The A-modules are precisely the representations of \mathfrak{g} ; the notions of tensor product, trivial module, etc. are the ones we know from Lie algebra representation theory. Sadly, A is usually infinite-dimensional, and our theory is not ready for this. (Restricted universal enveloping algebras in characteristic p do work, though.)

Example 2: Fix integers m ≥ 0 and n > 0 with m | n. Fix a primitive n-th root of unity ω ∈ 𝔽. (Recall we assumed 𝔽 algebraically closed!)

Example 2: Fix integers m ≥ 0 and n > 0 with m | n. Fix a primitive n-th root of unity ω ∈ 𝔽. (Recall we assumed 𝔽 algebraically closed!)
 As an 𝔽-algebra, the generalized Taft Hopf algebra A = H_{n,m} is given by

generators
$$g, x;$$

relations $g^n = 1, \qquad x^m = 0, \qquad xg = \omega g x.$

Example 2: Fix integers m ≥ 0 and n > 0 with m | n. Fix a primitive n-th root of unity ω ∈ 𝔽. (Recall we assumed 𝔽 algebraically closed!)
 As an 𝔽-algebra, the generalized Taft Hopf algebra A = H_{n,m} is given by

 $\begin{array}{ll} \mbox{generators} & g,x;\\ \mbox{relations} & g^n=1, \qquad x^m=0, \qquad xg=\omega gx. \end{array}$

More conceptual definition: A is a skew group ring

$$H_{n,m} = \mathbb{F}[\mathbb{Z}/n\mathbb{Z}] \ltimes \mathbb{F}[x]/(x^m)$$

for the cyclic group $\mathbb{Z}/n\mathbb{Z} = \{e, g, g^2, \dots, g^{n-1}\}$ acting on coefficients in a truncated polynomial algebra $\mathbb{F}[x]/(x^m)$, via $gxg^{-1} = \omega^{-1}x$.

Example 2: Fix integers m ≥ 0 and n > 0 with m | n. Fix a primitive n-th root of unity ω ∈ 𝔽. (Recall we assumed 𝔽 algebraically closed!)
 As an 𝔽-algebra, the generalized Taft Hopf algebra A = H_{n,m} is given by

generators g, x;relations $g^n = 1, \qquad x^m = 0, \qquad xg = \omega g x.$

This A has \mathbb{F} -basis $\{g^i x^j : 0 \le i < n \text{ and } 0 \le j < m\}$, whence dim A = mn.

It becomes a Hopf algebra by setting

$$\begin{array}{rcl} \epsilon(g) &=& 1, & \epsilon(x) &=& 0, \\ \Delta(g) &=& g\otimes g, & \Delta(x) &=& 1\otimes x + x\otimes g, \\ \alpha(g) &=& g^{-1}, & \alpha(x) &=& -\omega^{-1}g^{-1}x. \end{array}$$

Example 2: Fix integers m ≥ 0 and n > 0 with m | n. Fix a primitive n-th root of unity ω ∈ 𝔽. (Recall we assumed 𝔽 algebraically closed!)
 As an 𝔽-algebra, the generalized Taft Hopf algebra A = H_{n,m} is given by

generators g, x;relations $g^n = 1, \qquad x^m = 0, \qquad xg = \omega g x.$

This A has n projective indecomposable modules, each of dimension m, whereas its n simple modules are all 1-dimensional.

 Example 3: Fix integers m ≥ 0 and n > 0 such that n is even and n lies in ℝ[×]. Fix a primitive n-th root of unity ω ∈ ℝ. (Recall we assumed ℝ algebraically closed!)

Example 3: Fix integers m ≥ 0 and n > 0 such that n is even and n lies in ℝ[×]. Fix a primitive n-th root of unity ω ∈ ℝ. (Recall we assumed ℝ algebraically closed!) As an ℝ-algebra, A is given by

 $\begin{array}{ll} \text{generators} & g, x_1, x_2, \dots, x_m;\\ \text{relations} & g^n = 1, \qquad x_i^2 = 0,\\ & x_i x_j = -x_j x_i, \qquad g x_i g^{-1} = \omega x_i. \end{array}$

Example 3: Fix integers m ≥ 0 and n > 0 such that n is even and n lies in ℝ[×]. Fix a primitive n-th root of unity ω ∈ ℝ. (Recall we assumed ℝ algebraically closed!) As an ℝ-algebra, A is given by

generators
$$g, x_1, x_2, \dots, x_m;$$
relations $g^n = 1, \qquad x_i^2 = 0,$ $x_i x_j = -x_j x_i, \qquad g x_i g^{-1} = \omega x_i.$

More conceptual definition: A is a skew group ring

$$A(n,m) = \mathbb{F}[\mathbb{Z}/n\mathbb{Z}] \ltimes \bigwedge_{\mathbb{F}} [x_1,\ldots,x_m],$$

for the cyclic group $\mathbb{Z}/n\mathbb{Z} = \{e, g, g^2, \dots, g^{n-1}\}$ acting this time on coefficients in an exterior algebra $\bigwedge_{\mathbb{F}} [x_1, \dots, x_m]$, via $gx_ig^{-1} = \omega x_i$.

Example 3: Fix integers m ≥ 0 and n > 0 such that n is even and n lies in ℝ[×]. Fix a primitive n-th root of unity ω ∈ ℝ. (Recall we assumed ℝ algebraically closed!) As an ℝ-algebra, A is given by

 $\begin{array}{ll} \text{generators} & g, x_1, x_2, \dots, x_m; \\ \text{relations} & g^n = 1, \qquad x_i^2 = 0, \\ & x_i x_j = -x_j x_i, \qquad g x_i g^{-1} = \omega x_i. \end{array}$

This *A* has \mathbb{F} -basis $\{g^i x_J : 0 \le i < n, J \subseteq \{1, 2, ..., m\}\}$ (where $x_J := x_{j_1} x_{j_2} \cdots x_{j_k}$ if $J = \{j_1 < j_2 < \cdots < j_k\}$), whence dim $A = n2^m$.

It becomes a Hopf algebra by setting

$$\begin{split} \epsilon\left(g\right) &= 1, & \epsilon\left(x_i\right) = 0, \\ \Delta\left(g\right) &= g \otimes g, & \Delta\left(x_i\right) = 1 \otimes x_i + x_i \otimes g^{n/2}, \\ \alpha\left(g\right) &= g^{-1}, & \alpha\left(x_i\right) = -x_i g^{n/2}. \end{split}$$

The Grothendieck ring $G_0(A)$

• We want to define a "critical group" K(V) of an A-module V.

The Grothendieck ring $G_0(A)$

- We want to define a "critical group" K(V) of an A-module V.
- Unlike in the case of group representations, characters are not very useful; in particular, they don't "characterize" modules much any more.

- We want to define a "critical group" K(V) of an A-module V.
- Unlike in the case of group representations, characters are not very useful; in particular, they don't "characterize" modules much any more.
- Instead, there is the Grothendieck group G₀(A).
 It is defined as the ℤ-module with
 - generators [V] corresponding to all A-modules V (keep in mind: finite-dimensional!),
 - relations [U] [V] + [W] = 0 for each short exact sequence $0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$ of A-modules.

- We want to define a "critical group" K(V) of an A-module V.
- Unlike in the case of group representations, characters are not very useful; in particular, they don't "characterize" modules much any more.
- Instead, there is the Grothendieck group G₀(A).
 It is defined as the ℤ-module with
 - generators [V] corresponding to all A-modules V (keep in mind: finite-dimensional!),
 - relations [U] [V] + [W] = 0 for each short exact sequence $0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$ of A-modules.
- This Z-module G₀(A) has a basis ([S₁],..., [S_{ℓ+1}]), due to the Jordan-Hölder theorem.

- We want to define a "critical group" K(V) of an A-module V.
- Unlike in the case of group representations, characters are not very useful; in particular, they don't "characterize" modules much any more.
- Instead, there is the Grothendieck group G₀(A).
 It is defined as the ℤ-module with
 - generators [V] corresponding to all A-modules V (keep in mind: finite-dimensional!),
 - relations [U] [V] + [W] = 0 for each short exact sequence 0 → U → V → W → 0 of A-modules.
- This Z-module G₀(A) has a basis ([S₁],..., [S_{ℓ+1}]), due to the Jordan-Hölder theorem.
- The Z-module G₀(A) becomes a ring (not always commutative) by setting [V] · [W] = [V ⊗ W] and 1 = [ε].

• Now, let us generalize the McKay matrix of a group representation to the case of an *A*-module.

• Fix any A-module V, and set $n = \dim V$.

- Fix any A-module V, and set $n = \dim V$.
- The *McKay matrix* of V is the (ℓ + 1) × (ℓ + 1)-matrix M_V whose (i, j)-th entry is the multiplicity [S_j ⊗ V : S_i] of the simple A-module S_i in (a composition series of) S_j ⊗ V. In other words, its entries are chosen to satisfy

$$[S_i \otimes V] = [S_i][V] = \sum_{j=1}^{\ell+1} (M_V)_{i,j}[S_j].$$

- Fix any A-module V, and set $n = \dim V$.
- The McKay matrix of V is the (ℓ + 1) × (ℓ + 1)-matrix M_V whose (i, j)-th entry is the multiplicity [S_j ⊗ V : S_i] of the simple A-module S_i in (a composition series of) S_j ⊗ V. In other words, its entries are chosen to satisfy

$$[S_i \otimes V] = [S_i][V] = \sum_{j=1}^{\ell+1} (M_V)_{i,j} [S_j].$$

More conceptually: The matrix M_V represents the right multiplication by [V] as an endomorphism of $G_0(A)$ with respect to the basis $([S_1], \ldots, [S_{\ell+1}])$.

- Fix any A-module V, and set $n = \dim V$.
- The McKay matrix of V is the (ℓ + 1) × (ℓ + 1)-matrix M_V whose (i, j)-th entry is the multiplicity [S_j ⊗ V : S_i] of the simple A-module S_i in (a composition series of) S_j ⊗ V. In other words, its entries are chosen to satisfy

$$[S_i \otimes V] = [S_i][V] = \sum_{j=1}^{\ell+1} (M_V)_{i,j} [S_j].$$

More conceptually: The matrix M_V represents the right multiplication by [V] as an endomorphism of $G_0(A)$ with respect to the basis $([S_1], \ldots, [S_{\ell+1}])$.

• We define a further $(\ell + 1) \times (\ell + 1)$ -matrix L_V (our "Laplacian") by $L_V = nI - M_V$.

• We want to define our critical group K(V) in such a way that coker $(L_V) \cong \mathbb{Z} \oplus K(V)$.

How do we pick up a canonical complement to $\ensuremath{\mathbb{Z}}$?

 We want to define our critical group K (V) in such a way that coker (L_V) ≅ ℤ ⊕ K (V).

How do we pick up a canonical complement to $\ensuremath{\mathbb{Z}}$?

• It is tempting to again define $\overline{L_V}$ by removing the trivial row and trivial column from L_V , and set $K(V) = \operatorname{coker}(\overline{L_V})$. But that does not work.

 We want to define our critical group K (V) in such a way that coker (L_V) ≅ ℤ ⊕ K (V).

How do we pick up a canonical complement to $\ensuremath{\mathbb{Z}}$?

• In matrix terms:

Consider the column vector

$$\begin{split} \mathbf{s} &= \left(\dim S_1, \dim S_2, \dots, \dim S_{\ell+1}\right)^T. \text{ Then, set} \\ \mathcal{K}\left(\mathcal{V}\right) &= \mathbf{s}^{\perp} / \operatorname{Im}\left(\mathcal{L}_{\mathcal{V}}\right), \text{ where } \mathbf{s}^{\perp} &= \left\{\mathbf{x} \in \mathbb{Z}^{\ell+1} \mid \mathbf{s}^T \mathbf{x} = 0\right\}. \end{split}$$

 We want to define our critical group K (V) in such a way that coker (L_V) ≅ ℤ ⊕ K (V).

How do we pick up a canonical complement to $\ensuremath{\mathbb{Z}}$?

In matrix terms:

Consider the column vector

 $\mathbf{s} = (\dim S_1, \dim S_2, \dots, \dim S_{\ell+1})^T. \text{ Then, set} \\ \mathcal{K}(V) = \mathbf{s}^{\perp} / \operatorname{Im}(\mathcal{L}_V), \text{ where } \mathbf{s}^{\perp} = \{\mathbf{x} \in \mathbb{Z}^{\ell+1} \mid \mathbf{s}^T \mathbf{x} = 0\}.$

More conceptually:

There is an *augmentation map* on $G_0(A) \to \mathbb{Z}$. This is the ring homomorphism sending each [V] to dim V. Let I be its kernel.

Set K (V) = I/G₀ (A) (n - [V]).
 Note that multiplication by n - [V] corresponds to the action of M_V, so this makes sense.

• Theorems (G., Huang, Reiner):

- $\mathbf{p} = (\dim P_1, \dim P_2, \dots, \dim P_{\ell+1})^T \in \ker (L_V),$ whereas
 - $\mathbf{s} = (\dim S_1, \dim S_2, \dots, \dim S_{\ell+1})^T \in \ker \left((L_V)^T \right).$

These vectors span the respective kernels over \mathbb{Q} if and only if the *A*-module *V* is *tensor-rich* (which is our way to say that each simple *A*-module appears in a composition series of $V^{\otimes k}$ for at least one *k*).

- Theorems (G., Huang, Reiner):
 - If $A = \mathbb{F}G$ is a group algebra, then M_V and L_V can be diagonalized:
 - Fix a *Brauer character* χ_W for each *A*-module *W*.
 - Given a *p*-regular element $g \in G$, let $\mathbf{s}(g) = (\chi_{S_1}(g), \dots, \chi_{S_{\ell+1}}(g))^T$ be the Brauer character values of the simple $\mathbb{F}G$ -modules at *g*. Then, $\mathbf{s}(g)$ is an eigenvector of $(M_V)^T$ (with eigenvalue $\chi_V(g)$) and of $(L_V)^T$ (with eigenvalue $n - \chi_V(g)$).
 - Given a *p*-regular element $g \in G$, let $\mathbf{p}(g) = (\chi_{P_1}(g), \dots, \chi_{P_{\ell+1}}(g))^T$ be the Brauer character values of the indecomposable projective $\mathbb{F}G$ -modules at *g*. Then, $\mathbf{p}(g)$ is an eigenvector of M_V (with eigenvalue $\chi_V(g)$) and of L_V (with eigenvalue $n - \chi_V(g)$).

- Theorems (G., Huang, Reiner):
 - If the A-module V is tensor-rich, then $\overline{L_V}$ is a nonsingular M-matrix.

(Hence, a theory of "chip-firing" exists. We have not studied it. It is complicated by the fact that K(V) is not generally isomorphic to coker $((L_V)^T)$ any more.)

• Theorems (G., Huang, Reiner):

- If the A-module V is tensor-rich, then $\overline{L_V}$ is a nonsingular M-matrix.
- Actually, the following are equivalent:
 - (i) The matrix $\overline{L_V}$ (obtained from L_V by removing the row and the column corresponding to the trivial *A*-module ε) is a nonsingular M-matrix.
 - (ii) The matrix $\overline{L_V}$ is nonsingular.
 - (iii) L_V has rank ℓ , so nullity 1.
 - (iv) The critical group K(V) is finite.
 - (v) The A-module V is tensor-rich.

• Theorems (G., Huang, Reiner):

- If the A-module V is tensor-rich, then L_V is a nonsingular M-matrix.
- If the A-module V is tensor-rich, then

 $\#K(V) = \left|\frac{\gamma}{\dim A} \text{ (product of the nonzero eigenvalues of } L_V)\right|,$ where $\gamma = \gcd(\dim P_1, \dim P_2, \dots, \dim P_{\ell+1}).$

• Theorems (G., Huang, Reiner):

- If the A-module V is tensor-rich, then $\overline{L_V}$ is a nonsingular M-matrix.
- If the A-module V is tensor-rich, then

 $\#K(V) = \left|\frac{\gamma}{\dim A} \text{ (product of the nonzero eigenvalues of } L_V)\right|,$

where $\gamma = \gcd(\dim P_1, \dim P_2, \dots, \dim P_{\ell+1}).$

If $A = \mathbb{F}G$ is a group algebra, then this can be rewritten in a more explicit way using Brauer characters as well:

$$\#K(V) = \frac{\gamma}{\#G} \prod_{\substack{[g]\neq [e] \text{ is a } p\text{-regular} \\ \text{conjugacy class in } G}} (n - \chi_V(g)).$$

Also, γ is the size of the *p*-Sylow subgroups of *G* if \mathbb{F} has characteristic p > 0.

• Theorems (G., Huang, Reiner):

- If the A-module V is tensor-rich, then L_V is a nonsingular M-matrix.
- For the regular A-module A, we have

$$K(A) \cong (\mathbb{Z}/\gamma\mathbb{Z}) \oplus (\mathbb{Z}/n\mathbb{Z})^{\ell-1}.$$

Here, $n = \dim A$, $\gamma = \gcd(\dim P_1, \dim P_2, \dots, \dim P_{\ell+1})$ and $\ell = (\text{number of simple } A \text{-modules}) - 1$. • We diagonalized L_V and M_V when A is a group algebra. Can we do it in general?

- We diagonalized L_V and M_V when A is a group algebra. Can we do it in general?
- What is the meaning of

 $\gamma = \text{gcd}(\dim P_1, \dim P_2, \dots, \dim P_{\ell+1})$ for an arbitrary Hopf algebra A ?

Is there a notion of "Sylow subalgebras" (presumably subalgebras of dimension γ , which have the form $\mathbb{F} \oplus$ (nilpotents) and over which A is free as a module)?

- We diagonalized L_V and M_V when A is a group algebra. Can we do it in general?
- What is the meaning of
 γ = gcd (dim P₁, dim P₂,..., dim P_{ℓ+1}) for an arbitrary Hopf
 algebra A ?
 le there exists a f "C have below back" (correspondence)

Is there a notion of "Sylow subalgebras" (presumably subalgebras of dimension γ , which have the form $\mathbb{F} \oplus$ (nilpotents) and over which A is free as a module)?

• What can we say about L_V when V is not tensor-rich?

- We diagonalized L_V and M_V when A is a group algebra. Can we do it in general?
- What is the meaning of
 γ = gcd (dim P₁, dim P₂,..., dim P_{ℓ+1}) for an arbitrary Hopf
 algebra A ?
 Is there a notion of "Sylow subalgebras" (presumably
 subalgebras of dimension γ, which have the form
 - $\mathbb{F} \oplus$ (nilpotents) and over which A is free as a module)?
- What can we say about L_V when V is not tensor-rich?
- What can we say about A and V if V is not tensor-rich? Does
 A → End V factor through a quotient Hopf algebra then?

- We diagonalized L_V and M_V when A is a group algebra. Can we do it in general?
- What is the meaning of
 γ = gcd (dim P₁, dim P₂,..., dim P_{ℓ+1}) for an arbitrary Hopf
 algebra A ?
 Is there a notion of "Sylow subalgebras" (presumably
 subalgebras of dimension γ, which have the form
 - $\mathbb{F} \oplus$ (nilpotents) and over which A is free as a module)?
- What can we say about L_V when V is not tensor-rich?
- What can we say about A and V if V is not tensor-rich? Does A → End V factor through a quotient Hopf algebra then?
- Does the theory extend to infinite-dimensional A ? (Think of universal enveloping algebras – the finite-dimensional A-modules can be fairly tame.)

Thanks to

- you all for being here,
- Paul Terwilliger for the invitation,
- Georgia Benkart, Pavel Etingof, Jim Humphreys, Radha Kessar, Peter J. McNamara, Hans-Jürgen Schneider, Peter Webb, and Sarah Witherspoon.