Critical groups for Hopf algebra modules

Darij Grinberg (UMN)
joint work with Victor Reiner (UMN) and Jia Huang (UNK)

17 April 2017
University of Wisconsin, Madison

slides:
http:
//www.cip.ifi.lmu.de/~grinberg/algebra/madison17.pdf paper:
http://www.cip.ifi.lmu.de/~grinberg/algebra/
McKayTensor.pdf or arXiv:1704.03778v1

1. Chip-firing on digraphs

1

Chip-firing on digraphs

References:

- Alexander E. Holroyd, Lionel Levine, Karola Mészáros, Yuval Peres, James Propp, David B. Wilson, Chip-Firing and Rotor-Routing on Directed Graphs, arXiv:0801.3306.
- Georgia Benkart, Caroline Klivans, Victor Reiner, Chip firing on Dynkin diagrams and McKay quivers, arXiv:1601.06849.
- Chip-firing on a loopless digraph D is a "solitaire game" (rigorously: rewriting system, or finite state machine). A brief definition:
- Start with a finite (nonnegative, integer) number of (undistinguishable) game chips on each vertex on D.
- Each move (i.e., step) consists of picking a vertex v that has at least as many chips as it has outgoing arcs, and "distributing" chips to its out-neighbors (i.e., for each arc a having source v, we move a chip from v to the target of a). This is called "firing v ".
- Example:

Start with

(The vertices drawn in red are the ones that can be fired.)
Let us fire the top vertex.

- Chip-firing on a loopless digraph D is a "solitaire game" (rigorously: rewriting system, or finite state machine). A brief definition:
- Start with a finite (nonnegative, integer) number of (undistinguishable) game chips on each vertex on D.
- Each move (i.e., step) consists of picking a vertex v that has at least as many chips as it has outgoing arcs, and "distributing" chips to its out-neighbors (i.e., for each arc a having source v, we move a chip from v to the target of a). This is called "firing v ".
- Example:

After firing the top vertex, obtain

Let us fire the bottom left vertex.

- Chip-firing on a loopless digraph D is a "solitaire game" (rigorously: rewriting system, or finite state machine). A brief definition:
- Start with a finite (nonnegative, integer) number of (undistinguishable) game chips on each vertex on D.
- Each move (i.e., step) consists of picking a vertex v that has at least as many chips as it has outgoing arcs, and "distributing" chips to its out-neighbors (i.e., for each arc a having source v, we move a chip from v to the target of a). This is called "firing v ".
- Example:

After then firing the bottom left vertex, get

Let us fire the bottom right vertex thrice.

- Chip-firing on a loopless digraph D is a "solitaire game" (rigorously: rewriting system, or finite state machine). A brief definition:
- Start with a finite (nonnegative, integer) number of (undistinguishable) game chips on each vertex on D.
- Each move (i.e., step) consists of picking a vertex v that has at least as many chips as it has outgoing arcs, and "distributing" chips to its out-neighbors (i.e., for each arc a having source v, we move a chip from v to the target of a). This is called "firing v ".
- Example:

After then firing the bottom right vertex thrice, get

- Chip-firing on a loopless digraph D is a "solitaire game" (rigorously: rewriting system, or finite state machine). A brief definition:
- Start with a finite (nonnegative, integer) number of (undistinguishable) game chips on each vertex on D.
- Each move (i.e., step) consists of picking a vertex v that has at least as many chips as it has outgoing arcs, and "distributing" chips to its out-neighbors (i.e., for each arc a having source v, we move a chip from v to the target of a). This is called "firing v ".
- Example:

After then firing the bottom right vertex thrice, get

And so on... this game can (and will) go on forever.

- Chip-firing on a loopless digraph D is a "solitaire game" (rigorously: rewriting system, or finite state machine). A brief definition:
- Start with a finite (nonnegative, integer) number of (undistinguishable) game chips on each vertex on D.
- Each move (i.e., step) consists of picking a vertex v that has at least as many chips as it has outgoing arcs, and "distributing" chips to its out-neighbors (i.e., for each arc a having source v, we move a chip from v to the target of a). This is called "firing v ".
- Another example:

Start with

(The vertices drawn in red are the ones that can be fired.)

- Chip-firing on a loopless digraph D is a "solitaire game" (rigorously: rewriting system, or finite state machine). A brief definition:
- Start with a finite (nonnegative, integer) number of (undistinguishable) game chips on each vertex on D.
- Each move (i.e., step) consists of picking a vertex v that has at least as many chips as it has outgoing arcs, and "distributing" chips to its out-neighbors (i.e., for each arc a having source v, we move a chip from v to the target of a). This is called "firing v ".
- Another example:

After firing the bottom left vertex, obtain

- Chip-firing on a loopless digraph D is a "solitaire game" (rigorously: rewriting system, or finite state machine). A brief definition:
- Start with a finite (nonnegative, integer) number of (undistinguishable) game chips on each vertex on D.
- Each move (i.e., step) consists of picking a vertex v that has at least as many chips as it has outgoing arcs, and "distributing" chips to its out-neighbors (i.e., for each arc a having source v, we move a chip from v to the target of a). This is called "firing v ".
- Another example:

After then firing the top left vertex, get

No more firing is possible here; the game has terminated.

- Chip-firing on a loopless digraph D is a "solitaire game" (rigorously: rewriting system, or finite state machine). A brief definition:
- Start with a finite (nonnegative, integer) number of (undistinguishable) game chips on each vertex on D.
- Each move (i.e., step) consists of picking a vertex v that has at least as many chips as it has outgoing arcs, and "distributing" chips to its out-neighbors (i.e., for each arc a having source v, we move a chip from v to the target of a). This is called "firing v ".
- We see that the chip-firing game will sometimes terminate after finitely many steps, but sometimes never will. There are some nontrivial results (Björner, Lovasz, Shor and others):
- Whether it terminates depends only on the starting configuration (not on the choices of vertices to fire).
- If it terminates, the configuration obtained in the end depends only on the starting configuration.
- Chip-firing on a loopless digraph D is a "solitaire game" (rigorously: rewriting system, or finite state machine). A brief definition:
- Start with a finite (nonnegative, integer) number of (undistinguishable) game chips on each vertex on D.
- Each move (i.e., step) consists of picking a vertex v that has at least as many chips as it has outgoing arcs, and "distributing" chips to its out-neighbors (i.e., for each arc a having source v, we move a chip from v to the target of a). This is called "firing v ".
- A neater situation is obtained if we fix a "global sink" q (a vertex reachable from every vertex), and disallow firing q. Then, the game always terminates.
- Chip-firing on a loopless digraph D is a "solitaire game" (rigorously: rewriting system, or finite state machine). A brief definition:
- Start with a finite (nonnegative, integer) number of (undistinguishable) game chips on each vertex on D.
- Each move (i.e., step) consists of picking a vertex v that has at least as many chips as it has outgoing arcs, and "distributing" chips to its out-neighbors (i.e., for each arc a having source v, we move a chip from v to the target of a). This is called "firing v ".
- A neater situation is obtained if we fix a "global sink" q (a vertex reachable from every vertex), and disallow firing q. Then, the game always terminates. Again, there are remarkable properties (see Holroyd et al., arXiv:0801.3306):
- The configuration obtained in the end depends only on the starting configuration.
- "Sandpile monoid" and "sandpile group".
- Relations to Eulerian walks and to spanning trees.
- We can describe chip-firing on a loopless digraph D via the Laplacian of D.
- Label the vertices of D by $1,2, \ldots, n$.
- The Laplacian of D is the $n \times n$-matrix L whose (i, j)-th entry is

$$
L_{i, j}= \begin{cases}\operatorname{deg}^{+} i, & \text { if } j=i \\ -a_{i, j}, & \text { if } j \neq i\end{cases}
$$

where $\operatorname{deg}^{+} i$ is the outdegree of the vertex i, and $a_{i, j}$ is the number of arcs from i to j.

- We can describe chip-firing on a loopless digraph D via the Laplacian of D.
- Label the vertices of D by $1,2, \ldots, n$.
- The Laplacian of D is the $n \times n$-matrix L whose (i, j)-th entry is

$$
L_{i, j}= \begin{cases}\operatorname{deg}^{+} i, & \text { if } j=i \\ -a_{i, j}, & \text { if } j \neq i\end{cases}
$$

where $\mathrm{deg}^{+} i$ is the outdegree of the vertex i, and $a_{i, j}$ is the number of arcs from i to j.

- A configuration (i.e., placement of chips on the vertices of D) is modelled by a row vector with n entries (the i-th entry being the number of chips at vertex i).
- We can describe chip-firing on a loopless digraph D via the Laplacian of D.
- Label the vertices of D by $1,2, \ldots, n$.
- The Laplacian of D is the $n \times n$-matrix L whose (i, j)-th entry is

$$
L_{i, j}= \begin{cases}\operatorname{deg}^{+} i, & \text { if } j=i \\ -a_{i, j}, & \text { if } j \neq i\end{cases}
$$

where $\mathrm{deg}^{+} i$ is the outdegree of the vertex i, and $a_{i, j}$ is the number of arcs from i to j.

- A configuration (i.e., placement of chips on the vertices of D) is modelled by a row vector with n entries (the i-th entry being the number of chips at vertex i).
- Firing the vertex i modifies such a vector by subtracting the i-th row of L.
- We can describe chip-firing on a loopless digraph D via the Laplacian of D.
- Label the vertices of D by $1,2, \ldots, n$.
- The Laplacian of D is the $n \times n$-matrix L whose (i, j)-th entry is

$$
L_{i, j}= \begin{cases}\operatorname{deg}^{+} i, & \text { if } j=i \\ -a_{i, j}, & \text { if } j \neq i\end{cases}
$$

where $\mathrm{deg}^{+} i$ is the outdegree of the vertex i, and $a_{i, j}$ is the number of arcs from i to j.

- A configuration (i.e., placement of chips on the vertices of D) is modelled by a row vector with n entries (the i-th entry being the number of chips at vertex i).
- Firing the vertex i modifies such a vector by subtracting the i-th row of L.
- The same holds for the variant where we fix a global sink q and never fire it...
- We can describe chip-firing on a loopless digraph D with a global sink q via the reduced Laplacian of D.
- Label the vertices of D by $1,2, \ldots, n$ in such a way that the global sink q is n.
- The reduced Laplacian of D is the $(n-1) \times(n-1)$-matrix \bar{L} obtained from L by removing the last row and the last column.
- We can describe chip-firing on a loopless digraph D with a global sink q via the reduced Laplacian of D.
- Label the vertices of D by $1,2, \ldots, n$ in such a way that the global sink q is n.
- The reduced Laplacian of D is the $(n-1) \times(n-1)$-matrix \bar{L} obtained from L by removing the last row and the last column.
- A configuration (i.e., placement of chips on the vertices of D) is modelled by a row vector with $n-1$ entries (the i-th entry being the number of chips at vertex i). We forget the number of chips on the sink here.
- We can describe chip-firing on a loopless digraph D with a global sink q via the reduced Laplacian of D.
- Label the vertices of D by $1,2, \ldots, n$ in such a way that the global sink q is n.
- The reduced Laplacian of D is the $(n-1) \times(n-1)$-matrix \bar{L} obtained from L by removing the last row and the last column.
- A configuration (i.e., placement of chips on the vertices of D) is modelled by a row vector with $n-1$ entries (the i-th entry being the number of chips at vertex i). We forget the number of chips on the sink here.
- Firing the vertex i modifies such a vector by subtracting the i-th row of \bar{L}.
- Restating everything in terms of the Laplacian L and forgetting about the digraph allows us to crystallize the important parts of the argument and gain further generality.

Nonsingular M-matrices, 2

- A Z-matrix is an $\ell \times \ell$-matrix $C \in \mathbb{Z}^{\ell \times \ell}$ whose off-diagonal entries $C_{i, j}($ with $i \neq j)$ are all ≤ 0.
- A Z-matrix is an $\ell \times \ell$-matrix $C \in \mathbb{Z}^{\ell \times \ell}$ whose off-diagonal entries $C_{i, j}($ with $i \neq j)$ are all ≤ 0.
- A nonsingular M-matrix is a Z-matrix C whose inverse C^{-1} exists and satisfies $C^{-1} \geq 0$.
Here, inequalities between matrices are entrywise.

Nonsingular M-matrices, 2

- A Z-matrix is an $\ell \times \ell$-matrix $C \in \mathbb{Z}^{\ell \times \ell}$ whose off-diagonal entries $C_{i, j}($ with $i \neq j)$ are all ≤ 0.
- A nonsingular M-matrix is a Z-matrix C whose inverse C^{-1} exists and satisfies $C^{-1} \geq 0$. Here, inequalities between matrices are entrywise.
- Theorem (Gabrielov, Benkart, Klivans, Reiner, ...?): For a Z-matrix C, the following are equivalent:
- C is a nonsingular M-matrix.
- C^{T} is a nonsingular M-matrix.
- There exists a column vector $x \in \mathbb{Q}^{\ell}$ with $x>0$ and $C x>0$. (Again, entrywise.)
- The "generalized chip-firing game" in which we start with a row vector $r \geq 0$ and keep subtracting rows of C while keeping the vector ≥ 0 is confluent (i.e., terminates, and the final state depends only on the starting state).
- A Z-matrix is an $\ell \times \ell$-matrix $C \in \mathbb{Z}^{\ell \times \ell}$ whose off-diagonal entries $C_{i, j}($ with $i \neq j)$ are all ≤ 0.
- A nonsingular M-matrix is a Z-matrix C whose inverse C^{-1} exists and satisfies $C^{-1} \geq 0$. Here, inequalities between matrices are entrywise.
- Theorem (Gabrielov, Benkart, Klivans, Reiner, ...?): For a Z-matrix C, the following are equivalent:
- C is a nonsingular M-matrix.
- C^{T} is a nonsingular M-matrix.
- There exists a column vector $x \in \mathbb{Q}^{\ell}$ with $x>0$ and $C x>0$. (Again, entrywise.)
- The "generalized chip-firing game" in which we start with a row vector $r \geq 0$ and keep subtracting rows of C while keeping the vector ≥ 0 is confluent (i.e., terminates, and the final state depends only on the starting state).
- Actually, "depends only on the starting state" follows from "Z-matrix", but termination requires "nonsingular M-matrix".
- Given a digraph D with a chosen global sink q, we can define a finite abelian monoid as follows:
- A chip configuration is a placement of finitely many chips on the vertices of D.
(Rigorously: a nonnegative integer vector.)
- Chips placed on q are ignored.
- Given a digraph D with a chosen global sink q, we can define a finite abelian monoid as follows:
- A chip configuration is a placement of finitely many chips on the vertices of D. (Rigorously: a nonnegative integer vector.)
- Chips placed on q are ignored.
- Configurations are added entrywise.
- The stabilization of a configuration x is the configuration obtained from x by repeatedly firing vertices $(\neq q)$ until this no longer becomes possible. We call this stabilization x°.
- A configuration is stable if no vertex can be fired in it.
- Given a digraph D with a chosen global sink q, we can define a finite abelian monoid as follows:
- A chip configuration is a placement of finitely many chips on the vertices of D.
(Rigorously: a nonnegative integer vector.)
- Chips placed on q are ignored.
- Configurations are added entrywise.
- The stabilization of a configuration x is the configuration obtained from x by repeatedly firing vertices $(\neq q)$ until this no longer becomes possible. We call this stabilization x°.
- A configuration is stable if no vertex can be fired in it.
- The sandpile monoid of (D, q) is the monoid of all stable configurations, with monoid operation given by $(f, g) \mapsto(f+g)^{\circ}$.
- Given a digraph D with a chosen global sink q, we can define a finite abelian group as follows:
- If M is a finite abelian monoid, then the intersection of all (nonempty) ideals of M is a group. (Neat exercise.)
- Applied to M being the sandpile monoid of (D, q), this yields the critical group of (D, q). (Also known as the sandpile group.)
- Given a digraph D with a chosen global sink q, we can define a finite abelian group as follows:
- If M is a finite abelian monoid, then the intersection of all (nonempty) ideals of M is a group. (Neat exercise.)
- Applied to M being the sandpile monoid of (D, q), this yields the critical group of (D, q). (Also known as the sandpile group.)
- But again, we can also define this in terms of the Laplacian: Namely, the critical group of (D, q) is

$$
K(D, q)=\operatorname{coker}\left(\bar{L}^{T}\right)=\mathbb{Z}^{n-1} /\left(\bar{L}^{T} \mathbb{Z}^{n-1}\right)
$$

- Given a digraph D with a chosen global sink q, we can define a finite abelian group as follows:
- If M is a finite abelian monoid, then the intersection of all (nonempty) ideals of M is a group. (Neat exercise.)
- Applied to M being the sandpile monoid of (D, q), this yields the critical group of (D, q). (Also known as the sandpile group.)
- But again, we can also define this in terms of the Laplacian: Namely, the critical group of (D, q) is
$K(D, q)=\operatorname{coker}\left(\bar{L}^{T}\right)=\mathbb{Z}^{n-1} /\left(\bar{L}^{T} \mathbb{Z}^{n-1}\right)$.
- When D is Eulerian, this group does not depend on q (up to iso). Thus, we call it just $K(D)$.
- When D is Eulerian, we have coker $\left(L^{T}\right)=\underbrace{\mathbb{Z}}_{\text {free part }} \oplus \underbrace{K(D)}_{\text {torsion part }}$.
- Given a digraph D with a chosen global sink q, we can define a finite abelian group as follows:
- If M is a finite abelian monoid, then the intersection of all (nonempty) ideals of M is a group. (Neat exercise.)
- Applied to M being the sandpile monoid of (D, q), this yields the critical group of (D, q). (Also known as the sandpile group.)
- But again, we can also define this in terms of the Laplacian: Namely, the critical group of (D, q) is
$K(D, q)=\operatorname{coker}\left(\bar{L}^{T}\right)=\mathbb{Z}^{n-1} /\left(\bar{L}^{T} \mathbb{Z}^{n-1}\right)$.
- When D is Eulerian, this group does not depend on q (up to iso). Thus, we call it just $K(D)$.
- When D is Eulerian, we have coker $\left(L^{T}\right)=\underbrace{\mathbb{Z}}_{\text {free part }} \oplus \underbrace{K(D)}_{\text {torsion part }}$.
- Much of chip-firing theory doesn't need a digraph. A square matrix over \mathbb{Z} is enough... and a nonsingular M-matrix is particularly helpful.

2. The critical group of a group character

2

The critical group of a group character

References:

- Georgia Benkart, Caroline Klivans, Victor Reiner, Chip firing on Dynkin diagrams and McKay quivers, arXiv:1601.06849.
- Christian Gaetz, Critical groups of McKay-Cartan matrices, honors thesis 2016.
- Victor Reiner's talk slides.

The McKay matrix of a representation, 1

- Where else can we get nonsingular M-matrices from?

The McKay matrix of a representation, 1

- Let G be a finite group.

Let $S_{1}, S_{2}, \ldots, S_{\ell+1}$ be the irreps (= irreducible representations) of G over \mathbb{C}. Let $\chi_{1}, \chi_{2}, \ldots, \chi_{\ell+1}$ be their characters.

- Let G be a finite group.

Let $S_{1}, S_{2}, \ldots, S_{\ell+1}$ be the irreps (= irreducible representations) of G over \mathbb{C}. Let $\chi_{1}, \chi_{2}, \ldots, \chi_{\ell+1}$ be their characters.

- Fix any representation V of G over \mathbb{C} (not necessarily irreducible), and let χ_{V} be its character. Set $n=\operatorname{dim} V=\chi v(e)$.
- Let G be a finite group.

Let $S_{1}, S_{2}, \ldots, S_{\ell+1}$ be the irreps ($=$ irreducible representations) of G over \mathbb{C}. Let $\chi_{1}, \chi_{2}, \ldots, \chi_{\ell+1}$ be their characters.

- Fix any representation V of G over \mathbb{C} (not necessarily irreducible), and let χ_{V} be its character. Set $n=\operatorname{dim} V=\chi v(e)$.
- The McKay matrix of V is the $(\ell+1) \times(\ell+1)$-matrix M_{V} whose (i, j)-th entry is the coefficient $m_{i, j}$ in the expansion

$$
\chi_{s_{i} \otimes V}=\chi_{i} \chi V=\sum_{j=1}^{\ell+1} m_{i, j} \chi_{j}
$$

- Let G be a finite group.

Let $S_{1}, S_{2}, \ldots, S_{\ell+1}$ be the irreps (= irreducible representations) of G over \mathbb{C}. Let $\chi_{1}, \chi_{2}, \ldots, \chi_{\ell+1}$ be their characters.

- Fix any representation V of G over \mathbb{C} (not necessarily irreducible), and let χ_{V} be its character. Set $n=\operatorname{dim} V=\chi v(e)$.
- The McKay matrix of V is the $(\ell+1) \times(\ell+1)$-matrix M_{V} whose (i, j)-th entry is the coefficient $m_{i, j}$ in the expansion

$$
\chi_{s_{i} \otimes V}=\chi_{i} \chi_{V}=\sum_{j=1}^{\ell+1} m_{i, j} \chi_{j} .
$$

- We define a further $(\ell+1) \times(\ell+1)$-matrix L_{V} (our "Laplacian") by $L_{V}=n I-M_{V}$.
Warning: Unlike the digraph case, the matrix L_{V} neither has row sums 0 nor has column sums 0 !
- Example: The symmetric group \mathfrak{S}_{4} has 5 irreps $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}$, corresponding to the partitions (4) , (3, 1) , $(2,2),(2,1,1),(1,1,1,1)$, respectively. We shall just call them $D^{4}, D^{31}, D^{22}, D^{211}, D^{1111}$ for clarity.
Their characters
$\chi_{0}=\chi_{D^{4}}, \chi_{1}=\chi_{D^{31}}, \chi_{2}=\chi_{D^{22}}, \chi_{3}=\chi_{D^{211}}, \chi_{4}=\chi_{D^{1111}}$ are the rows of the following character table:
$\chi_{D^{4}}$
$\chi_{D^{31}}$
$\chi_{D^{22}}$
$\chi_{D^{211}}$
$\chi_{D^{1111}}$$\left(\begin{array}{ccccc}1 & (i j) & (i j)(k l) & (i j k) & (i j k /) \\ 3 & 1 & 1 & 1 & 1 \\ 2 & 0 & -1 & -1 & -1 \\ 3 & -1 & 0 & -1 & 0 \\ 1 & -1 & 1 & 1 & -1\end{array}\right)$
(these are given by weighted counting of rim hook tableaux, according to the Murnaghan-Nakayama rule).
- Example (cont'd): Let $V=D^{31}$. Then, the McKay matrix M_{V} is

$$
M_{V}=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

(these are Kronecker coefficients, since D^{31} too is irreducible).

- Example (cont'd): Let $V=D^{31}$. Then, the McKay matrix M_{V} is

$$
M_{V}=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

For example, the second row is because

$$
\chi_{D^{31} \otimes D^{31}}=1 \chi_{D^{4}}+1 \chi_{D^{31}}+1 \chi_{D^{22}}+1 \chi_{D^{211}}+0 \chi_{D^{1111}} .
$$

- Example (cont'd): Let $V=D^{31}$. Then, the McKay matrix M_{V} is

$$
M_{V}=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

For example, the third row is because

$$
\chi_{D^{22} \otimes D^{31}}=0 \chi_{D^{4}}+1 \chi_{D^{31}}+0 \chi_{D^{22}}+1 \chi_{D^{211}}+0 \chi_{D^{1111}} .
$$

The McKay matrix of a representation, 2b: example

- Example (cont'd): Let $V=D^{31}$. Then, the McKay matrix M_{V} is

$$
M_{V}=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Hence,

$$
L_{V}=\underbrace{n}_{=\operatorname{dim} V=3} I-M_{V}=\left(\begin{array}{ccccc}
3 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & -1 & 0 \\
0 & -1 & 3 & -1 & 0 \\
0 & -1 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 3
\end{array}\right) .
$$

- Let $\overline{L_{V}}$ be the matrix L_{V} with its row and column corresponding to the trivial irrep removed. This is an $\ell \times \ell$-matrix.
- Define the critical group $K(V)$ of V by $K(V)=\operatorname{coker}\left(\overline{L_{V}}\right)$.
- Also, coker $\left(L_{V}\right) \cong \mathbb{Z} \oplus K(V)$.

That said, $K(V)$ is not always torsion.

- Let $\overline{L_{V}}$ be the matrix L_{V} with its row and column corresponding to the trivial irrep removed. This is an $\ell \times \ell$-matrix.
- Define the critical group $K(V)$ of V by $K(V)=\operatorname{coker}\left(\overline{L_{V}}\right)$.
- Also, coker $\left(L_{V}\right) \cong \mathbb{Z} \oplus K(V)$.

That said, $K(V)$ is not always torsion.

- In our above example,
$L_{V}=\left(\begin{array}{ccccc}3 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & -1 & 0 \\ 0 & -1 & 3 & -1 & 0 \\ 0 & -1 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 3\end{array}\right) \Longrightarrow \overline{L_{V}}=\left(\begin{array}{cccc}2 & -1 & -1 & 0 \\ -1 & 3 & -1 & 0 \\ -1 & -1 & 2 & -1 \\ 0 & 0 & -1 & 3\end{array}\right)$.
(Here, we removed the 1-st row and 1-st column, since they index the trivial irrep.)
- Let $\overline{L_{V}}$ be the matrix L_{V} with its row and column corresponding to the trivial irrep removed. This is an $\ell \times \ell$-matrix.
- Define the critical group $K(V)$ of V by $K(V)=\operatorname{coker}\left(\overline{L_{V}}\right)$.
- Also, coker $\left(L_{V}\right) \cong \mathbb{Z} \oplus K(V)$. That said, $K(V)$ is not always torsion.
- In our above example,
$L_{V}=\left(\begin{array}{ccccc}3 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & -1 & 0 \\ 0 & -1 & 3 & -1 & 0 \\ 0 & -1 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 3\end{array}\right) \Longrightarrow \overline{L_{V}}=\left(\begin{array}{cccc}2 & -1 & -1 & 0 \\ -1 & 3 & -1 & 0 \\ -1 & -1 & 2 & -1 \\ 0 & 0 & -1 & 3\end{array}\right)$.
Hence, $K(V)=\operatorname{coker}\left(\overline{L_{V}}\right) \cong \mathbb{Z} / 3 \mathbb{Z}$.
- (Recall that the cokernel of a square matrix $M \in \mathbb{Z}^{N \times N}$ is $\cong \bigoplus_{i}\left(\mathbb{Z} / m_{i} \mathbb{Z}\right)$, where the m_{i} are the diagonal entries in the Smith normal form of M. This is how the above was computed.)
- Theorems (Benkart, Klivans, Reiner, Gaetz):
- The column vector $\mathbf{s}=\left(\operatorname{dim} S_{1}, \operatorname{dim} S_{2}, \ldots, \operatorname{dim} S_{\ell+1}\right)^{T}$ belongs to $\operatorname{ker}\left(L_{V}\right)$.
It spans the \mathbb{Z}-module $\operatorname{ker}\left(L_{V}\right)$ if and only if the G-representation V is faithful.
- Theorems (Benkart, Klivans, Reiner, Gaetz):
- The column vector $\mathbf{s}=\left(\operatorname{dim} S_{1}, \operatorname{dim} S_{2}, \ldots, \operatorname{dim} S_{\ell+1}\right)^{T}$ belongs to $\operatorname{ker}\left(L_{V}\right)$.
It spans the \mathbb{Z}-module $\operatorname{ker}\left(L_{V}\right)$ if and only if the G-representation V is faithful.
- Actually, M_{V} and L_{V} can be diagonalized:

For each $g \in G$, the vector $\mathbf{s}(g)=\left(\chi s_{1}(g), \chi_{S_{2}}(g), \ldots, \chi_{S_{\ell+1}}(g)\right)^{T}$ (a column of the character table of G) is an eigenvector of M_{V} (with eigenvalue $\chi_{V}(g)$) and of L_{V} (with eigenvalue $\left.n-\chi_{v}(g)\right)$.

- Theorems (Benkart, Klivans, Reiner, Gaetz):
- If the G-representation V is faithful, then $\overline{L_{V}}$ is a nonsingular M-matrix. (Hence, a theory of "chip-firing" exists. Benkart, Klivans and Reiner have further results on this, but much is still unexplored.
For some groups G and representations V, this "chip-firing" is equivalent to actual chip-firing on certain specific digraphs. See Benkart-Klivans-Reiner paper.)
- Theorems (Benkart, Klivans, Reiner, Gaetz):
- If the G-representation V is faithful, then $\overline{L_{V}}$ is a nonsingular M-matrix.
- If the G-representation V is faithful, then

$$
\# K(V)=\frac{1}{\# G} \prod_{G \text {-conjugacy class }[g] \neq[e]}\left(n-\chi_{V}(g)\right)
$$

- Theorems (Benkart, Klivans, Reiner, Gaetz):
- If the G-representation V is faithful, then $\overline{L_{V}}$ is a nonsingular M-matrix.
- If the G-representation V is faithful, then

$$
\# K(V)=\frac{1}{\# G} \prod_{G \text {-conjugacy class }[g] \neq[e]}\left(n-\chi_{V}(g)\right)
$$

- For the regular G-representation $\mathbb{C} G$, we have

$$
K(\mathbb{C} G) \cong(\mathbb{Z} / n \mathbb{Z})^{\ell-1}
$$

Here, $n=\operatorname{dim}(\mathbb{C} G)=\# G$ and
$\ell=$ (number of G-conjugacy classes) -1 .

Generalizing?

- How to generalize this picture?

Generalizing?

- How to generalize this picture?
- characteristic-0 representations \rightarrow modular representations.

Generalizing?

- How to generalize this picture?
- characteristic-0 representations \rightarrow modular representations.
- algebraically closed field $\mathbb{C} \rightarrow$ any field.
- How to generalize this picture?
- characteristic-0 representations \rightarrow modular representations.
- algebraically closed field $\mathbb{C} \rightarrow$ any field.
- finite-dimensional \rightarrow arbitrary dimension.
- How to generalize this picture?
- characteristic-0 representations \rightarrow modular representations.
- algebraically closed field $\mathbb{C} \rightarrow$ any field.
- finite-dimensional \rightarrow arbitrary dimension.
- finite group \rightarrow finite-dimensional Hopf algebra.
- How to generalize this picture?
- characteristic-0 representations \rightarrow modular representations.
- algebraically closed field $\mathbb{C} \rightarrow$ any field.
- finite-dimensional \rightarrow arbitrary dimension.
- finite group \rightarrow finite-dimensional Hopf algebra.
- We shall only study the two blue directions. (The others are interesting, too!)

The critical group of a Hopf algebra module

References:

- Darij Grinberg, Jia Huang, Victor Reiner, Critical groups for Hopf algebra modules, arXiv:1704.03778.
- Let \mathbb{F} be any algebraically closed field of any characteristic.
- All \mathbb{F}-vector spaces in the following are finite-dimensional. dim always means \mathbb{F}-vector space dimension.
\otimes always means $\otimes_{\mathbb{F}}$.
- Let A be a finite-dimensional Hopf algebra over \mathbb{F}. This means:
- First of all, A is an \mathbb{F}-algebra.
- Also, A is finite-dimensional as an \mathbb{F}-vector space.
- Also, A is equipped with
- a comultiplication $\Delta: A \rightarrow A \otimes A$,
- a counit $\epsilon: A \rightarrow \mathbb{F}$,
- an antipode $\alpha: A \rightarrow A$
satisfying certain axioms.
- In the following, " A-module" means "left A-module".
- Classical results on representations of A :
- There are finitely many simple A-modules $S_{1}, S_{2}, \ldots, S_{\ell+1}$,
and finitely many indecomposable projective A-modules $P_{1}, P_{2}, \ldots, P_{\ell+1}$, and they can (and will) be labelled in such a way that P_{i} is the projective cover of S_{i}.
- In the following, " A-module" means "left A-module".
- Classical results on representations of A :
- There are finitely many simple A-modules $S_{1}, S_{2}, \ldots, S_{\ell+1}$,
and finitely many indecomposable projective A-modules
$P_{1}, P_{2}, \ldots, P_{\ell+1}$, and they can (and will) be labelled in such a way that P_{i} is the projective cover of S_{i}.
- The left-regular A-module A decomposes as a direct sum

$$
A \cong \bigoplus_{i=1}^{\ell+1} P_{i}^{\operatorname{dim} S_{i}}
$$

- In the following, " A-module" means "left A-module".
- Classical results on representations of A :
- There are finitely many simple A-modules $S_{1}, S_{2}, \ldots, S_{\ell+1}$,
and finitely many indecomposable projective A-modules
$P_{1}, P_{2}, \ldots, P_{\ell+1}$, and they can (and will) be labelled in such a way that P_{i} is the projective cover of S_{i}.
- The left-regular A-module A decomposes as a direct sum

$$
A \cong \bigoplus_{i=1}^{\ell+1} P_{i}^{\operatorname{dim} S_{i}}
$$

- For an A-module V, if [$V: S_{i}$] denotes the multiplicity of S_{i} as a composition factor of V, then

$$
\left[V: S_{i}\right]=\operatorname{dim} \operatorname{Hom}_{A}\left(P_{i}, V\right)
$$

Representations of A : tensor category structure

- So far we have just used the \mathbb{F}-algebra structure on A (and the algebraic closedness of \mathbb{F}).
What if we take into account the Hopf algebra structure too?
- So far we have just used the \mathbb{F}-algebra structure on A (and the algebraic closedness of \mathbb{F}).
What if we take into account the Hopf algebra structure too?
- The Hopf algebra structure on A allows us to
- make the tensor product $V \otimes W$ of two A-modules V and W into an A-module as well (using Δ);
- So far we have just used the \mathbb{F}-algebra structure on A (and the algebraic closedness of \mathbb{F}).
What if we take into account the Hopf algebra structure too?
- The Hopf algebra structure on A allows us to
- make the tensor product $V \otimes W$ of two A-modules V and W into an A-module as well (using Δ);
- define a "trivial A-module" called ϵ (using ϵ); this trivial A-module is \mathbb{F} as a vector space, and thus is simple.
- So far we have just used the \mathbb{F}-algebra structure on A (and the algebraic closedness of \mathbb{F}).
What if we take into account the Hopf algebra structure too?
- The Hopf algebra structure on A allows us to
- make the tensor product $V \otimes W$ of two A-modules V and W into an A-module as well (using Δ);
- define a "trivial A-module" called ϵ (using ϵ); this trivial A-module is \mathbb{F} as a vector space, and thus is simple.
- make the homspace $\operatorname{Hom}(V, W)=\operatorname{Hom}_{\mathbb{F}}(V, W)$ (any unadorned Hom sign means Hom ${ }_{\mathbb{F}}$ here and henceforth) of two A-modules V and W into an A-module as well (using Δ and α),
- So far we have just used the \mathbb{F}-algebra structure on A (and the algebraic closedness of \mathbb{F}).
What if we take into account the Hopf algebra structure too?
- The Hopf algebra structure on A allows us to
- make the tensor product $V \otimes W$ of two A-modules V and W into an A-module as well (using Δ);
- define a "trivial A-module" called ϵ (using ϵ); this trivial A-module is \mathbb{F} as a vector space, and thus is simple.
- make the homspace $\operatorname{Hom}(V, W)=\operatorname{Hom}_{\mathbb{F}}(V, W)$ (any unadorned Hom sign means Hom ${ }_{\mathbb{F}}$ here and henceforth) of two A-modules V and W into an A-module as well (using Δ and α),
and thus in particular define a "dual A-module" V^{*} of an A-module V (without switching sides).
- Example 1: Let A be the group algebra $\mathbb{F} G$ of a finite group G.

This becomes a Hopf algebra by setting

$$
\begin{aligned}
\epsilon(g) & =1 \\
\Delta(g) & =g \otimes g \\
\alpha(g) & =g^{-1}
\end{aligned}
$$

for all $g \in G$.

- Example 1: Let A be the group algebra $\mathbb{F} G$ of a finite group G.

This becomes a Hopf algebra by setting

$$
\begin{aligned}
\epsilon(g) & =1 \\
\Delta(g) & =g \otimes g \\
\alpha(g) & =g^{-1}
\end{aligned}
$$

for all $g \in G$.
The A-modules are precisely the representations of G; the notions of tensor product, trivial module, etc. are the ones we know from group representation theory.

- Example 1: Let A be the group algebra $\mathbb{F} G$ of a finite group G.

This becomes a Hopf algebra by setting

$$
\begin{aligned}
\epsilon(g) & =1 \\
\Delta(g) & =g \otimes g \\
\alpha(g) & =g^{-1}
\end{aligned}
$$

for all $g \in G$.
The A-modules are precisely the representations of G; the notions of tensor product, trivial module, etc. are the ones we know from group representation theory.
Note that if char $\mathbb{F}=0$, then A is semisimple, so that the theory dramatically simplifies (e.g., we have $P_{i}=S_{i}$ for all i).

- "Example 0": This example does not really fit into our framework (yet?), but is too good to omit:
Let A be the universal enveloping algebra $U(\mathfrak{g})$ of a Lie algebra \mathfrak{g}.
This becomes a Hopf algebra by setting

$$
\begin{aligned}
\epsilon(x) & =0 \\
\Delta(x) & =x \otimes 1+1 \otimes x \\
\alpha(x) & =-x
\end{aligned}
$$

for all $x \in \mathfrak{g}$.

- "Example 0": This example does not really fit into our framework (yet?), but is too good to omit:
Let A be the universal enveloping algebra $U(\mathfrak{g})$ of a Lie algebra \mathfrak{g}.
This becomes a Hopf algebra by setting

$$
\begin{aligned}
\epsilon(x) & =0 \\
\Delta(x) & =x \otimes 1+1 \otimes x \\
\alpha(x) & =-x
\end{aligned}
$$

for all $x \in \mathfrak{g}$.
The A-modules are precisely the representations of \mathfrak{g}; the notions of tensor product, trivial module, etc. are the ones we know from Lie algebra representation theory.

- "Example 0": This example does not really fit into our framework (yet?), but is too good to omit:
Let A be the universal enveloping algebra $U(\mathfrak{g})$ of a Lie algebra \mathfrak{g}.
This becomes a Hopf algebra by setting

$$
\begin{aligned}
\epsilon(x) & =0 \\
\Delta(x) & =x \otimes 1+1 \otimes x \\
\alpha(x) & =-x
\end{aligned}
$$

for all $x \in \mathfrak{g}$.
The A-modules are precisely the representations of \mathfrak{g}; the notions of tensor product, trivial module, etc. are the ones we know from Lie algebra representation theory.
Sadly, A is usually infinite-dimensional, and our theory is not ready for this. (Restricted universal enveloping algebras in characteristic p do work, though.)

Hopf algebra examples, 2: the generalized Taft Hopf algebra

- Example 2: Fix integers $m \geq 0$ and $n>0$ with $m \mid n$. Fix a primitive n-th root of unity $\omega \in \mathbb{F}$. (Recall we assumed \mathbb{F} algebraically closed!)
- Example 2: Fix integers $m \geq 0$ and $n>0$ with $m \mid n$. Fix a primitive n-th root of unity $\omega \in \mathbb{F}$. (Recall we assumed \mathbb{F} algebraically closed!)
As an \mathbb{F}-algebra, the generalized Taft Hopf algebra $A=H_{n, m}$ is given by

$$
\begin{aligned}
\text { generators } & g, x ; \\
\text { relations } & g^{n}=1, \quad x^{m}=0, \quad x g=\omega g x .
\end{aligned}
$$

- Example 2: Fix integers $m \geq 0$ and $n>0$ with $m \mid n$. Fix a primitive n-th root of unity $\omega \in \mathbb{F}$. (Recall we assumed \mathbb{F} algebraically closed!)
As an \mathbb{F}-algebra, the generalized Taft Hopf algebra $A=H_{n, m}$ is given by

$$
\begin{aligned}
\text { generators } & g, x ; \\
\text { relations } & g^{n}=1, \quad x^{m}=0, \quad x g=\omega g x .
\end{aligned}
$$

More conceptual definition: A is a skew group ring

$$
H_{n, m}=\mathbb{F}[\mathbb{Z} / n \mathbb{Z}] \ltimes \mathbb{F}[x] /\left(x^{m}\right)
$$

for the cyclic group $\mathbb{Z} / n \mathbb{Z}=\left\{e, g, g^{2}, \ldots, g^{n-1}\right\}$ acting on coefficients in a truncated polynomial algebra $\mathbb{F}[x] /\left(x^{m}\right)$, via $g \times g^{-1}=\omega^{-1} x$.

- Example 2: Fix integers $m \geq 0$ and $n>0$ with $m \mid n$. Fix a primitive n-th root of unity $\omega \in \mathbb{F}$. (Recall we assumed \mathbb{F} algebraically closed!)
As an \mathbb{F}-algebra, the generalized Taft Hopf algebra $A=H_{n, m}$ is given by

$$
\begin{aligned}
\text { generators } & g, x ; \\
\text { relations } & g^{n}=1, \quad x^{m}=0, \quad x g=\omega g x .
\end{aligned}
$$

This A has \mathbb{F}-basis $\left\{g^{i} x^{j}: 0 \leq i<n\right.$ and $\left.0 \leq j<m\right\}$, whence $\operatorname{dim} A=m n$.
It becomes a Hopf algebra by setting

$$
\begin{aligned}
\epsilon(g) & =1, & \epsilon(x) & =0 \\
\Delta(g) & =g \otimes g, & \Delta(x) & =1 \otimes x+x \otimes g \\
\alpha(g) & =g^{-1}, & \alpha(x) & =-\omega^{-1} g^{-1} x
\end{aligned}
$$

- Example 2: Fix integers $m \geq 0$ and $n>0$ with $m \mid n$. Fix a primitive n-th root of unity $\omega \in \mathbb{F}$. (Recall we assumed \mathbb{F} algebraically closed!)
As an \mathbb{F}-algebra, the generalized Taft Hopf algebra $A=H_{n, m}$ is given by

$$
\begin{aligned}
\text { generators } & g, x ; \\
\text { relations } & g^{n}=1, \quad x^{m}=0, \quad x g=\omega g x .
\end{aligned}
$$

This A has n projective indecomposable modules, each of dimension m, whereas its n simple modules are all 1-dimensional.

- Example 3: Fix integers $m \geq 0$ and $n>0$ such that n is even and n lies in \mathbb{F}^{\times}. Fix a primitive n-th root of unity $\omega \in \mathbb{F}$. (Recall we assumed \mathbb{F} algebraically closed!)
- Example 3: Fix integers $m \geq 0$ and $n>0$ such that n is even and n lies in \mathbb{F}^{\times}. Fix a primitive n-th root of unity $\omega \in \mathbb{F}$. (Recall we assumed \mathbb{F} algebraically closed!) As an \mathbb{F}-algebra, A is given by
generators $g, x_{1}, x_{2}, \ldots, x_{m}$; relations $\quad g^{n}=1, \quad x_{i}^{2}=0$, $x_{i} x_{j}=-x_{j} x_{i}, \quad g x_{i} g^{-1}=\omega x_{i}$.
- Example 3: Fix integers $m \geq 0$ and $n>0$ such that n is even and n lies in \mathbb{F}^{\times}. Fix a primitive n-th root of unity $\omega \in \mathbb{F}$. (Recall we assumed \mathbb{F} algebraically closed!) As an \mathbb{F}-algebra, A is given by

$$
\begin{aligned}
\text { generators } & g, x_{1}, x_{2}, \ldots, x_{m} ; \\
\text { relations } & g^{n}=1, \quad x_{i}^{2}=0 \\
& x_{i} x_{j}=-x_{j} x_{i}, \quad g x_{i} g^{-1}=\omega x_{i} .
\end{aligned}
$$

More conceptual definition: A is a skew group ring

$$
A(n, m)=\mathbb{F}[\mathbb{Z} / n \mathbb{Z}] \ltimes \bigwedge_{\mathbb{F}}\left[x_{1}, \ldots, x_{m}\right],
$$

for the cyclic group $\mathbb{Z} / n \mathbb{Z}=\left\{e, g, g^{2}, \ldots, g^{n-1}\right\}$ acting this time on coefficients in an exterior algebra $\bigwedge_{\mathbb{F}}\left[x_{1}, \ldots, x_{m}\right]$, via $g x_{i} g^{-1}=\omega x_{i}$.

- Example 3: Fix integers $m \geq 0$ and $n>0$ such that n is even and n lies in \mathbb{F}^{\times}. Fix a primitive n-th root of unity $\omega \in \mathbb{F}$. (Recall we assumed \mathbb{F} algebraically closed!) As an \mathbb{F}-algebra, A is given by

$$
\begin{aligned}
\text { generators } & g, x_{1}, x_{2}, \ldots, x_{m} \\
\text { relations } & g^{n}=1, \quad x_{i}^{2}=0 \\
& x_{i} x_{j}=-x_{j} x_{i}, \quad g x_{i} g^{-1}=\omega x_{i}
\end{aligned}
$$

This A has \mathbb{F}-basis $\left\{g^{i} x_{J}: 0 \leq i<n, J \subseteq\{1,2, \ldots, m\}\right\}$ (where $x_{J}:=x_{j_{1}} x_{j_{2}} \cdots x_{j_{k}}$ if $J=\left\{j_{1}<j_{2}<\cdots<j_{k}\right\}$), whence $\operatorname{dim} A=n 2^{m}$.
It becomes a Hopf algebra by setting

$$
\begin{aligned}
\epsilon(g) & =1, & \epsilon\left(x_{i}\right) & =0, \\
\Delta(g) & =g \otimes g, & \Delta\left(x_{i}\right) & =1 \otimes x_{i}+x_{i} \otimes g^{n / 2}, \\
\alpha(g) & =g^{-1}, & \alpha\left(x_{i}\right) & =-x_{i} g^{n / 2}
\end{aligned}
$$

The Grothendieck ring $G_{0}(A)$

- We want to define a "critical group" $K(V)$ of an A-module V.
- We want to define a "critical group" $K(V)$ of an A-module V.
- Unlike in the case of group representations, characters are not very useful; in particular, they don't "characterize" modules much any more.
- We want to define a "critical group" $K(V)$ of an A-module V.
- Unlike in the case of group representations, characters are not very useful; in particular, they don't "characterize" modules much any more.
- Instead, there is the Grothendieck group $G_{0}(A)$.

It is defined as the \mathbb{Z}-module with

- generators $[V]$ corresponding to all A-modules V (keep in mind: finite-dimensional!),
- relations $[U]-[V]+[W]=0$ for each short exact sequence $0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$ of A-modules.
- We want to define a "critical group" $K(V)$ of an A-module V.
- Unlike in the case of group representations, characters are not very useful; in particular, they don't "characterize" modules much any more.
- Instead, there is the Grothendieck group $G_{0}(A)$.

It is defined as the \mathbb{Z}-module with

- generators $[V]$ corresponding to all A-modules V (keep in mind: finite-dimensional!),
- relations $[U]-[V]+[W]=0$ for each short exact sequence $0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$ of A-modules.
- This \mathbb{Z}-module $G_{0}(A)$ has a basis $\left(\left[S_{1}\right], \ldots,\left[S_{\ell+1}\right]\right)$, due to the Jordan-Hölder theorem.
- We want to define a "critical group" $K(V)$ of an A-module V.
- Unlike in the case of group representations, characters are not very useful; in particular, they don't "characterize" modules much any more.
- Instead, there is the Grothendieck group $G_{0}(A)$.

It is defined as the \mathbb{Z}-module with

- generators $[V]$ corresponding to all A-modules V (keep in mind: finite-dimensional!),
- relations $[U]-[V]+[W]=0$ for each short exact sequence $0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$ of A-modules.
- This \mathbb{Z}-module $G_{0}(A)$ has a basis $\left(\left[S_{1}\right], \ldots,\left[S_{\ell+1}\right]\right)$, due to the Jordan-Hölder theorem.
- The \mathbb{Z}-module $G_{0}(A)$ becomes a ring (not always commutative) by setting $[V] \cdot[W]=[V \otimes W]$ and $1=[\epsilon]$.

The McKay matrix of an A-module, 1

- Now, let us generalize the McKay matrix of a group representation to the case of an A-module.

The McKay matrix of an A-module, 1

- Fix any A-module V, and set $n=\operatorname{dim} V$.
- Fix any A-module V, and set $n=\operatorname{dim} V$.
- The McKay matrix of V is the $(\ell+1) \times(\ell+1)$-matrix M_{V} whose (i, j)-th entry is the multiplicity $\left[S_{j} \otimes V: S_{i}\right]$ of the simple A-module S_{i} in (a composition series of) $S_{j} \otimes V$. In other words, its entries are chosen to satisfy

$$
\left[S_{i} \otimes V\right]=\left[S_{i}\right][V]=\sum_{j=1}^{\ell+1}\left(M_{V}\right)_{i, j}\left[S_{j}\right]
$$

- Fix any A-module V, and set $n=\operatorname{dim} V$.
- The McKay matrix of V is the $(\ell+1) \times(\ell+1)$-matrix M_{V} whose (i, j)-th entry is the multiplicity $\left[S_{j} \otimes V: S_{i}\right]$ of the simple A-module S_{i} in (a composition series of) $S_{j} \otimes V$. In other words, its entries are chosen to satisfy

$$
\left[S_{i} \otimes V\right]=\left[S_{i}\right][V]=\sum_{j=1}^{\ell+1}\left(M_{V}\right)_{i, j}\left[S_{j}\right]
$$

More conceptually: The matrix M_{V} represents the right multiplication by $[V]$ as an endomorphism of $G_{0}(A)$ with respect to the basis $\left(\left[S_{1}\right], \ldots,\left[S_{\ell+1}\right]\right)$.

- Fix any A-module V, and set $n=\operatorname{dim} V$.
- The McKay matrix of V is the $(\ell+1) \times(\ell+1)$-matrix M_{V} whose (i, j)-th entry is the multiplicity $\left[S_{j} \otimes V: S_{i}\right]$ of the simple A-module S_{i} in (a composition series of) $S_{j} \otimes V$. In other words, its entries are chosen to satisfy

$$
\left[S_{i} \otimes V\right]=\left[S_{i}\right][V]=\sum_{j=1}^{\ell+1}\left(M_{V}\right)_{i, j}\left[S_{j}\right]
$$

More conceptually: The matrix M_{V} represents the right multiplication by $[V]$ as an endomorphism of $G_{0}(A)$ with respect to the basis $\left(\left[S_{1}\right], \ldots,\left[S_{\ell+1}\right]\right)$.

- We define a further $(\ell+1) \times(\ell+1)$-matrix L_{V} (our "Laplacian") by $L_{V}=n I-M_{V}$.

The critical group of an A-module

- We want to define our critical group $K(V)$ in such a way that $\operatorname{coker}\left(L_{V}\right) \cong \mathbb{Z} \oplus K(V)$.
How do we pick up a canonical complement to \mathbb{Z} ?
- We want to define our critical group $K(V)$ in such a way that $\operatorname{coker}\left(L_{V}\right) \cong \mathbb{Z} \oplus K(V)$. How do we pick up a canonical complement to \mathbb{Z} ?
- It is tempting to again define $\overline{L_{V}}$ by removing the trivial row and trivial column from L_{V}, and set $K(V)=\operatorname{coker}\left(\overline{L_{V}}\right)$. But that does not work.
- We want to define our critical group $K(V)$ in such a way that $\operatorname{coker}\left(L_{V}\right) \cong \mathbb{Z} \oplus K(V)$.
How do we pick up a canonical complement to \mathbb{Z} ?
- In matrix terms:

Consider the column vector
$\mathbf{s}=\left(\operatorname{dim} S_{1}, \operatorname{dim} S_{2}, \ldots, \operatorname{dim} S_{\ell+1}\right)^{T}$. Then, set
$K(V)=\mathbf{s}^{\perp} / \operatorname{Im}\left(L_{V}\right)$, where $\mathbf{s}^{\perp}=\left\{\mathbf{x} \in \mathbb{Z}^{\ell+1} \mid \mathbf{s}^{T} \mathbf{x}=0\right\}$.

- We want to define our critical group $K(V)$ in such a way that $\operatorname{coker}\left(L_{V}\right) \cong \mathbb{Z} \oplus K(V)$.
How do we pick up a canonical complement to \mathbb{Z} ?
- In matrix terms:

Consider the column vector
$\mathbf{s}=\left(\operatorname{dim} S_{1}, \operatorname{dim} S_{2}, \ldots, \operatorname{dim} S_{\ell+1}\right)^{T}$. Then, set $K(V)=\mathbf{s}^{\perp} / \operatorname{Im}\left(L_{V}\right)$, where $\mathbf{s}^{\perp}=\left\{\mathbf{x} \in \mathbb{Z}^{\ell+1} \mid \mathbf{s}^{T} \mathbf{x}=0\right\}$.

- More conceptually:

There is an augmentation map on $G_{0}(A) \rightarrow \mathbb{Z}$. This is the ring homomorphism sending each $[V]$ to $\operatorname{dim} V$.
Let I be its kernel.

- Set $K(V)=I / G_{0}(A)(n-[V])$.

Note that multiplication by $n-[V]$ corresponds to the action of M_{V}, so this makes sense.

- Theorems (G., Huang, Reiner):
- $\mathbf{p}=\left(\operatorname{dim} P_{1}, \operatorname{dim} P_{2}, \ldots, \operatorname{dim} P_{\ell+1}\right)^{T} \in \operatorname{ker}\left(L_{V}\right)$, whereas
$\mathbf{s}=\left(\operatorname{dim} S_{1}, \operatorname{dim} S_{2}, \ldots, \operatorname{dim} S_{\ell+1}\right)^{T} \in \operatorname{ker}\left(\left(L_{V}\right)^{T}\right)$.
These vectors span the respective kernels over \mathbb{Q} if and only if the A-module V is tensor-rich (which is our way to say that each simple A-module appears in a composition series of $V^{\otimes k}$ for at least one k).
- Theorems (G., Huang, Reiner):
- If $A=\mathbb{F} G$ is a group algebra, then M_{V} and L_{V} can be diagonalized:
- Fix a Brauer character χ_{w} for each A-module W.
- Given a p-regular element $g \in G$, let $\mathbf{s}(g)=\left(\chi_{s_{1}}(g), \ldots, \chi_{s_{\ell+1}}(g)\right)^{T}$ be the Brauer character values of the simple $\mathbb{F} G$-modules at g. Then, $\mathbf{s}(g)$ is an eigenvector of $\left(M_{V}\right)^{T}$ (with eigenvalue $\left.\chi_{V}(g)\right)$ and of $\left(L_{V}\right)^{T}$ (with eigenvalue $\left.n-\chi_{v}(g)\right)$.
- Given a p-regular element $g \in G$, let $\mathbf{p}(g)=\left(\chi_{P_{1}}(g), \ldots, \chi_{P_{\ell+1}}(g)\right)^{T}$ be the Brauer character values of the indecomposable projective $\mathbb{F} G$-modules at g. Then, $\mathbf{p}(g)$ is an eigenvector of M_{V} (with eigenvalue $\chi_{V}(g)$) and of L_{V} (with eigenvalue $\left.n-\chi_{V}(g)\right)$.
- Theorems (G., Huang, Reiner):
- If the A-module V is tensor-rich, then $\overline{L_{V}}$ is a nonsingular M -matrix. (Hence, a theory of "chip-firing" exists. We have not studied it. It is complicated by the fact that $K(V)$ is not generally isomorphic to coker $\left(\overline{\left(L_{V}\right)^{T}}\right)$ any more.)
- Theorems (G., Huang, Reiner):
- If the A-module V is tensor-rich, then $\overline{L_{V}}$ is a nonsingular M-matrix.
- Actually, the following are equivalent:
(i) The matrix $\overline{L_{V}}$ (obtained from L_{V} by removing the row and the column corresponding to the trivial A-module ε) is a nonsingular M -matrix.
(ii) The matrix $\overline{L_{V}}$ is nonsingular.
(iii) L_{V} has rank ℓ, so nullity 1 .
(iv) The critical group $K(V)$ is finite.
(v) The A-module V is tensor-rich.
- Theorems (G., Huang, Reiner):
- If the A-module V is tensor-rich, then $\overline{L_{V}}$ is a nonsingular M -matrix.
- If the A-module V is tensor-rich, then

$$
\begin{aligned}
& \# K(V) \\
& \left.=\left\lvert\, \frac{\gamma}{\operatorname{dim} A}\right. \text { (product of the nonzero eigenvalues of } L_{V}\right) \mid, \\
& \text { where } \gamma=\operatorname{gcd}\left(\operatorname{dim} P_{1}, \operatorname{dim} P_{2}, \ldots, \operatorname{dim} P_{\ell+1}\right)
\end{aligned}
$$

- Theorems (G., Huang, Reiner):
- If the A-module V is tensor-rich, then $\overline{L_{V}}$ is a nonsingular M -matrix.
- If the A-module V is tensor-rich, then

$$
\# K(V)
$$

$=\left\lvert\, \frac{\gamma}{\operatorname{dim} A}\right.$ (product of the nonzero eigenvalues of L_{V}) \mid,
where $\gamma=\operatorname{gcd}\left(\operatorname{dim} P_{1}, \operatorname{dim} P_{2}, \ldots, \operatorname{dim} P_{\ell+1}\right)$.
If $A=\mathbb{F} G$ is a group algebra, then this can be rewritten in a more explicit way using Brauer characters as well:

$$
\# K(V)=\frac{\gamma}{\# G} \prod_{\substack{[g] \neq[e] \text { is a p p-regular } \\ \text { conjugacy class in } G}}(n-\chi v(g)) .
$$

Also, γ is the size of the p-Sylow subgroups of G if \mathbb{F} has characteristic $p>0$.

- Theorems (G., Huang, Reiner):
- If the A-module V is tensor-rich, then $\overline{L_{V}}$ is a nonsingular M-matrix.
- For the regular A-module A, we have

$$
K(A) \cong(\mathbb{Z} / \gamma \mathbb{Z}) \oplus(\mathbb{Z} / n \mathbb{Z})^{\ell-1}
$$

Here, $n=\operatorname{dim} A, \gamma=\operatorname{gcd}\left(\operatorname{dim} P_{1}, \operatorname{dim} P_{2}, \ldots, \operatorname{dim} P_{\ell+1}\right)$ and $\ell=$ (number of simple A-modules) -1 .

Questions

- We diagonalized L_{V} and M_{V} when A is a group algebra. Can we do it in general?
- We diagonalized L_{V} and M_{V} when A is a group algebra. Can we do it in general?
- What is the meaning of
$\gamma=\operatorname{gcd}\left(\operatorname{dim} P_{1}, \operatorname{dim} P_{2}, \ldots, \operatorname{dim} P_{\ell+1}\right)$ for an arbitrary Hopf algebra A ?
Is there a notion of "Sylow subalgebras" (presumably subalgebras of dimension γ, which have the form $\mathbb{F} \oplus$ (nilpotents) and over which A is free as a module)?
- We diagonalized L_{V} and M_{V} when A is a group algebra. Can we do it in general?
- What is the meaning of
$\gamma=\operatorname{gcd}\left(\operatorname{dim} P_{1}, \operatorname{dim} P_{2}, \ldots, \operatorname{dim} P_{\ell+1}\right)$ for an arbitrary Hopf algebra A ?
Is there a notion of "Sylow subalgebras" (presumably subalgebras of dimension γ, which have the form $\mathbb{F} \oplus$ (nilpotents) and over which A is free as a module)?
- What can we say about L_{V} when V is not tensor-rich?
- We diagonalized L_{V} and M_{V} when A is a group algebra. Can we do it in general?
- What is the meaning of
$\gamma=\operatorname{gcd}\left(\operatorname{dim} P_{1}, \operatorname{dim} P_{2}, \ldots, \operatorname{dim} P_{\ell+1}\right)$ for an arbitrary Hopf algebra A ?
Is there a notion of "Sylow subalgebras" (presumably subalgebras of dimension γ, which have the form $\mathbb{F} \oplus$ (nilpotents) and over which A is free as a module)?
- What can we say about L_{V} when V is not tensor-rich?
- What can we say about A and V if V is not tensor-rich? Does $A \rightarrow$ End V factor through a quotient Hopf algebra then?
- We diagonalized L_{V} and M_{V} when A is a group algebra. Can we do it in general?
- What is the meaning of
$\gamma=\operatorname{gcd}\left(\operatorname{dim} P_{1}, \operatorname{dim} P_{2}, \ldots, \operatorname{dim} P_{\ell+1}\right)$ for an arbitrary Hopf algebra A ?
Is there a notion of "Sylow subalgebras" (presumably subalgebras of dimension γ, which have the form $\mathbb{F} \oplus$ (nilpotents) and over which A is free as a module)?
- What can we say about L_{V} when V is not tensor-rich?
- What can we say about A and V if V is not tensor-rich? Does $A \rightarrow$ End V factor through a quotient Hopf algebra then?
- Does the theory extend to infinite-dimensional A ? (Think of universal enveloping algebras - the finite-dimensional A-modules can be fairly tame.)

Thanks to

- you all for being here,
- Paul Terwilliger for the invitation,
- Georgia Benkart, Pavel Etingof, Jim Humphreys, Radha Kessar, Peter J. McNamara, Hans-Jürgen Schneider, Peter Webb, and Sarah Witherspoon.

