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Errata and questions (version 2)

• There are two different references called [EGK1].

• Introduction: In the second line of page 2, you have a redundant comma (”el-
ement of A−, , and ϕ+ is a map”).

• I.1, before Proposition I.1.1: You write: ”for any bilinear map f from A×B
into C”. I would consider replacing the ”into” by a ”to” here, since some people
read ”into” as ”injective”.

• Proof of Proposition I.1.2: You claim that the map j ”is easily seen to be
injective”. While the proof of this injectivity indeed looks easy when one reads
it (see e. g. http://mathoverflow.net/questions/72013/homa-c-homb-d-injects-
into-homab-cd-when-why ), I am not sure whether this proof is that easy to
come up with on one’s own. You might want to give a few hints here...

• I.2.1: The definitions of a left ideal and of a right ideal should be interchanged:
You define a subspace J ⊆ A to be a left ideal if m (J ⊗ A) is included in J , and a
right ideal if m (A⊗ J) is included in J ; but this should be exactly the other way
round. (Besides, there is a closing bracket missing between ”m (J ⊗ A+ A⊗ J)”
and ”is included in J”.)

• I.2.3: You write: ”A left A-module is a k-vector space M together with a map”.
Maybe replace ”map” by ”k-linear map” here, unless you think this is clear to
the reader anyway.

• I.2.3: In the second commutative diagram on page 7, replace the A in the lower
right corner by an M .

• I.2.3: You write: ”A left moduleM is simple if it does not contain any submodule
different from {0} or M itself.” You should add ”and is nonzero” here, because
otherwise the trivial module {0} would be a simple module, making many of the
following results wrong.

• Proof of Proposition I.2.1: You write: ”and by simplicity of M the map :

φm : A→M

a 7→ a.m

gives rise to an morphism of left A-modules from A/Jm onto M”. I don’t think
you use the simplicity of M here - unless the ”onto M” part means that this
map is surjective (but it is useless to state this here, since you state it again
one line below). Thus I would propose removing ”by simplicity of M” from this
sentence, and replacing the ”onto” by a ”to”. Also, ”an morphism” should be ”a
morphism”.
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• Proof of Proposition I.2.2: Here you write: ”write (thanks to semi-simplicity)
M = N ⊕ T where T is another A-submodule of M”. This is indeed a conse-
quence of semi-simplicity, but not of the way you have defined semi-simplicity!
You defined a module to be semi-simple if it can be written as a direct sum of
simple modules. But what you use here is that a module is semi-simple iff every
submodule of it is a direct addend. The equivalence is not completely trivial
(although not too hard).

• Corollary I.2.3: Some people might misinterpret the word ”into” as a statement
that the map is injective (which is wrong). I would replace this word by ”to”.

• I.2.4: You write: ”The radical radM of a left module is by definition [...]”. I
would replace ”a left module” by ”a left module M” here (otherwise, the letter
M is never defined).

• Remark at the end of I.2.4: Here you write ”Jacobson ideal” twice. This
should be ”Jacobson radical”. Also, replace RadA by radA (to make the notation
compatible with the rest of your text).

• Proof of Lemma I.2.9: Replace ”for any i ∈ {0, ..., n}” by ”for any i ∈
{1, ..., n}”.

• Proof of Proposition I.2.8: Replace ”a finite-dimensional primitive ideal” by
”a finite-codimensional primitive ideal”.

• Proof of Proposition I.2.8: Here you write: ”But A′′
M is a matrix algebra

over D”. I don’t find this that obvious - what you are using here is that M
is a finite-dimensional D-module, and every finite-dimensional D-module is free
(which is because D is a skew field, and because Gaussian elimination and most
of the linear algebra based on it work over skew fields just as well as over fields),
so that M is free.

• Proof of Proposition I.2.8: Replace ”according to lemma I.2.7” by ”according
to lemma I.2.9”.

• I.3.1: On the first line of I.3.1, you write: ”Coalgebras are objects wich [...]”.
There is an obvious typo here.

• I.3.1: Between the two commutative diagrams on page 11, you write: ”Coalgebra
C is co-unital if moreover there is a co-unit ε such that the following diagram
commutes :”. For the sake of completeness, I would replace ”co-unit ε” by ”co-
unit ε : C → k” here.

• I.3.1: In the definition of subcoalgebras (as well as left coideals, right coideals
and two-sided coideals), you write: ”is contained in J ⊗ J (resp. C ⊗ J , J ⊗ C,
J ⊗ C + C ⊗ J) is included in J”. Clearly, the ”is included in J” part of this
sentence should be removed.

• Proposition I.3.1, 1): I don’t think the product of C∗ is really the ”transpose”
of the coproduct of C. The coproduct of C is ∆ : C → C ⊗ C, and thus its
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transpose is ∆∗ : (C ⊗ C)∗ → C∗. To get the product of C∗, we have to compose
this with the injection C∗ ⊗ C∗ → (C ⊗ C)∗.

• Proposition I.3.1, 1): Replace ”co-unity” by ”co-unit”.

• Proof of Proposition I.3.1: Replace ”∆x ⊂ J ⊗ C + C ⊗ J” by ”∆x ∈
J ⊗ C + C ⊗ J”.

• Proposition I.3.2: I am not sure about this, but I think that this proposition
is false. More precisely, all the ”if” parts are correct (cf. Sweedler, Proposition
1.4.3 b) and further), but the ”only if” parts are not (or at least they don’t seem
correct to me). Also I think the words ”Dually we have the following” before this
proposition are misleading - this proposition does not follow from Proposition
I.3.1 by duality.

I think I have a counterexample to the ”only if” part: Let C be a connected
filtered coalgebra with PrimC (the space of primitive elements of C) infinite-
dimensional (for instance, take C to be the tensor Hopf algebra of a vector space
of dimension ≥ 2, or the shuffle Hopf algebra of an infinite-dimensional vector
space). Let (ei)i∈J be a basis of PrimC, let x be an object not in J , and let ex
be the unity 1 of C (of course, C, being connected filtered, has a unity). Then,
(ei)i∈J∪{x} is a basis of the subspace PrimC + k · 1 of C. Extend this basis to a
basis (ei)i∈I of C (with I ⊇ J ∪ {x}). Now define a gi ∈ C for every i ∈ I as
follows:

gi =

{
1, if i = x (in this case, ei = 1 as well);
1 + ei, if i 6= x

.

It is easy to see that (gi)i∈I is still a basis of C. Now, let (fi)i∈I be the dual
”basis” of C∗ to the basis (gi)i∈I of C (this means that fi is the projection on the
gi-coordinate for every i ∈ I); of course, (fi)i∈I is not really a basis, but at least
a linearly independent subset.

Now define a subspace K of C∗ by K = 〈fi | i ∈ I〉. Then, clearly, K⊥ = 0 is
a two-sided coideal of C (which also satisfies ε

(
K⊥) = 0, but this doesn’t even

matter, since you don’t require coideals to satisfy ε
(
K⊥) = 0). However, K is

not a subalgebra. This is seen as follows:

Every i ∈ J satisfies ∆ (gi) = gx⊗gi+gi⊗gx−gx⊗gx (in fact, this is just another
way to state ∆ (1 + ei) = 1⊗ (1 + ei) + (1 + ei)⊗ 1− 1⊗ 1, which in turn is just
another way to say that ei is primitive). Thus, (fx ∗ fx) (gi) = −1. Since this
holds for every i ∈ J , and J is infinite (because PrimC is infinite-dimensional),
this shows that fx ∗ fx cannot lie in K (since K is the space of all linear maps
C → k which are finite linear combinations of coordinate maps). This means
that K is not a subalgebra.

Or is it? I don’t feel particularly sure of any counterexamples I produce, as I
know that 50% of them are wrong.

• Proposition I.3.2: Replace ”rightt” by ”right”.

• I.3.1: I believe that the paragraph directly after Proposition I.3.2 (this is the
paragraph beginning with ”The linear dual (C ⊗ C)∗ naturally contains [...]”
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and ending with ”[...] implies that u is a unit”) should rather be placed before
Proposition I.3.1. It defines the algebra C∗ used in Propositions I.3.1 and I.3.2.

• I.3.1: In the definition of the tensor product of two coalgebras (in the very last
paragraph of page 13), you write: ”Let C and D be unital k-coalgebras”. The
”unital” should be ”co-unital” here. Also, in the same paragraph, ”co-unity”
should be ”co-unit”.

• I.3.2: When defining the notion of a subcomodule, you write: ”Φ (C) ⊂ C⊗N”.
This should be Φ (N) ⊂ C ⊗N .

• I.3.2: In the middle of page 14, the formula

(Φ⊗ I) ◦Φ (m) =
∑
(x)

m1:1⊗m1:2⊗m0 =
∑
(m)

m1⊗m0:1⊗m0:0 = (I ⊗∆) ◦Φ (m)

has three typos. It should be

(∆⊗ I)◦Φ (m) =
∑
(m)

m1:1⊗m1:2⊗m0 =
∑
(m)

m1⊗m0:1⊗m0:0 = (I ⊗ Φ)◦Φ (m) .

• Proposition I.3.3: ”if and only is” should be ”if and only if”.

• Proof of Theorem I.3.4: In this proof, you seem to assume in that M is a
right comodule (rather than a left one). (There is only one exception: that is
when you write ”Let us show that N is a left subcomodule of M”.)

• Proof of Theorem I.3.6: Here you write: ”E = C∗/N⊥ is a finite-dimensional
left module over C⊥”. Clearly you mean C∗ instead of C⊥.

• Proof of Lemma I.3.9: In the formula which defines the form fγ, replace the
word ”si” by ”if” (two times).

• Proof of Lemma I.3.9: At the very end of this proof, replace ”yγ in in D” by
”yγ is in D”.

• Proof of Proposition I.3.10: In this proof you seem to use that R is the direct
sum of the simple subcoalgebras of C. Why is that obvious? In my opinion, this
requires a further lemma: that any sum of pairwise distinct simple subcoalgebras
of C must be a direct sum. This, in turn, is a particular case of another theorem1:
that any sum of subcoalgebras of C all of whose pairwise intersections are 0 must
be a direct sum. This theorem is proven by reducing it to the case of finitely many
subcoalgebras, and then proving it by induction over the number of subcoalgebras
(using Lemma I.3.9 in the induction step).

• Proof of Proposition I.3.11: Replace ”(lemma I.2.8)” by ”(corollary I.2.10)”.

1which can be seen as a dual to the Chinese Remainder Theorem
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• Proof of Proposition I.3.12: I don’t think the equality

(X ∧ Y ) ∧ Z = X ∧ (Y ∧ Z) =
(
X⊥Y ⊥Z⊥)⊥

is that much obvious. The definition only yields (X ∧ Y )∧Z =

(((
X⊥Y ⊥)⊥)⊥ Z⊥

)⊥
and X ∧ (Y ∧ Z) =

(
X⊥

((
Y ⊥Z⊥)⊥)⊥)⊥, but it is not clear why these things

are the same as
(
X⊥Y ⊥Z⊥)⊥. Am I missing something?

Here is how I would prove Proposition I.3.12 1):
Let πX , πY and πZ be the canonical projections from C onto C�X, C�Y
and C�Z, respectively. Let πX∧Y be the canonical projection from C onto
C� (X ∧ Y ).
There is a well-known fact in linear algebra that if A, B, A′ and B′ are four
vector spaces and f : A → A′ and g : B → B′ are two linear maps, then
Ker (f ⊗ g) = (Ker f) ⊗ B + A ⊗ (Ker g). Applied to C, C, C�X, C�Y ,
πX and πY in lieu of A, B, A′, B′, f and g, this yields Ker (πX ⊗ πY ) =
(Ker πX)︸ ︷︷ ︸

=X

⊗C + C ⊗ (Ker πY )︸ ︷︷ ︸
=Y

= X ⊗ C + C ⊗ Y .

The definition of X ∧ Y rewrites as X ∧ Y = ∆−1 (X ⊗ C + C ⊗ Y ). Thus,

X∧Y = ∆−1

X ⊗ C + C ⊗ Y︸ ︷︷ ︸
=Ker(πX⊗πY )

 = ∆−1 (Ker (πX ⊗ πY )) = Ker ((πX ⊗ πY ) ◦∆) .

Thus the map (πX ⊗ πY )◦∆ : C → (C�X)⊗(C�Y ) factors through C� (X ∧ Y ).
In other words, there exists a map ∆ : C� (X ∧ Y ) → (C�X) ⊗ (C�Y ) such
that (πX ⊗ πY ) ◦ ∆ = ∆ ◦ πX∧Y . Moreover, this map ∆ is injective2. The map
∆⊗ id : (C� (X ∧ Y ))⊗ (C�Z) → (C�X)⊗ (C�Y )⊗ (C�Z) is therefore also
injective.
The diagram

C
∆

))RRRRRRRRRRRRRRRR

C ⊗ C
πX∧Y ⊗πZ //

∆⊗id

��

(C� (X ∧ Y ))⊗ (C�Z)

∆⊗id
��

C ⊗ C ⊗ C
πX⊗πY ⊗πZ // (C�X)⊗ (C�Y )⊗ (C�Z)

2Proof. Let ϕ ∈ C� (X ∧ Y ) be such that ∆ϕ = 0. Then, ϕ = πX∧Y (c) for some c ∈ C (since
πX∧Y is surjective). Hence,

∆ϕ = ∆ (πX∧Y (c)) =
(
∆ ◦ πX∧Y

)︸ ︷︷ ︸
=(πX⊗πY )◦∆

(c) = ((πX ⊗ πY ) ◦∆) (c) .

Thus, ∆ϕ = 0 becomes ((πX ⊗ πY ) ◦∆) (c) = 0 and hence c ∈ Ker ((πX ⊗ πY ) ◦∆) = X ∧ Y =
Ker πX∧Y , so that πX∧Y (c) = 0. Thus, ϕ = πX∧Y (c) = 0. We have therefore shown that every
ϕ ∈ C� (X ∧ Y ) such that ∆ϕ = 0 satisfies ϕ = 0. Thus, ∆ is injective.
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commutes. Hence,

Ker ((πX ⊗ πY ⊗ πZ) ◦ (∆⊗ id) ◦∆)

= Ker
((

∆⊗ id
)
◦ (πX∧Y ⊗ πZ) ◦∆

)
= Ker ((πX∧Y ⊗ πZ) ◦∆)(

since the map ∆⊗ id is injective, and thus composing with it
does not change the kernel

)
.

Now, applying X ∧ Y = Ker ((πX ⊗ πY ) ◦∆) to X ∧ Y and Z instead of X and
Y , we get (X ∧ Y ) ∧ Z = Ker ((πX∧Y ⊗ πZ) ◦∆). We conclude that

Ker ((πX ⊗ πY ⊗ πZ) ◦ (∆⊗ id) ◦∆) = Ker ((πX∧Y ⊗ πZ) ◦∆) = (X ∧ Y ) ∧ Z.

Similarly,

Ker ((πX ⊗ πY ⊗ πZ) ◦ (id⊗∆) ◦∆) = X ∧ (Y ∧ Z) .

Comparing these two equalities, we get (X ∧ Y ) ∧ Z = X ∧ (Y ⊗ Z) since
(∆⊗ id) ◦∆ = (id⊗∆) ◦∆. This proves Proposition I.3.12 1).

• I.3.4: In the definition of N ∧X (shortly before Proposition I.3.13), you write:

N ∧X = {x ∈M, Φx ∈ N ⊗ C + C ⊗X} .

The C ⊗X should be M ⊗X here.

• Proposition I.3.13: Replace ∧nM by ∧nR here.

• I.5: In the definition of a bialgebra, you need one more condition: the condition
that ε (1) = 1 3. (Normally this would follow from the condition that ε is
an algebra morphism, but apparently in your text ”algebra morphism” does not
mean ”unital algebra morphism”, and then it does not follow from this condition.
Also it does not follow from any of the four commutative diagrams on page 21.)

• I.6.1: In the first paragraph of I.6.1, replace ”map from kG × kG into kG” by
”map from kG × kG to kG” (since ”into” sounds like a claim that the map is
injective).

• I.6.2: Add a point after ”ε |V = 0”.

• Lemma I.6.2: First, replace S (H) ⊂ H by S (J) ⊂ J . Besides, the usual
definition of a ”Hopf ideal” involves a third condition: ε (J) = 0. However, this
condition is redundant in almost every case - the only exception is when J = H,
which brings us back to the question whether 0 should be considered a Hopf
algebra.

• End of proof of Proposition I.7.1: On page 25, replace L (H,H⊗H) by
L (H,H⊗H) (the third H should be calligraphic).

3Theoretically you could also want to exclude the ε (1) = 1 condition from the definition of a
bialgebra. The only difference it would make is that it would cause the zero space 0 to be a bialgebra
(and a Hopf algebra). But I think it is not common to consider 0 as a bialgebra (and you actually use
the condition ε (1) = 1 in the proof of Proposition I.7.1).
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• End of proof of Proposition I.7.1: On page 25, in the computation

((∆ ◦ S) ∗̃∆) (x) = [... several lines of computation ...]

= u ◦ ε (x)⊗ u ◦ ε (x) ,

the term u◦ε (x)⊗u◦ε (x) should be replaced by u◦ε (x1)⊗u◦ε (x2) (otherwise
it wouldn’t be linear in x).

• End of proof of Proposition I.7.1: On page 26, in the computation

(∆∗̃ (τ ◦ (S ⊗ S) ◦∆)) (x) = [... several lines of computation ...]

=

∑
(x)

x1Sx2

⊗ (u ◦ ε) (x)

= u ◦ ε (x)⊗ u ◦ ε (x) ,

the last two lines of this computation are incorrect (the terms should be linear
in x). I would replace them by

=
∑
(x)

x1ε (x2)Sx3 ⊗ 1 =

∑
(x)

x1Sx2

⊗ 1 = u ◦ ε (x)⊗ 1

= u ◦ ε (x1)⊗ u ◦ ε (x2) ,

• Proof of Proposition I.7.3: Replace S (x)− x by S (x) + x here.

• Proof of Proposition I.7.3: Replace 1⊗ (xy + yx) by 1⊗ (xy − yx) here.

• II.1: On page 27, I think it is worth a mention that every graded bialgebra
automatically satisfies 1 ∈ H0 and ε (Hn) = 0 for every n > 0. (More strongly,
every graded counital coalgebra C automatically satisfies ε (Cn) = 0 for every
n > 0, and every graded unital algebra A automatically satisfies 1 ∈ A0.) This
is used when you say that Ker ε =

⊕
n≥1

Hn for any connected graded bialgebra H.

• Proposition II.1.1: Replace Hn by Hn.

• Proof of Proposition II.1.1: At the beginning of this proof, you write:
”Thanks to connectedness we clearly can write :

∆x = a (x⊗ 1) + b (1⊗ x) + ∆̃x

with a, b ∈ k and ∆̃x ∈ Ker ε ⊗ Ker ε. The co-unity property then tells us that,
with k ⊗H and H⊗ k canonically identified with H :

x = (ε⊗ I) (∆x) = bx

x = (I ⊗ ε) (∆x) = ax,

hence a = b = 1.”
This whole paragraph is slightly flawed. There is a typo (”co-unity” should be
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”co-unit”), but I am talking about something more serious: Connectedness does

not directly give us ∆x = a (x⊗ 1) + b (1⊗ x) + ∆̃x for some a, b ∈ k, but rather

gives us ∆x = u⊗ 1+1⊗ v+∆̃x for some u, v ∈ Hn. We do not yet know that u
and v are multiples of x; to see that, we need the counit property. Hence I would
rewrite the above paragraph as follows:
”Thanks to connectedness we clearly can write :

∆x = u⊗ 1 + 1⊗ v + ∆̃x

with u, v ∈ Hn and ∆̃x ∈ Ker ε⊗Ker ε. The co-unit property then tells us that,
with k ⊗H and H⊗ k canonically identified with H :

x = (ε⊗ I) (∆x) = v

x = (I ⊗ ε) (∆x) = u,

hence ∆x = x⊗ 1 + 1⊗ x+ ∆̃x.”

• Proof of Proposition II.1.1: Add a point between ”|x′|+ |x′′| = n” and ”We
easily compute :”.

• II.2: On page 29, in the definition of a ”filtered Hopf algebra”, I don’t understand
the meaning of the word ”characteristic” in ”a unit characteristic u : k → H”.

• II.2: On page 29, replace ”if x is an homogeneous element” by ”if x is a nonzero
homogeneous element”.

• Proposition II.2.1: Replace x ∈ Hn by x ∈ Hn ∩Ker ε. (Otherwise, x = 1 and
n = 1 is a counterexample.)

• Proof of Proposition II.2.1: I am not sure whether this proof is really a
”Straightforward adaptation of proof of proposition II.1.1”. For example, you
cannot apply the co-unit property as easily as you did in the proof of Proposition
II.1.1, since you don’t have ε (Hn) = 0 for n ≥ 1.
Here is what I think is a correct proof of Proposition II.2.1:
First, it is easy to see that any grouplike element of a filtered coalgebra must lie in
the 0-th part of the filtration.4 Applied to the grouplike element 1 of the filtered
coalgebra H, we get 1 ∈ H0. Note that we have not used the connectedness of H

4Proof. Let C be a filtered coalgebra with filtration (Cn)n≥0. Let g ∈ C be a grouplike element of
C. We must prove that g ∈ C0.

Since g ∈ C, there exists some n ≥ 0 such that g ∈ Cn. Let m be the smallest such n. Then,
g ∈ Cm, but g /∈ Cm−1, where we set C−1 = 0.

If m = 0, then we are done, so let us assume that m > 0. Since g ∈ Cm, we have

∆ (g) ∈ ∆ (Cm) ⊆
m∑

i=0

Ci ⊗ Cm−i =
m−1∑
i=0

Ci︸︷︷︸
⊆Cm−1

⊗Cm−i︸ ︷︷ ︸
⊆Cm

+Cm ⊗ C0︸︷︷︸
⊆Cm−1

⊆
m−1∑
i=0

Cm−1 ⊗ Cm + Cm ⊗ Cm−1 ⊆ Cm−1 ⊗ Cm + Cm ⊗ Cm−1

(since Cm−1 ⊗ Cm is a k-vector space). If π denotes the canonical projection Cm → Cm�Cm−1, we
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yet.
Next, define a subspace H+i of Hi by H+i = Hi ∩ Ker ε for every i > 0. It is
easy to see that Hi = H0 +H+i for every i > 0 (because every x ∈ Hi satisfies
x = ε (x) · 1︸ ︷︷ ︸

∈H0

+ (x− ε (x) · 1)︸ ︷︷ ︸
∈Hi∩Ker ε=H+i

∈ H0 +H+i). Now every n ≥ 1 satisfies

∆ (Hn) ⊆
∑
p+q=n

Hp ⊗Hq = H0 ⊗Hn +
∑

p+q=n;
p6=0; q 6=0

Hp ⊗Hq +Hn ⊗H0.

Since every p 6= 0 and q 6= 0 with p+ q = n satisfy

Hp︸︷︷︸
=H0+H+p

⊗ Hq︸︷︷︸
=H0+H+q

=
(
H0 +H+p

)
⊗
(
H0 +H+q

)
= H0 ⊗ H0︸︷︷︸

⊆Hn

+H0 ⊗ H+q︸︷︷︸
⊆Hq⊆Hn

+ H+p︸︷︷︸
⊆Hp⊆Hn

⊗H0 +H+p ⊗H+q

⊆ H0 ⊗Hn +H0 ⊗Hn +Hn ⊗H0 +H+p ⊗H+q,

this becomes

∆ (Hn) ⊆ H0 ⊗Hn +
∑

p+q=n;
p6=0; q 6=0

(
H0 ⊗Hn +H0 ⊗Hn +Hn ⊗H0 +H+p ⊗H+q

)
+Hn ⊗H0

⊆ Hn ⊗H0 +H0 ⊗Hn +
∑

p+q=n;
p6=0; q 6=0

H+p ⊗H+q.

Thus, for every n ≥ 1 and every x ∈ Hn ∩Ker ε, we can write

∆x = u⊗ 1 + 1⊗ v + ∆̃x

for some u, v ∈ Hn and ∆̃x ∈
∑

p+q=n;
p6=0; q 6=0

H+p ⊗H+q (here we are using, for the first

time, that H is connected). The co-unit property now tells us that, with k ⊗H
and H⊗ k canonically identified with H, we have

x = (ε⊗ I) (∆x) = v + ε (u) and

x = (I ⊗ ε) (∆x) = u+ ε (v)

(here we are using that ∆̃x ∈
∑

p+q=n;
p6=0; q 6=0

H+p ⊗ H+q, so that (ε⊗ I)
(
∆̃x
)

= 0

and (I ⊗ ε)
(
∆̃x
)

= 0), and therefore u = x − ε (v) and v = x − ε (u). Hence,

thus have

(π ⊗ π) (∆ (g)) ∈ (π ⊗ π) (Cm−1 ⊗ Cm + Cm ⊗ Cm−1) ⊆ π (Cm−1)︸ ︷︷ ︸
=0

⊗π (Cm)+π (Cm)⊗π (Cm−1)︸ ︷︷ ︸
=0

= 0,

so that (π ⊗ π) (∆ (g)) = 0. But since ∆ (g) = g ⊗ g (since g is grouplike), we have (π ⊗ π) (∆ (g)) =
(π ⊗ π) (g ⊗ g) = π (g) ⊗ π (g) 6= 0 (since π (g) 6= 0, which is because g /∈ Cm−1), and thus we get
a contradiction to (π ⊗ π) (∆ (g)) = 0. This contradiction shows that the case m > 0 cannot occur.
Thus, m = 0, so that g ∈ Cm = C0, qed.
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∆x = u⊗1+1⊗v+∆̃x rewrites as ∆x = x⊗1+1⊗x−(ε (u) + ε (v)) 1⊗1+∆̃x.
Applying ε ⊗ I to this equation, we get x = ε (x) 1 + x − (ε (u) + ε (v)) 1 (since

(ε⊗ I)
(
∆̃x
)

= 0), which rewrites as ε (x) = ε (u)+ ε (v). Hence, if x ∈ H+n, we

have ε (u)+ε (v) = ε (x) = 0, so that ∆x = x⊗1+1⊗x−(ε (u) + ε (v)) 1⊗1+∆̃x

simplifies to ∆x = x⊗ 1 + 1⊗ x+ ∆̃x.
We thus have proven that every x ∈ H+n for every n > 0 satisfies ∆x = x ⊗
1 + 1⊗ x+ ∆̃x with ∆̃x ∈

∑
p+q=n;
p6=0; q 6=0

H+p ⊗H+q. The rest of the proof now indeed

proceeds analogously to the proof of Proposition II.1.1 (except that we don’t use
homogeneity).

• Proof of Theorem II.2.2: In the first line of this proof, replace S (Hn) ⊂ Hn

by S (Hn) ⊂ Hn (with calligraphic H).

• Proof of Theorem II.2.2: In the second paragraph of this proof, replace ”in-
clusion SH0 ⊂ H0” by ”inclusion SH0 ⊂ H0”.

• Proof of Theorem II.2.2: In the second paragraph of this proof, you write

Hn = H0 ∧Hn−1 = Hn−1 ∧H0.

The last H should be calligraphic here.

• Proof of Theorem II.2.2: In the second paragraph of this proof, replace the
formula

Sx =
∑
(x)

Sx2 ⊗ Sx1

by

∆ (Sx) =
∑
(x)

Sx2 ⊗ Sx1.

• Proof of Theorem II.2.2: In the second paragraph of this proof, replace ”its
is obviously” by ”it is obviously”.

• Remark 2 after the proof of Theorem II.2.2: Replace ”subcoagebra” by
”subcoalgebra”.

• Proof of Proposition II.3.1: You write:

(e− ϕ)∗k (x) = mA,k−1 (ϕ⊗ · · · ⊗ ϕ) ∆̃k−1 (x) .

This should be

(e− ϕ)∗k (x) = mA,k−1 ((e− ϕ)⊗ · · · ⊗ (e− ϕ)) ∆k−1 (x)

= mA,k−1 ((−ϕ)⊗ · · · ⊗ (−ϕ)) ∆̃k−1 (x) .
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• II.3: Between the proof of Corollary II.3.2 and Proposition II.3.3, you write:
”For any x ∈ Hn the exponential :

e∗α (x) =
∑
k≥0

α∗k (x)

k!

is a finite sum (ending up at k = n).” You could add ”and any α ∈ g” after ”For
any x ∈ Hn” here, in order to make it clear what α is.

• Proposition II.3.3: In part 2), replace ”then” by ”the”.

• II.3: On page 32, in the definition of Ln, you falsely write Ln instead of Ln. The
same mistake is repeated on page 33, in the last line of II.3 (”the Lie algebras
g/Ln”). Also the same mistake, this time is repeated in Proposition II.3 (this
time the Lp, Lq and Lp+q should be Lp, Lq and Lp+q).

• II.4: When you define ”characters”, replace ”algebra morphisms” by ”unital
algebra morphisms” (otherwise, 0 would be a character, contradicting Proposition
II.4.1 3)).

• Proof of Proposition II.4.1: In the commutative diagram on page 34, replace
⊗A by A⊗A.

• Proof of Proposition II.4.1: This proof ends with the equation

τ−1 (x) =
∑
k≥0

(e− τ)∗k (x) .

To keep notations consistent, I believe you should replace τ−1 by τ ∗−1 here.

• A remark about Proposition II.4.1: The following statement generalizes Propo-
sition II.4.1 2):
If H is a Hopf algebra over a field k (not necessarily of characteristic 0), and A
is a k-algebra, and if ξ : H → A is a cocycle which has an inverse with respect
to the convolution, then this inverse ξ∗−1 is a cocycle as well.
Proof of this statement: Define a k-linear map Φ1 : H⊗H → A by

Φ1 (x⊗ y) = ξ (xy) for every x ∈ H and y ∈ H.

Define a k-linear map Φ2 : H⊗H → A by

Φ2 (x⊗ y) = ξ∗−1 (xy) for every x ∈ H and y ∈ H.

Define a k-linear map Φ3 : H⊗H → A by

Φ3 (x⊗ y) = ξ∗−1 (yx) for every x ∈ H and y ∈ H.
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Then, every x ∈ H and y ∈ H satisfy

(Φ1 ∗ Φ2) (x⊗ y) =
∑
(x⊗y)

Φ1 ((x⊗ y)1) Φ2 ((x⊗ y)2) =
∑
(x)(y)

Φ1 (x1 ⊗ y1)︸ ︷︷ ︸
=ξ(x1y1)

Φ2 (x2 ⊗ y2)︸ ︷︷ ︸
=ξ∗−1(x2y2)

=
∑
(x)(y)

ξ (x1y1) ξ
∗−1 (x2y2) =

∑
(xy)

ξ ((xy)1) ξ
∗−1 ((xy)2)

=
(
ξ ∗ ξ∗−1

)︸ ︷︷ ︸
=e

(xy) = e (xy) = e (x⊗ y) ,

so that Φ1 ∗ Φ2 = e. Also, every x ∈ H and y ∈ H satisfy

(Φ3 ∗ Φ1) (x⊗ y) =
∑
(x⊗y)

Φ3 ((x⊗ y)1) Φ1 ((x⊗ y)2) =
∑
(x)(y)

Φ3 (x1 ⊗ y1)︸ ︷︷ ︸
=ξ∗−1(y1x1)

Φ1 (x2 ⊗ y2)︸ ︷︷ ︸
=ξ(x2y2)=ξ(y2x2)

(since ξ is a cocycle)

=
∑
(x)(y)

ξ∗−1 (y1x1) ξ (y2x2) =
∑
(yx)

ξ∗−1 ((yx)1) ξ ((yx)2)

=
(
ξ∗−1 ∗ ξ

)︸ ︷︷ ︸
=e

(yx) = e (yx) = e (y) e (x) = e (x⊗ y) ,

so that Φ3 ∗Φ1 = e. Thus, Φ2 = e︸︷︷︸
=Φ3∗Φ1

∗Φ2 = Φ3 ∗Φ1 ∗ Φ2︸ ︷︷ ︸
=e

= Φ3 ∗ e = Φ3. Thus,

every x ∈ H and y ∈ H satisfy ξ∗−1 (xy) = Φ2︸︷︷︸
=Φ3

(x⊗ y) = Φ3 (x⊗ y) = ξ∗−1 (yx).

In other words, ξ∗−1 is a cocycle, qed.

• Proof of Proposition II.4.2: Replace
∑

(x)(y)

α (x1x2) β (y1y2) by
∑

(x)(y)

α (x1y1) β (x2y2).

Also, one line further below, replace e (x2)α (y2) by e (x2) β (y2).

• Proof of Proposition II.4.2: I fear you don’t really prove that the exponential
restricts to a bijection from g1 onto G1; instead you only show that it maps g1

into G1 (but not necessarily surjectively). Do you have an easy proof for the fact
that it restricts to a bijection from g1 onto G1 ? Here is the only proof I have:
Proof. You have shown that the exponential maps g1 into G1. Now it remains to
show that any α ∈ g satisfying e∗α ∈ G1 must lie in g1.
So consider some α ∈ g satisfying e∗α ∈ G1.
Any two elements β and γ of g which commute satisfy e∗(β+γ) = e∗β · e∗γ. 5

Using this fact and induction over n, we can prove the following: Every m ∈ N
satisfies e∗mα = (e∗α)m. Thus, e∗mα ∈ G1 for every m ∈ N (since e∗α ∈ G1 and
since G1 is a group).
Now let x ∈ H and y ∈ H be arbitrary. We will prove that α (xy) = e (x)α (y) +
α (x) e (y).
Since x ∈ H, there exists some i ∈ N such that x ∈ Hi. Consider this i. Then,

the power series e∗mα (x) =
∑
k≥0

(mα)∗k (x)

k!
ends up at k = i.

5This can be proven by the same argument as the classical one used to prove that exp (x + y) =
expx · exp y for two reals x and y (where exp is defined by the power series).
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Since y ∈ H, there exists some j ∈ N such that y ∈ Hj. Consider this j. Then,

the power series e∗mα (y) =
∑
k≥0

(mα)∗k (y)

k!
ends up at k = j.

Also, x︸︷︷︸
∈Hi

y︸︷︷︸
∈Hj

∈ HiHj ⊆ Hi+j. Thus, the power series e∗mα (y) =
∑
k≥0

(mα)∗k (y)

k!

ends up at k = i+ j.
Every m ∈ N satisfies

e∗mα (xy) = e∗mα (x) e∗mα (y) (since e∗mα ∈ G1, so that e∗mα is a character)

=
∑
k≥0

(mα)∗k (x)

k!

∑
k≥0

(mα)∗k (y)

k!
(by the definition of e∗mα)

=
∑

k≥0, `≥0

(mα)∗k (x) · (mα)∗` (y)

k!`!︸ ︷︷ ︸
=mk+`

α∗k (x) · α∗` (y)
k!`!

=
∑

k≥0, `≥0

mk+`α
∗k (x) · α∗` (y)

k!`!

=
∑
n≥0

mn
∑
k+`=n

α∗k (x) · α∗` (y)
k!`!

and thus∑
n≥0

mn
∑
k+`=n

α∗k (x) · α∗` (y)
k!`!

= e∗mα (xy) =
∑
k≥0

(mα)∗k (xy)

k!︸ ︷︷ ︸
=mk

α∗k (xy)

k!

(by the definition of e∗mα)

=
∑
k≥0

mkα
∗k (xy)

k!
=
∑
n≥0

mnα
∗n (xy)

n!
. (1)

Thus, the identity (1) holds for infinitely many distinct values of m ∈ A (be-
cause it holds for every m ∈ N, and because N injects into A 6). But (1)

is a polynomial identity in m, since both sums
∑
n≥0

mn
∑

k+`=n

α∗k (x) · α∗` (y)
k!`!

and

∑
n≥0

mnα
∗n (xy)

n!
end up at n = i+j (since every n > i+j satisfies

∑
k+`=n

α∗k (x) · α∗` (y)
k!`!

=

0 7 and
α∗n (xy)

n!
= 0 (since xy ∈ Hi+j)). Since this polynomial identity (1)

holds for infinitely many distinct values of m ∈ A, it must therefore hold as a

6Here we have used the condition that char k = 0.
7Proof. Let n > i + j be arbitrary. Any k and ` with k + ` = n satisfy at least one of the two

inequalities k > i and ` > j (since otherwise, we would have k ≤ i and ` ≤ j, so that k+ ` ≤ i+ j < n,
contradicting k + ` = n). But in each of these two cases we have α∗k (x) · α∗` (y) = 0 (in fact,
in the case k > i we have α∗k (x) = 0 (because x ∈ Hi), whereas in the case ` > j we have
α∗` (y) = 0 (because y ∈ Hj)). Thus, any k and ` with k + ` = n satisfy α∗k (x) · α∗` (y) = 0. Hence,∑
k+`=n

α∗k (x) · α∗` (y)
k!`!

=
∑

k+`=n

0
k!`!

= 0.
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formal polynomial identity, i. e., we must have∑
n≥0

Xn
∑
k+`=n

α∗k (x) · α∗` (y)
k!`!

=
∑
n≥0

Xnα
∗n (xy)

n!
(2)

as an identity between elements of the polynomial ring A [X]. But if two poly-
nomials are equal as elements of the polynomial ring A [X], their corresponding
coefficients must be equal to each other; therefore, we can compare coefficients

in (2) and conclude that every n ≥ 0 satisfies
∑

k+`=n

α∗k (x) · α∗` (y)
k!`!

=
α∗n (xy)

n!
.

Applying this to n = 1, we get
∑

k+`=1

α∗k (x) · α∗` (y)
k!`!

=
α∗1 (xy)

1!
. Since

∑
k+`=1

α∗k (x) · α∗` (y)
k!`!

=
α∗0 (x) · α∗1 (y)

0!1!
+
α∗1 (x) · α∗0 (y)

1!0!
=
e (x) · α (y)

1
+
α (x) · e (y)

1

= e (x)α (y) + α (x) e (y)

and
α∗1 (xy)

1!
= α (xy), this rewrites as e (x)α (y) + α (x) e (y) = α (xy). Since

this holds for any x ∈ H and y ∈ H, we thus conclude that α is a derivation. In
other words, α ∈ g, qed.

• Theorem II.5.1: Replace ”Ker ε into A−” by ”Ker ε to A−”. Also, replace ”H
into A+” by ”H to A+” (this includes replacing the A by a calligraphic A).

• Proof of Theorem II.5.1, part 1): In the ”easy computation” you make in or-

der to check ϕ+ = ϕ−∗ϕ, remove the point after (I − π)

(
ϕ (x) +

∑
(x)

ϕ− (x′)ϕ (x′′)

)
.

• Proof of Theorem II.5.1: The proof of part 1) of this theorem is not complete:
it is not clear whether the recurrence equation

ϕ− (x) = −π

ϕ (x) +
∑
(x)

ϕ− (x′)ϕ (x′′)

 (3)

defining the function ϕ− is ”stable” in the sense that if we have take some x ∈ Hn,
then we get one and the same value of ϕ− (x) no matter whether we treat x as
an element of Hn and apply (3) n times or we treat x as an element of Hn+1 and
apply (3) n+ 1 times.
Here is how I would fix this proof:
Proof of part 1) of Theorem II.5.1: For every n ∈ N, let H+n be the subspace
Hn ∩Ker ε of Ker ε. It is easy to see that Ker ε =

⋃
n≥0

H+n and H+0 = 0.

For every n ∈ N we will now define two maps ϕn− : H+n → A and ϕn+ : H+n →
A. We do this by induction over n:
For n = 0, define both maps ϕn− and ϕn+ to be the zero map (this is the only
choice anyway, since H+0 = 0).
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Let m ∈ N. Assume that we already have defined two maps ϕm− : H+m → A
and ϕm+ : H+m → A. Then we define two maps ϕ(m+1)− : H+(m+1) → A and
ϕ(m+1)+ : H+(m+1) → A by

ϕ(m+1)− (x) = −π

ϕ (x) +
∑
(x)

ϕm− (x′)ϕ (x′′)

 for every x ∈ H+(m+1)

(4)
and

ϕ(m+1)+ (x) = (I − π)

ϕ (x) +
∑
(x)

ϕm− (x′)ϕ (x′′)

 for every x ∈ H+(m+1),

(5)
respectively.8

Now we will prove that every n ∈ N satisfies the three equations

ϕ(n+1)− |H+n = ϕn−, (6)

ϕ(n+1)+ |H+n = ϕn+, (7)

ϕn+ = ϕn− ∗ ϕ. (8)

(The last of these equations is supposed to mean that every x ∈ H+n satisfies
ϕn+ (x) =

∑
(x)

ϕn− (x1)ϕ (x2).)

We will do this by induction over n: The induction base (the case n = 0) is
trivial since H0 = 0. Now to the induction step: Consider some positive m ∈ N.
Assume that the equations (6), (7), (8) are all proven for n = m− 1. Now let us
prove (6), (7), (8) for n = m.
Since the equations (6), (7), (8) are all proven for n = m−1, we have ϕm− |H+(m−1)=
ϕ(m−1)−, ϕm+ |H+(m−1)= ϕ(m−1)+ and ϕ(m−1)+ = ϕ(m−1)− ∗ ϕ.
Let x ∈ Hm be arbitrary. Then,

(
ϕ(m+1)− |H+m

)
(x) = ϕ(m+1)− (x) = −π

ϕ (x) +
∑
(x)

ϕm− (x′)ϕ (x′′)

 .

Since x ∈ Hm yields
∑
(x)

x′ ⊗ x′′ ∈ H+(m−1) ⊗ H 9, we can assume that x′ ∈

8This definition rests on the fact that every x ∈ H+(m+1) satisfies
∑
(x)

x′ ⊗ x′′ = ∆̃x ∈∑
p+q=m+1;
p6=0; q 6=0

H+p︸︷︷︸
⊆H+m

⊗H+q︸︷︷︸
⊆H

⊆
∑

p+q=m+1;
p6=0; q 6=0

H+m ⊗H ⊆ H+m ⊗H.

9In fact,
∑
(x)

x′ ⊗ x′′ = ∆̃x ∈
∑

p+q=m;
p6=0; q 6=0

H+p︸︷︷︸
⊆H+(m−1)

⊗H+q︸︷︷︸
⊆H

⊆
∑

p+q=m;
p6=0; q 6=0

H+(m−1) ⊗H ⊆ H+(m−1) ⊗H.
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H+(m−1) in this equation, and thus we get

(
ϕ(m+1)− |Hm

)
(x) = −π

ϕ (x) +
∑
(x)

ϕm− (x′)︸ ︷︷ ︸
=(ϕm−|H+(m−1))(x′)

(since x′∈H+(m−1))

ϕ (x′′)


= −π

ϕ (x) +
∑
(x)

(ϕm− |H+(m−1))︸ ︷︷ ︸
=ϕ(m−1)−

(x′)ϕ (x′′)


= −π

ϕ (x) +
∑
(x)

ϕ(m−1)− (x′)ϕ (x′′)

 .

But comparing this to

ϕm− (x) = −π

ϕ (x) +
∑
(x)

ϕ(m−1)− (x′)ϕ (x′′)


(by (4), applied to m− 1 instead of m) ,

we obtain
(
ϕ(m+1)− |H+m

)
(x) = ϕm− (x). Since this holds for every x ∈ Hm,

we thus have showed that ϕ(m+1)− |H+m= ϕm−. In other words, we proved (6)
for n = m. Similarly to our proof of ϕ(m+1)− |H+m= ϕm−, we can show that
ϕ(m+1)+ |H+m= ϕm+. Thus, we proved (7) for n = m. To complete the induction
step, we now need to verify (8) for n = m.
Let x ∈ Hm. Since ϕm− = ϕ(m+1)− |H+m , we get

ϕm− (x) =
(
ϕ(m+1)− |H+m

)
(x) = ϕ(m+1)− (x) = −π

ϕ (x) +
∑
(x)

ϕm− (x′)ϕ (x′′)

 .

But since ϕm+ = ϕ(m+1)+ |H+m , we have

ϕm+ (x) =
(
ϕ(m+1)+ |H+m

)
(x) = ϕ(m+1)+ (x) = (I − π)

ϕ (x) +
∑
(x)

ϕm− (x′)ϕ (x′′)


= ϕ (x) +

∑
(x)

ϕm− (x′)ϕ (x′′)− π

ϕ (x) +
∑
(x)

ϕm− (x′)ϕ (x′′)


= ϕ (x) +

∑
(x)

ϕm− (x′)ϕ (x′′) +

−π
ϕ (x) +

∑
(x)

ϕm− (x′)ϕ (x′′)


︸ ︷︷ ︸

=ϕm−(x)

= ϕ (x) +
∑
(x)

ϕm− (x′)ϕ (x′′) + ϕm− (x) =
∑
(x)

ϕm− (x1)ϕ (x2) = (ϕm− ∗ ϕ) (x) .
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Since this is proven for every x ∈ Hm, we conclude that ϕm+ = ϕm− ∗ ϕ. Thus,
(8) is verified for n = m.
We have thus proven the three equations (6), (7), (8) for n = m. This completes
the induction step, and thus we have proven (6), (7), (8) for all n ∈ N.
Note that I − π is a projection onto A+ (since π is a projection parallel to A+).
For every x ∈ Ker ε, let N (x) be the smallest m ∈ N satisfying x ∈ Hm.
Now, let us define a map ϕ∞− : Ker ε→ A by setting

ϕ∞− (x) = ϕ(N(x))− (x) for every x ∈ Ker ε.

Then, (6) shows that

ϕ∞− (x) = ϕm− (x) for every x ∈ Ker ε and every m ∈ N satisfying x ∈ Hm.

Similarly, let us define a map ϕ∞+ : Ker ε→ A by setting

ϕ∞+ (x) = ϕ(N(x))+ (x) for every x ∈ Ker ε.

Then, (7) shows that

ϕ∞+ (x) = ϕm+ (x) for every x ∈ Ker ε and every m ∈ N satisfying x ∈ Hm.

Now (8) proves that ϕ∞+ = ϕ∞− ∗ ϕ.
We now extend the map ϕ∞− : Ker ε → A to a map ϕ− : H → A by setting
ϕ− (1) = 1A. Similarly, we extend the map ϕ∞+ : Ker ε → A to a map ϕ+ :
H → A by setting ϕ+ (1) = 1A. It is easy to see that ϕ+ = ϕ− ∗ ϕ (since
ϕ∞+ = ϕ∞− ∗ ϕ and since ϕ+ (1) = 1A = (ϕ− ∗ ϕ) (1)), so that ϕ = ϕ∗−1

− ∗ ϕ+.
Also, it is clear that ϕ− sends 1 to 1A and Ker ε to A− (the latter is because of
(4) and because π is a projection onto A−), and that ϕ+ sends H to A+ (this is
because of (5) and because I − π is a projection onto A+).
We have now proven the existence of the Birkhoff decomposition. To complete
the proof of Theorem II.5.1 part 1), we must now show that it is unique. To
show this, we assume that we have some elements ψ− and ψ+ of G satisfying
ϕ = ψ−1

− ∗ ψ+ such that ψ− sends 1 to 1A and Ker ε to A−, and such that ψ+

sends H to A+. Now let us prove that ψ− = ϕ− and ψ+ = ϕ+; this will clearly
prove the uniqueness of the Birkhoff decomposition.
To prove that ψ− = ϕ−, we will show by induction over n that ψ− |H+n= ϕn−
for every n ∈ N: The induction base (the case n = 0) is clear (again due to
H+0 = 0). Now to the induction step: Let m ∈ N be arbitrary. Assume that
ψ− |H+m= ϕm−. Let us now show that ψ− |H+(m+1)= ϕ(m+1)−.
Let x ∈ H+(m+1). Then,∑

(x)

x′ ⊗ x′′ = ∆̃x ∈
∑

p+q=m+1;
p6=0; q 6=0

H+p︸︷︷︸
⊆H+m

⊗H+q︸︷︷︸
⊆H

⊆
∑

p+q=m+1;
p6=0; q 6=0

H+m ⊗H ⊆ H+m ⊗H.

We can thus WLOG assume that x′ ∈ H+m. On the other hand, ψ− (x) ∈ A−
(since x ∈ H+(m+1) ⊆ Ker ε and ψ− (Ker ε) ⊆ A−), so that π (ψ− (x)) = ψ− (x)
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(because π is a projection onto A−). Besides, ψ+ (x) ∈ A+, and thus π (ψ+ (x)) =
0 (since π is a projection parallel to A+). But since ψ+ = ψ− ∗ ϕ (because
ϕ = ψ−1

− ∗ ψ+), we have

ψ+ (x) = (ψ− ∗ ϕ) (x) =
∑
(x)

ψ− (x1)ϕ (x2) = ψ− (x) + ϕ (x) +
∑
(x)

ψ− (x′)︸ ︷︷ ︸
=(ψ−|H+m)(x′)

(since x′∈H+m)

ϕ (x′′)

= ψ− (x) + ϕ (x) +
∑
(x)

(ψ− |H+m)︸ ︷︷ ︸
=ϕm−

(x′)ϕ (x′′) = ψ− (x) + ϕ (x) +
∑
(x)

ϕm− (x′)ϕ (x′′) .

Thus

π (ψ+ (x)) = π

ψ− (x) + ϕ (x) +
∑
(x)

ϕm− (x′)ϕ (x′′)


= π (ψ− (x))︸ ︷︷ ︸

=ψ−(x)

+π

ϕ (x) +
∑
(x)

ϕm− (x′)ϕ (x′′)


= ψ− (x) + π

ϕ (x) +
∑
(x)

ϕm− (x′)ϕ (x′′)

 .

Since π (ψ+ (x)) = 0, this becomes 0 = ψ− (x) + π

(
ϕ (x) +

∑
(x)

ϕm− (x′)ϕ (x′′)

)
,

so that

ψ− (x) = −π

ϕ (x) +
∑
(x)

ϕm− (x′)ϕ (x′′)

 = ϕ(m+1)− (x) .

Since this holds for every x ∈ H+(m+1), we thus conclude that ψ− |H+(m+1)=
ϕ(m+1)−. This completes the induction.
We thus have shown that ψ− |H+n= ϕn− for every n ∈ N. By the construction
of ϕ∞−, this yields that ψ− |Ker ε= ϕ∗−. This means that the maps ψ− and ϕ−
coincide on Ker ε. Since they also coincide on k·1, this yields ψ− = ϕ−. Analogous
arguments show that ψ+ = ϕ+. This completes the proof of the uniqueness of
the Birkhoff decomposition. Thus, part 1) of Theorem II.5.1 is finally proven.

• Proof of Theorem II.5.1: On page 36, you write: ”The same property for τ+
comes then from proposition II.3.1.” Maybe you mean Proposition II.4.1 instead
of II.3.1 here?

• Proof of Theorem II.5.1: On page 36, you prove τ− (xy) = τ− (yx) by de-
composing ∆ (xy) using Sweedler’s notation. This decomposition is only correct
when x and y lie in Ker ε. (Fortunately, it is enough to prove τ− (xy) = τ− (yx)
for x and y lying in Ker ε, because it is trivially true when x or y lies in k · 1.)
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• Proof of Theorem II.5.1: On page 37, you write ”withX = χ (x)−
∑

(x) χ− (x′)χ (x′′)

and Y = χ (y) −
∑

(y) χ− (y′)χ (y′′)” (during the proof of assertion 3)). This

should be ”withX = χ (x)+
∑

(x) χ− (x′)χ (x′′) and Y = χ (y)+
∑

(y) χ− (y′)χ (y′′)”.

• Remark at the end of II.5: Remove the word ”recursively”: the current
definition of b is not recursive at all. Besides, ϕ− = −π ◦ b (ϕ) should probably
be replaced by ϕ− = e−π ◦ b (ϕ), unless you want it to hold on Ker ε only (since
ϕ− (1) = 1A /∈ π (A)).

• II.6: At the very end of page 39, you write: ”K. Ebrahimi-Fard, L. Guo and D.
Kreimer derive in [EGK2] two identities involving the Bogoliubov character :

e∗−R(χR(X)) = R
(
b
(
e∗X
))
, e∗

eR(χR(X)) = −R̃
(
b
(
e∗X
))
.

” I have not read [EGK2], but I think that by applying the uniqueness of the
Birkhoff decomposition and the (corrected!) version of the Remark at the end of
II.5 (”corrected” in the sense that ϕ− = −π◦b (ϕ) is replaced by ϕ− = e−π◦b (ϕ)),
I get two slightly different identities:

e∗−R(χR(X)) = e−R
(
b
(
e∗X
))
, e∗

eR(χR(X)) = R̃
(
b
(
e∗X
))
.

• Remark at the end of II.6: What do you mean by ”Rota-Baxter identity for
R just guarantees that equation (**) gives a Birkhoff decomposition”? How do
you define a Birkhoff decomposition when there is no projection π but just an
operator R satisfying Rota-Baxter?

• II.7: Replace ”fuction” by ”function”.

• II.8: On the first line of II.8, you speak of ”biderivation”. What does ”bideriva-
tion” mean? I used to understand this word as ”derivation and coderivation
at the same time”, but the meaning of ”derivation” that makes Y a derivation
(and makes ϕ 7→ ϕ ◦ Y a derivation of (L (H,A) , ∗) in Lemma II.8.1) is differ-
ent from the meaning of ”derivation” in II.4, so you might want to add a remark
about these two meanings (the first one defines a derivation as a map f satisfying
f (xy) = xf (y) + f (x) y, whereas the second one defines a derivation as a map
f satisfying f (xy) = e (x) f (y) + f (x) e (y)) and which of them is used at what
place. Also, you have never defined what a coderivation is.

• II.8: Before Lemma II.8.1, you define a map θt. Maybe you should add that t is
assumed to be an element for which ent makes sense, e. g., a complex number,
or an element of a maximal ideal in a complete local ring.

• Lemma II.8.2: This lemma is not completely proved in the text preceding it.
What remains to be proven is that if α is a derivation of H with values in A,
then α ◦ Y −1 is a derivation of H with values in A as well.
Here is a proof for this: Assume that α is a derivation of H with values in
A. Now, in order to prove that α ◦ Y −1 is a derivation of H with values in
A, we let x and y be two elements of H. We must then prove the equation
(α ◦ Y −1) (xy) = e (x) (α ◦ Y −1) (y) + (α ◦ Y −1) (x) e (y).
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Since this equation is linear in x and y, we can WLOG assume that x and y are
homogeneous. We now distinguish between four cases:
Case 1: We have |x| > 0 and |y| > 0.
Case 2: We have |x| = 0 and |y| > 0.
Case 3: We have |y| = 0 and |x| > 0.
Case 4: We have |x| = 0 and |y| = 0.
Let us consider Case 1 first. In this case,

(
α ◦ Y −1

)
(xy) = α

Y
−1 (xy)︸ ︷︷ ︸

=
1

|xy|
xy

 =
1

|xy|
α (xy)︸ ︷︷ ︸

=e(x)α(y)+α(x)e(y)
(since α is a derivation)

=
1

|xy|

 e (x)︸︷︷︸
=0 (since |x|>0)

α (y) + α (x) e (y)︸︷︷︸
=0 (since |y|>0)


=

1

|xy|
(0α (y) + α (x) 0) = 0

and

e (x)︸︷︷︸
=0 (since |x|>0)

(
α ◦ Y −1

)
(y)+

(
α ◦ Y −1

)
(x) e (y)︸︷︷︸

=0 (since |y|>0)

= 0
(
α ◦ Y −1

)
(y)+

(
α ◦ Y −1

)
(x) 0 = 0,

so that (α ◦ Y −1) (xy) = e (x) (α ◦ Y −1) (y)+(α ◦ Y −1) (x) e (y) is proven in Case
1.
Let us now consider Case 2. In this case,

(
α ◦ Y −1

)
(xy) = α

Y
−1 (xy)︸ ︷︷ ︸

=
1

|xy|
xy

 =
1

|xy|
α (xy)︸ ︷︷ ︸

=e(x)α(y)+α(x)e(y)
(since α is a derivation)

=
1

|xy|

e (x)α (y) + α (x) e (y)︸︷︷︸
=0 (since |y|>0)



=
1

|xy|
(e (x)α (y) + α (x) 0) =

1

|xy|
e (x)α (y) =

1

|y|
e (x)α (y)since |xy| = |x|︸︷︷︸

=0

+ |y| = |y|


and

e (x)
(
α ◦ Y −1

)
(y) +

(
α ◦ Y −1

)
(x) e (y)︸︷︷︸

=0 (since |y|>0)

= e (x)
(
α ◦ Y −1

)
(y) +

(
α ◦ Y −1

)
(x) 0 = e (x)

(
α ◦ Y −1

)
(y)︸ ︷︷ ︸

=α(Y −1(y))=α

0@ 1

|y|
y

1A=
1

|y|
α(y)

=
1

|y|
e (x)α (y) ,
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so that (α ◦ Y −1) (xy) = e (x) (α ◦ Y −1) (y)+(α ◦ Y −1) (x) e (y) is proven in Case
2.
Similarly we can prove (α ◦ Y −1) (xy) = e (x) (α ◦ Y −1) (y) + (α ◦ Y −1) (x) e (y)
in Case 3.
In Case 4, the proof is left to the reader.
Thus, in all four cases, we have shown that (α ◦ Y −1) (xy) = e (x) (α ◦ Y −1) (y)+
(α ◦ Y −1) (x) e (y), so that we can conclude that α ◦ Y −1 is a derivation, qed.

• Remark at the end of II.8: The comment that ”any other value of Y −1 (1)
would give the same result” is correct only as long as this value of Y −1 (1) is still
supposed to be a scalar multiple of 1.

• II.9.1: You write: ”and we extend ∆ to an algebra isomorphism”. You mean
”homomorphism”, not ”isomorphism”.

• II.9.1: It would be useful to add that this Hopf algebra N is isomorphic to the
symmetric Hopf algebra on the k-module kP (where P is the set of all primes) by
the isomorphism

N → kP;

en 7→
∑

p prime divisor of n

(multiplicity of p in n) ·
(
basis vector of kP corresponding to p

)
.

• II.9.3: The definition you give for the notion of a ”planar rooted tree” confused
me. If it is taken literally, two planar graphs are considered different if they differ
in the position of their vertices on the plane; for instance, two planar rooted trees
consisting of one vertex each are different if these vertices are located at different
points in the plane. I believe this is not what you want to achieve. After having
looked up some definitions of ”planar rooted tree” on the internet, I would say
I prefer the purely combinatorial definition: A planar rooted tree is an oriented
tree (this means an oriented connected graph with no oriented cycles such that
only one vertex - the root - has only outgoing edges, whereas every other vertex
has exactly one incoming edge) along with, for every vertex v of the tree, a linear
order on the set of children of v (here, a ”child” means the target of an outgoing
edge from v). When we draw a planar rooted tree on plane, we have to start
with the root, and at each step choose a vertex already drawn and add all of its
children; we should do it in such a way that the lowest child (with respect to the
linear order) is drawn on the very left, the second lowest child is the second from
the left, and so on, and the highest child is drawn on the very right.
Also, when you say ”Let T be the set of planar rooted trees”, you mean ”Let T
be the set of planar rooted trees up to isomorphism”.
Also, it should be mentioned that a ”planar rooted forest” means a finite (possibly
empty) sequence of planar rooted trees. This means that changing the order of
the trees in a planar rooted forest changes the forest.

• II.9.3: You write: ”The trunk of a tree is a tree”. This is only true if the cut is
not the empty cut (since there is no tree with 0 vertices).
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• II.9.3: You write: ”and let Adm∗ (F ) the set of elementary cuts disregarding the
empty cut and the total cut”. You mean ”admissible” rather than ”elementary”
here.

• II.9.3: I would prefer to have a formal definition of a notion of a ”cut”, partic-
ularly because there is a very simple one:
- A cut of a forest F denotes a pair (A,B) where A and B are two subsets of
V (F ) (the set of the vertices of F ) such that A ∩ B = ∅ and A ∪ B = V (F ).
The trunk of F with respect to this cut is then defined as the forest indA (F ),
and the crown of F with respect to this cut is defined as the forest indB (F ).
Here, whenever S is a subset of V (F ), we denote by indS (F ) the induced sub-
graph of F on the vertex set S.
With this definition, we can reformulate the definitions of admissible and elemen-
tary cuts, as well as of bi-admissible couples, in a more formal fashion:
- An admissible cut of a forest F denotes a cut (A,B) such that every path on F
(viewed as a sequence of vertices) has the form (some vertices in A, some vertices in B)
(where ”some” might also mean ”none”). Equivalently, an admissible cut of a
forest F denotes a cut (A,B) such that the set A is closed under taking ancestors
(i. e., every ancestor of an element of A lies in A) and the set B is closed under
taking descendants (i. e., every descendant of an element of B lies in B).
- An elementary cut of a forest F denotes a cut (A,B) such thatB = (the set of all descendants of v)
for some v ∈ V (F ). Here, v is considered its own descendant.
- A bi-admissible couple means a triple (A1, A2, A3) where A1, A2 and A3 are
three subsets of V (F ) (the set of the vertices of F ) such that

Ai ∩ Aj = ∅ for all i, j ∈ {1, 2, 3} with i 6= j

and A1∪A2∪A3 = V (F ), and such that every i, j ∈ {1, 2, 3}, every vertex v ∈ Ai
and every descendant w ∈ Aj of v satisfy i ≤ j. The trunk of F with respect
to this bi-admissible couple is defined as the forest indA (F ), the middle of F
with respect to this bi-admissible couple is defined as the forest indB (F ), and
the crown of F with respect to this bi-admissible couple is defined as the forest
indC (F ).
It is then easy to see that choosing a bi-admissible couple on a forest F is equiv-
alent to choosing an admissible cut on F and then choosing an admissible cut on
the crown of F (indeed, a triple (A1, A2, A3) of subsets of V (F ) is a bi-admissible
couple if and only if (A1, A2 ∪ A3) is an admissible cut of F and (A2, A3) is
an admissible cut of indA2∪A3 (F )), and also equivalent to choosing an admissi-
ble cut on F and then choosing an admissible cut on the trunk of F (indeed,
a triple (A1, A2, A3) of subsets of V (F ) is a bi-admissible couple if and only
if (A1 ∪ A2, A3) is an admissible cut of F and (A1, A2) is an admissible cut of
indA1∪A2 (F )). This proves the coassociativity of ∆.

• II.9.3: On page 44, replace ”n-uples” by ”n-uples” (the ”n” should be math, not
text).

• II.9.3: On page 44, ”By corollary II.2.2” should be ”By corollary II.3.2”.
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• III.3: On the fourth line of page 47 (not counting the title of III.3), you write:
”the free commutative algebra generated by V ”. Is it possible that you mean VT
when you say V ?

• III.3: On the sixth line of page 47, replace ”co-unity” by ”co-unit”.

• III.3: On page 47, you write that ”any nonempty subgraph has a non-vanishing
loop number”. How can this be true? For example, assume that our original
graph is a 4-cycle, and we choose the subgraph formed by two adjacent edges of
this cycle. This subgraph has 2 internal edges, 2 external edges and 3 vertices,
so the loop number is 2− 3 + 1 = 0. Maybe you want the I in the definition of
the loop number to be the number of all edges?

• III.3: In the fourth line from bottom of page 48, you write: ”The ideal J is the
a bi-ideal”. Here, the ”the” should be removed.

• III.3: On page 49, you write: ”We can identify the quotient with S (V ′
T ), where

V ′
T stands for [...]”. Both of the T ’s here should be calligraphic T ’s.

• Chapter IV. On page 50, you write: ”We denote by Y (resp. θt) the biderivation
(resp. the one-parameter group of automorphisms) of the Hopf algebraH induced
by the graduation (cf. § II.6).” I think you mean II.8, not II.6 here.

• Proof of Proposition IV.1.2: You mention a ”derivation property(
e∗tα ∗ e∗sα

)
◦ Y =

(
e∗tα ◦ Y

)
∗ e∗sα + e∗tα ∗ (e∗sα ◦ Y )

” here. It is correct, but it will probably become a bit clearer if you refer to
Lemma II.8.1 for this property (otherwise, it looks like you are applying the fact
that Y is a derivation).

• Proof of Corollary IV.1.3: I don’t understand how exactly you show the first
assertion here.
Anyway, I don’t like the proof as it uses the analytic Proposition IV.1.2, whereas
there is a much more straightforward proof using pure algebra (and therefore
works for any commutative k-algebra A over any field k, not necessarily C):
Alternative proof of Corollary IV.1.3: Let us prove the first assertion first:
Let α be a derivation of H with values in A. We must prove that R (α) is a
derivation of H with values in A as well.
Let ϕ = e∗α. Then, Proposition II.4.2 yields that ϕ ∈ G1 (since α is a derivation
and thus α ∈ g1), so that ϕ is an algebra homomorphism. Thus, ϕ∗−1 is an
algebra homomorphism as well (since G1 is a group). Now, we are going to prove
that any x ∈ H and y ∈ H satisfy(
ϕ∗−1 ∗ (ϕ ◦ Y )

)
(xy) = e (x)

(
ϕ∗−1 ∗ (ϕ ◦ Y )

)
(y) +

(
ϕ∗−1 ∗ (ϕ ◦ Y )

)
(x) e (y) .

(9)

In order to prove (9), we can WLOG assume that x and y are homogeneous.
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Then, we can write ∆ (x) =
∑
(x)

x1 ⊗ x2 with homogeneous x1 and x2, and we can

write ∆ (y) =
∑
(y)

y1 ⊗ y2 with homogeneous y1 and y2. Clearly,

(
ϕ∗−1 ∗ (ϕ ◦ Y )

)
(x) =

∑
(x)

ϕ∗−1 (x1) (ϕ ◦ Y ) (x2)︸ ︷︷ ︸
=ϕ(Y (x2))=ϕ(|x2|x2)
(since Y (x2)=|x2|x2)

=
∑
(x)

ϕ∗−1 (x1)ϕ (|x2|x2)

=
∑
(x)

|x2|ϕ∗−1 (x1)ϕ (x2) .

Similarly, (ϕ∗−1 ∗ (ϕ ◦ Y )) (y) =
∑
(y)

|y2|ϕ∗−1 (y1)ϕ (y2). But

(
ϕ∗−1 ∗ (ϕ ◦ Y )

)
(xy)

=
∑
(xy)

ϕ∗−1 ((xy)1) (ϕ ◦ Y ) ((xy)2) =
∑
(x)(y)

ϕ∗−1 (x1y1)︸ ︷︷ ︸
=ϕ∗−1(x1)ϕ∗−1(y1)

(since ϕ∗−1 is an algebra
homomorphism)

(ϕ ◦ Y ) (x2y2)︸ ︷︷ ︸
=ϕ(Y (x2y2))

=
∑
(x)(y)

ϕ∗−1 (x1)ϕ
∗−1 (y1)ϕ

 Y (x2y2)︸ ︷︷ ︸
=(|x2|+|y2|)x2y2

 =
∑
(x)(y)

(|x2|+ |y2|)ϕ∗−1 (x1)ϕ
∗−1 (y1) ϕ (x2y2)︸ ︷︷ ︸

=ϕ(x2)ϕ(y2)
(since ϕ is an algebra

homomorphism)

=
∑
(x)(y)

(|x2|+ |y2|)ϕ∗−1 (x1)ϕ
∗−1 (y1)ϕ (x2)ϕ (y2)︸ ︷︷ ︸

=|x2|ϕ∗−1(x1)ϕ(x2)ϕ∗−1(y1)ϕ(y2)+|y2|ϕ∗−1(x1)ϕ(x2)ϕ∗−1(y1)ϕ(y2)

=
∑
(x)(y)

(
|x2|ϕ∗−1 (x1)ϕ (x2)ϕ

∗−1 (y1)ϕ (y2) + |y2|ϕ∗−1 (x1)ϕ (x2)ϕ
∗−1 (y1)ϕ (y2)

)
=
∑
(x)

|x2|ϕ∗−1 (x1)ϕ (x2)︸ ︷︷ ︸
=(ϕ∗−1∗(ϕ◦Y ))(x)

∑
(y)

ϕ∗−1 (y1)ϕ (y2)︸ ︷︷ ︸
=(ϕ∗−1∗ϕ)(y)=e(y)

+
∑
(x)

ϕ∗−1 (x1)ϕ (x2)︸ ︷︷ ︸
=(ϕ∗−1∗ϕ)(x)=e(x)

∑
(y)

|y2|ϕ∗−1 (y1)ϕ (y2)︸ ︷︷ ︸
=(ϕ∗−1∗(ϕ◦Y ))(y)

=
(
ϕ∗−1 ∗ (ϕ ◦ Y )

)
(x) e (y) + e (x)

(
ϕ∗−1 ∗ (ϕ ◦ Y )

)
(y) .

This proves (9). Thus, ϕ∗−1 ∗ (ϕ ◦ Y ) is a derivation from H with values in A.
But since ϕ = e∗α yields ϕ∗−1 ∗ (ϕ ◦ Y ) = e∗−α ∗ (e∗α ◦ Y ) = R (α), this means
that R (α) is a derivation from H with values in A. We thus have shown the first
assertion of Corollary IV.1.3.
Let us now prove the second assertion of Corollary IV.1.3:
Let β be a cocycle from H to A. We must prove that R (β) is a cocycle from H
to A as well.
For this we need a lemma: If η is a cocycle from H to A, then η ◦ Y is a cocycle
from H to A as well.
Proof of the lemma: Let x and y be two homogeneous elements of H. Then,
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Y (xy) = |xy|︸︷︷︸
=|x|+|y|

xy = (|x|+ |y|)xy and

(η ◦ Y ) (xy) = η

 Y (xy)︸ ︷︷ ︸
=(|x|+|y|)xy

 = η ((|x|+ |y|)xy) = (|x|+ |y|) η (xy) .

Similarly, (η ◦ Y ) (yx) = (|y|+ |x|) η (yx). Comparing these two equalities (and
recalling that η (xy) = η (yx) (since η is a cocyle) and |x| + |y| = |y| + |x|),
we conclude that (η ◦ Y ) (xy) = (η ◦ Y ) (yx). We have thus shown the identity
(η ◦ Y ) (xy) = (η ◦ Y ) (yx) for any two homogeneous elements x and y of H.
Since this identity is linear in x and y, we can thus conclude that this identity
holds for any two (not necessarily homogeneous) elements x and y of H. In other
words, η ◦ Y is a cocyle. The lemma is proven.
Now, Proposition II.4.2 yields exp (g2) = G2. Thus, β ∈ g2 (since β is a cocycle)
yields e∗β ∈ G2. Since G2 is a group, this yields e∗−β ∈ G2. On the other
hand, the lemma (applied to Y = e∗β) yields that e∗β ◦ Y is a cocycle. Now,
Proposition II.4.1 1) shows that the convolution e∗−β ∗

(
e∗β ◦ Y

)
is a cocycle.

Since R (β) = e∗−β ∗
(
e∗β ◦ Y

)
, this means that R (β) is a cocycle. We haved thus

proven the second assertion of Corollary IV.1.3, all without using analysis.

• Remark at the end of IV.1: Apparently you use Proposition IV.1.2 to show
that R (α) = α ◦ Y in the case when H is cocommutative. Here is an alternative
proof of this statement:
Alternative proof of R (α) = α ◦ Y in the case of a cocommutative Hopf algebra
H:
From Lemma II.8.1 we know that ϕ 7→ ϕ ◦ Y is a derivation of the algebra
(L (H,A) , ∗). In other words, any ϕ ∈ L (H,A) and ψ ∈ L (H,A) satisfy
(ϕ ∗ ψ) ◦ Y = ϕ ∗ (ψ ◦ Y ) + (ϕ ◦ Y ) ∗ ψ. Applying this property and using
induction over n, we can show that every α ∈ L (H,A) and every integer n > 0
satisfy α∗n ◦ Y = n (α ◦ Y ) ∗ α∗(n−1) (here we use that L (H,A) is commutative,
which follows from the cocommutativity of H and the commutativity of A). Now,

if α ∈ g, then e∗α =
∑
n≥0

α∗n

n!
, so that

e∗α ◦ Y =
∑
n≥0

α∗n

n!
◦ Y =

α∗0

0!︸︷︷︸
=e

◦Y +
∑
n≥1

α∗n

n!
◦ Y = e ◦ Y︸ ︷︷ ︸

=0

+
∑
n≥1

α∗n

n!
◦ Y =

∑
n≥1

α∗n

n!
◦ Y

=
∑
n≥1

1

n!
α∗n ◦ Y︸ ︷︷ ︸

=n(α◦Y )∗α∗(n−1)

=
∑
n≥1

1

n!
n︸︷︷︸

=
1

(n− 1)!

(α ◦ Y ) ∗ α∗(n−1)

=
∑
n≥1

1

(n− 1)!
(α ◦ Y ) ∗ α∗(n−1) = (α ◦ Y ) ∗

∑
n≥1

α∗(n−1)

(n− 1)!
= (α ◦ Y ) ∗

∑
n≥0

α∗n

n!︸ ︷︷ ︸
=e∗α

(here, we substituted n for n− 1 in the sum)

= (α ◦ Y ) ∗ e∗α = e∗α ∗ (α ◦ Y ) (by the commutativity of L (H,A)) .
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But sinec R (α) is defined as the γ ∈ g satisfying e∗α ◦ Y = e∗α ∗ γ, this yields
R (α) = α ◦ Y , qed.
This proof works for any field k of characteristic 0 (not necessarily C) and for
any commutative k-algebra A.

• IV.2: On page 52, you write: ”we define the Lie algebra :

g̃ = g o C.Z0,

”. I think the g̃ should be a g̃ (since you call it g̃ later).

• IV.2: On page 52, you write: ”(see lemma II.7.1)”. You probably mean Lemma
II.8.1 here.

• IV.2: On page 52, you write: ”We shall not dig out a Lie group structure for
G̃ here” - but haven’t you already dug it out? You have defined the product in
G̃ in the sentence before, and I assume the differentiable-manifold structure isn’t
much of a problem - or is it?

• IV.2: At the very end of page 52, I don’t understand Araki’s formula:

exp (tZ0 + γ) =
∞∑
n=0

∫
Pn

j=0 uj=1, uj≥0

exp (u0tZ0) γ exp (u1tZ0) γ · · · γ exp (untZ0) du1 · · · dun.

The exp (uitZ0) terms lie in G̃, while γ lies in g. How can we multiply them with
each other?
(I assume you define such a product by extending the law (ϕ, t) (ψ, s) = (ϕ ∗ (ψ ◦ θt) , t+ s)
to arbitrary ϕ, ψ ∈ L (H,A), rather than only ϕ, ψ ∈ G. Can you confirm this?)

• IV.2: On page 53, replace x = Hn0 by x ∈ Hn0 .

• IV.2: On page 53, in the long calculation (the one that proves the one-parameter
group property), there are some typos:

- The second
∞∑
p=0

should be a
∞∑
q=0

.

- The very last integral should be
∫

0≤un≤···≤u1≤t+s rather than
∫
s≤up≤···≤u1≤t+s.

• Proof of Theorem IV.2.1: I don’t really understand the proof of part 4) of
this theorem at the place where you write ”and thus replace the group G by any
of the groups G1, G2 in assertions 1), 2) and 3)”. This does seem to work for
G2, but I am not convinced that this works for G1: in fact, it is not clear how
the argument that ”The right-hand side belongs manifestly to G” (this argument
is on page 54, in the proof of part 1)) is supposed to work for G1 (the sum of
elements of G1 needs not be in G1).
Anyway, I have an alternative proof of part 4), which is devoid of any analysis
and therefore works in the case of an arbitrary commutative algebra A over any
field k of characteristic 0 (not necessarily k = C):
Alternative proof of Theorem IV.2.1 part 4): Let γ ∈ g. According to the proof

of part 3) of Theorem IV.2.1, the element R̃−1 (γ) is the limit of the sequence
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(ϕn) defined by ϕ0 = e and ϕn+1 = e + T (ϕn) for all n ≥ 0, where T (ψ) means
(ψ ∗ γ) ◦ Y −1.
Now, let γ ∈ g2. Then, we are going to prove that ϕn ∈ G2 for all n ∈ N.
We prove this by induction over n: The induction base (the case n = 0) is obvious
(ϕ0 = e is an algebra homomorphism and thus lies in G1).
For the induction step, let m ∈ N be arbitrary. Assume that ϕm ∈ G2. We now
must prove that ϕm+1 = e+ T (ϕm).
Since the recursive definition of the sequence (ϕn) yields ϕm+1 = e+ T (ϕm).
Since ϕm ∈ G2, we know that ϕm is a cocycle. Since γ is a cocycle as well
(because γ ∈ g2), Proposition II.4.1 part 1) yields that ϕm ∗γ is a cocycle as well.
Thus, (ϕm ∗ γ) ◦ Y −1 is a cocycle. (This is because of the following lemma: If η
is a cocycle from H to A, then η ◦ Y −1 is a cocycle from H to A as well.10)
By the definition of T , we have T (ϕm) = (ϕm ∗ γ)◦Y −1. Since (ϕm ∗ γ)◦Y −1 is a
cocycle, this shows that T (ϕm) is a cocycle. Since e is a cocycle, this yields that
e+T (ϕm) is a cocycle (being the sum of two cocycles). Since (e+ T (ϕm)) (1) =
1A, this entails e+ T (ϕm) ∈ G2. We thus have ϕm+1 = e+ T (ϕm) ∈ G2.
This completes the induction, and thus we have proven that ϕn ∈ G2 for all
n ∈ N. Thus, the limit of the sequence (ϕn) is in G2 as well (since the limit of
a convergent sequence of elements of G2 must always be an element of G2). In

other words, R̃−1 (γ) is in G2 (since R̃−1 (γ) is the limit of the sequence (ϕn)).

We have thus shown that R̃−1 (γ) ∈ G2 for every γ ∈ g2. In other words, we have

shown that R̃−1 (g2) ⊆ G2.

Now let us prove that R̃−1 (g1) ⊆ G1:
Forget about the γ ∈ g2 we took above. Now let us take some γ ∈ g1. Then, γ
is a derivation from H with values in A and satisfies γ (1) = 0.

Let ϕ = R̃−1 (γ). By the definition of R̃, this means that ϕ ∈ G and ϕ◦Y = ϕ∗γ.
From ϕ ∈ G, we conclude that ϕ (1) = 1A.

10Proof of the lemma: Let x and y be two homogeneous elements of H such that |x|+ |y| > 0. Then,

Y −1 (xy) =
1
|xy|

xy =
1

|x|+ |y|
xy (since |xy| = |x|+ |y|) and

(
η ◦ Y −1

)
(xy) = η

 Y −1 (xy)︸ ︷︷ ︸
=

1
|x|+ |y|

xy

 = η

(
1

|x|+ |y|
xy

)
=

1
|x|+ |y|

η (xy) .

Similarly,
(
η ◦ Y −1

)
(yx) =

1
|y|+ |x|

η (yx). Comparing these two equalities (and recalling that

η (xy) = η (yx) (since η is a cocyle) and |x| + |y| = |y| + |x|), we conclude that
(
η ◦ Y −1

)
(xy) =(

η ◦ Y −1
)
(yx). We have thus shown the identity

(
η ◦ Y −1

)
(xy) =

(
η ◦ Y −1

)
(yx) for any two homoge-

neous elements x and y of H satisfying |x|+|y| > 0. Since the identity
(
η ◦ Y −1

)
(xy) =

(
η ◦ Y −1

)
(yx)

also trivially holds for any two homogeneous elements x and y of H satisfying |x| + |y| = 0 (because
|x| = |y| = 0 yields x, y ∈ k · 1), this yields that the identity

(
η ◦ Y −1

)
(xy) =

(
η ◦ Y −1

)
(yx) holds

for any two homogeneous elements x and y of H. Since this identity is linear in x and y, we can thus
conclude that this identity holds for any two (not necessarily homogeneous) elements x and y of H.
In other words, η ◦ Y is a cocyle. The lemma is proven.
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Every homogeneous x ∈ H satisfies

(ϕ ◦ Y ) (x) = ϕ

Y (x)︸ ︷︷ ︸
=|x|x

 = ϕ (|x|x) = |x|ϕ (x) ,

so that
|x|ϕ (x) = (ϕ ◦ Y )︸ ︷︷ ︸

=ϕ∗γ

(x) = (ϕ ∗ γ) (x) =
∑
(x)

ϕ (x1) γ (x2) . (10)

We are now going to prove that

ϕ (xy) = ϕ (x)ϕ (y) for any two homogeneous elements x and y of H.
(11)

Proof of (11). We will prove (11) by strong induction over |x|+ |y|:
The induction base (the case |x|+ |y| = 0) is clear (since H0 = k · 1 and ϕ (1) =
1A).
Now to the induction step: Let d ∈ N be positive. Assume that (11) is proven for
any two homogeneous elements x and y of H satisfying |x|+ |y| < d. Now let us
prove (11) for any two homogeneous elements x and y of H satisfying |x|+|y| = d.
Let x and y be two homogeneous elements of H satisfying |x|+ |y| = d. Then, we
can WLOG assume that x =

∑
(x)

x1 ⊗ x2 with homogeneous x1 and x2 satisfying

|x1|+ |x2| = |x|, and that y =
∑
(y)

y1 ⊗ y2 with homogeneous y1 and y2 satisfying

|y1|+ |y2| = y.
Any three homogeneous elements u, v and w of H satisfying |u| + |v| + |w| = d
satisfy

ϕ (uv) γ (w) = ϕ (u)ϕ (v) γ (w) . (12)
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11 But (10) (applied to xy instead of x) yields

|xy|ϕ (xy) =
∑
(xy)

ϕ ((xy)1) γ ((xy)2) =
∑
(x)(y)

ϕ (x1y1) γ (x2y2)︸ ︷︷ ︸
=ϕ(x1)ϕ(y1)γ(x2y2)

(by (12), applied to u=x1,
v=y1 and w=x2y2)

=
∑
(x)(y)

ϕ (x1)ϕ (y1) γ (x2y2)︸ ︷︷ ︸
=e(x2)γ(y2)+γ(x2)e(y2)
(since γ is a derivation)

=
∑
(x)(y)

ϕ (x1)ϕ (y1) (e (x2) γ (y2) + γ (x2) e (y2))

=
∑
(x)(y)

ϕ (x1)ϕ (y1) e (x2) γ (y2)︸ ︷︷ ︸
=

P
(x)

ϕ(x1)e(x2)
P
(y)

ϕ(y1)γ(y2)

(since A is commutative)

+
∑
(x)(y)

ϕ (x1)ϕ (y1) γ (x2) e (y2)︸ ︷︷ ︸
=

P
(x)

ϕ(x1)γ(x2)
P
(y)

ϕ(y1)e(y2)

(since A is commutative)

=
∑
(x)

ϕ (x1) e (x2)︸ ︷︷ ︸
=(ϕ∗e)(x)

∑
(y)

ϕ (y1) γ (y2)︸ ︷︷ ︸
=(ϕ∗γ)(y)

+
∑
(x)

ϕ (x1) γ (x2)︸ ︷︷ ︸
=(ϕ∗γ)(x)

∑
(y)

ϕ (y1) e (y2)︸ ︷︷ ︸
=(ϕ∗e)(x)

= (ϕ ∗ e)︸ ︷︷ ︸
=ϕ

(x) · (ϕ ∗ γ)︸ ︷︷ ︸
=ϕ◦Y

(y) + (ϕ ∗ γ)︸ ︷︷ ︸
=ϕ◦Y

(x) · (ϕ ∗ e)︸ ︷︷ ︸
=ϕ

(y)

= ϕ (x) · (ϕ ◦ Y ) (y)︸ ︷︷ ︸
=ϕ(Y (y))

+ (ϕ ◦ Y ) (x)︸ ︷︷ ︸
=ϕ(Y (x))

·ϕ (y)

= ϕ (x) · ϕ

Y (y)︸ ︷︷ ︸
=|y|y

+ ϕ

Y (x)︸ ︷︷ ︸
=|x|x

 · ϕ (y)

= ϕ (x) · ϕ (|y| y)︸ ︷︷ ︸
=|y|ϕ(y)

+ϕ (|x|x)︸ ︷︷ ︸
=|x|ϕ(x)

·ϕ (y) = |y|ϕ (x) · ϕ (y) + |x|ϕ (x) · ϕ (y)

= (|y|+ |x|)︸ ︷︷ ︸
=|xy|

ϕ (x)ϕ (y) = |xy|ϕ (x)ϕ (y) .

Since |xy| = |x| + |y| = d > 0, we can divide this equation by |xy| and obtain
ϕ (xy) = ϕ (x)ϕ (y). In other words, we have proven (11) for any two homoge-
neous elements x and y of H satisfying |x|+|y| = d. This completes the induction
step.
Thus, (11) is proven for any two homogeneous elements x and y of H. Since this
equation (11) is linear in x and y, we thus conclude that (11) holds for any two

11Proof of (12). We distinguish between two cases:
Case 1: We have |w| = 0.
Case 2: We have |w| > 0.
In Case 1, we have γ (w) = 0 (since |w| = 0 yields w ∈ H0 = k · 1, and since we know that γ (1) = 0).
Therefore, (12) trivially holds in Case 1.
Let us now consider Case 2. In this case, |u|+ |v|+ |w| = d rewrites as |u|+ |v| = d− |w|︸︷︷︸

>0

< d. Thus, in

Case 2, we can apply (11) to u and v instead of x and y (since we assumed that (11) is proven for any
two homogeneous elements x and y of H satisfying |x|+ |y| < d), and we obtain ϕ (uv) = ϕ (u) ϕ (v).
This shows that (12) holds in Case 2.
We have now shown that (12) holds in each of the two cases 1 and 2. This completes the proof of
(12).
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elements x and y of H (not necessarily homogeneous). In other words, ϕ is an
algebra morphism (since we also know that ϕ (1) = 1A). In other words, ϕ ∈ G1.

Thus, R̃−1 (γ) = ϕ ∈ G1.

We have thus shown that R̃−1 (γ) ∈ G1 for every γ ∈ g1. Hence, R̃−1 (g1) ⊆ G1.

Combined with R̃−1 (g2) ⊆ G2, this completes our proof of part 4) of Proposition
IV.2.1.

• Proof of Lemma IV.4.2: In the first line of the computation that you do in
this proof, replace ψ ◦ Y n by znψ ◦ Y n.

• Proof of Theorem IV.4.1: On page 57, you write: ”We have still to fix the
convergence of the exponential just above in the case when zR̃ (ψ) belongs to
L (H,A+).” The L here should be a calligraphic L.

• Proof of Theorem IV.4.1: On page 57, you write:

Ln+ =
⋃

p+q=n

Lp,q+ .

I assume the
⋃

sign should be a
∑

.

• Proof of Theorem IV.4.1: On page 58, you write:

d

dt
|t=0 ψt = z (ψ ◦ Y ) = ψḣt |t=0 .

The ψt should be a ψt here.

• Theorem IV.4.4: When you say C in this theorem, you mean C as a subspace
of A. Maybe it would be good to state this explicitly (I got confused by this C).

• Proof of Lemma IV.4.5: The reference to ”theorem II.4.1” should refer to
Theorem II.5.1 instead.

• Proof of Theorem IV.4.4: On page 60, you write: ”it is easily seen by induc-
tion on |x| that the right-hand side evaluated at z has a limit when z tends to
infinity. Thus ψ (x) ∈ A−”. I am not sure about the ”Thus” here: the function

1

z − 1
also has a limit when z tends to infinity, but doesn’t lie in A− for z0 = 0.

on the other hand, I think you don’t need the detour through limits: you can
just say that ”it is thus easily seen by induction on |x| that ψ (x) ∈ A−”. Or am
I missing something here?
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