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This note has been written to supplement Keith Conrad’s [1], though it is
largely independent of the latter. I am going to show some (rather elementary)
properties of free modules over PIDs and apply them to drop the “full sub-
module” resp. “nonzero determinant” restraints which qualify many state-
ments made in [1]. Thanks are due to Keith Conrad for a correction and
helpful remarks.

The LaTeX sourcecode of this note contains additional details of proofs inside
“verlong” environments (i. e., between “\begin{verlong}” and “\end{verlong}”). I
doubt they are of any use.

§1. Some properties of modules
Before we make any statements, let us clarify some notation:

Convention. In the following, N will denote the set of all nonneg-
ative integers. This set includes 0.

Definition. An integral domain is defined as a commutative ring R
with unity such that 1 # 0 in R (that is, the unity of R does not
equal the zero of R) and such that any two elements 2 € R and
b € R satisfying ab = 0 must satisfy (@ =0 or b = 0). A principal
ideal domain is defined as an integral domain R in which every
ideal is principal (i.e., every ideal I of R can be written in the form
I = (a) for some a € R). The word “PID” is an abbreviation for
“principal ideal domain”.

Definition. Let R be a commutative ring with unity. An R-module
is said to be finite free if it has a finite basis.

We are going to prove all but one (Lemma A.2) of the following seven
statements. Of course, very few of them are new.

Lemma A.1. Let R be a commutative ring with unity (not necessar-
ily a PID). Let S be a finite free R-module. Let M be any R-module.
Let f : M — S be a surjective R-module homomorphism. Then,
there exists an R-submodule N of M such that M = N & (Ker f)
(an internal direct sum) and such that f |y: N — S is an R-module
isomorphism.

Lemma A.2. Let R be a PID. Every submodule of a finite free
R-module is finite free.



Lemma A.3. Let R be a commutative ring with unity (not neces-
sarily a PID). Let M be a finitely-generated R-module. Let f be
a surjective R-module homomorphism M — M. Then, f is an
R-module isomorphism.

Lemma A.4. Let R be a commutative ring with unity (not neces-
sarily a PID). Let n € N and m € N be such that n # m. Assume
that R” = R™ as R-modules. Then, R is the trivial ring.

Lemma A.5. Let R be a commutative ring with unity (not neces-
sarily a PID). Let Sq, Sz and T be three finite free R-modules such
that S T = S, & T as R-modules. Then, S; = S; as R-modules.

Lemma A.6. Let R be a PID. Let M, N; and N, be three finite free
R-modules. Let p; : M — Nj and pp : M — N, be two surjective
R-module homomorphisms. Let j : Ny —+ N; be an R-module
isomorphism. Then, there exists an R-module isomorphism k :
M — M such that pyok =jop;. []

Proposition A.7. Let R be a PID. Let M be a finite free R-module.
Let A; and A, be two R-module endomorphisms of M. Then,
A1 (M) = Ay (M) if and only if there exists a U € GL (M) sat-
isfying A1 = ApU. (Note that GL (M) denotes the group of all
R-module automorphisms of M. This group is isomorphic to the
group of invertible n x n matrices over R, where # is the rank of
the free R-module M.)

Proposition A.7 is the main result of this note, as it will help us generalize
[1].

Lemma A.l is one incarnation of the well-known fact that free modules
are projective (and that projections on projective modules split); we will nev-
ertheless give a proof of it for the sake of completeness. (It should be noticed
that it doesn’t really require commutativity of R.)

Lemma A.2 is a well-known fact and we will merely give references to its
proof, not least because its proofs are not too easy.

Lemma A.3 is a known fact and will be proven using Nakayama’s lemma
(other proofs can be found in literature, to which we will give haphazard

'In other words, there exists an R-module isomorphism k : M — M which makes the
diagram

M k ey M

| ) |
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commute.



references). It is a generalization of the known linear-algebraic fact that a sur-
jective endomorphism of a finite-dimensional vector space is always an iso-
morphism. Notice that the analogous property of injective endomorphisms
does not generalize to modules over arbitrary rings.

Lemma A.4 is a quick and well-known corollary of Lemma A.3; it is the
so-called “IBN property” (“IBN” stands for “invariant basis number”) of com-
mutative rings (and holds not only for commutative rings, but also for certain
classes of noncommutative ones).

Lemma A.5 is a very easy consequence of Lemma A.4. It would fail if the
word “finite” would be dropped from “finite free”, and it would also fail if
“finite free” would be replaced by “finitely-generated”.

§2. Proofs

Proof of Lemma A.1. We have S = f (M) (since f is surjective). Let (e, e, ..., en)
be a finite basis of the R-module S (such a basis exists since S is finite free).
For every i € {1,2,...,n}, pick an element x; of M satisfying ¢; = f (x;) (such
an x; exists since ¢; € S = f (M)).

Now, recall that we can define an R-linear map from a free R-module by
specifying its values on the elements of a basis. This allows us to define an
R-linear map g : S — M by setting

(g (e;) = x; for every i € {1,2,..,n}).

Consider the R-linear map g : S — M defined this way. Clearly, g (S) is an
R-submodule of M.
Every i € {1,2,...,n} satisfies

(fog)(e)=f|gle) | =f(xi) =e =ids(e).
S

4
=Xx;

In other words, the two maps fog:S — Sand ids : S — S are equal to each
other on each element of the basis (eq, e, ...,e5) of S. Since these two maps
f o g and idg are both R-linear, this yields that the two maps f o g and idg
must be identical (because any two linear maps which are equal to each other
on each element of a basis of their domain must be identical). In other words,
f 0g = ids.

Now, let x € g(S)N (Kerf). Then, x € g(S)N (Kerf) C g(S), so
that there exists some y € S such that x = g(y). Consider this y. Then,

f (\Jc,,) = f(g(y) = (fog) (y) = ids (y) = y. Compared with f (x) = 0

=8(y) —idg



(since x € g(S) N (Ker f) C Ker f), this yields y = 0. Hence, x = g ( y ) =
~—~
=0
¢ (0) = 0 (since g is R-linear).
Now forget that we fixed x. We have thus shown that every x € ¢(S)N
(Ker f) satisfies x = 0. In other words, g (S) N (Ker f) = 0. The internal direct
sum g (S) & (Ker f) is thus well-defined.

Now, let z € M. Then,

fz=8(f(2) =f(2) - f(8(f(2)) (since f is R-linear)
=(fo8)(f(2))
=ids (f(2))
(since fog=idg)

=f(2) —ids (f (2)) = f(2) = f(2) =0,
=f(2)

so that z — g (f (z)) € Ker f. Thus,

~—
eKer f

z=g (f (Z)) +(z—g(f(2))) €8(S) + (Ker f) =g (S) & (Ker f)
—~— —

€S

(since we know that the internal direct sum g (S) @ (Ker f) is well-defined).
Now forget that we fixed z. We hence have proven that every z € M satisfies
z € g(S)® (Kerf). In other words, M C g (S) @ (Ker f). Combined with
2(S) @ (Ker f) C M (which is obvious), this yields M = g (S) & (Ker f).

A moment of thought reveals that Ker ( f g(5)> = ¢ (S) N (Ker f). In light
of ¢ (S) N (Ker f) = 0, this rewrites as Ker < f g(s)> = 0. Thus, the R-linear

map f |4(s) is injective.

On the other hand,
(flss)) (8(5)) = £ (8(5)) = (fo8) (5) = ids (5) =SS.
—idg

Thus, the R-linear map f |,s) is surjective. Combined with the fact that the
R-linear map f [¢(s) is injective, this yields that the R-linear map f [,(s) is
bijective. Thus, f |4(s) is an R-module isomorphism.

Altogether, we thus know that ¢ (S) is an R-submodule of M such that
M = g (S) @ (Ker f) (an internal direct sum) and such that f |45y g(S) = S
is an R-module isomorphism. Thus, there exists an R-submodule N of M such
that M = N & (Ker f) (an internal direct sum) and such that f |xy: N — S is
an R-module isomorphism (namely, N = g (S)). This proves Lemma A.1. O
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Proof of Lemma A.2. Lemma A.2 is probably the most well-known among the
many consequences of the Smith normal form. As such, it appears (in one or
another form) in almost every good book written about abstract algebra, and
in a multitude of lecture notes”| We will not give a proof of Lemma A.2, but
instead just refer to some of many places where it is proven:

e Lemma A.2 follows from [2, Theorem 8.25].

e Lemma A.2 follows from [12, Theorem 2.1].

e Lemma A.2is part of [4, Theorem 3.7.1].

e Lemma A.2 is a consequence of [3, Chapter XI, Theorem 12].

e Lemma A.2 follows from the (somewhat stronger) Theorem 6.0.1 in
Chapter 11 (“Finitely-generated modules”) of Paul Garrett’s lecture notes

[5].

e Lemma A.2 also follows from The Freedom Theorem in Lecture 5 of
McNulty’s [6].

e Lemma A.2 follows from [7, Chapter 4, Corollary 4.6.2].
O

Proof of Lemma A.3. There is no real need to give a proof of Lemma A.3 here,
since it is known: For example, it appears in [13] as Theorem 5.3, with my
f renamed as ¢. But let me give a slightly different proof of Lemma A.3
(though a rather well-known one; for example, it is identical with the one
given in [8, Theorem 0.3.2], [10, Theorem 2.4] and [11, Theorem 1]). We will
use the following fact:

Nakayama lemma: Let S be a commutative ring with unity, and
let N be a finitely-generated S-module. Let I be an ideal of S such
that I - N = N. Then, there exists an s € S such that s = 1mod I
and sN = 0.

This is merely one of the many forms of the Nakayama lemm but it is
the one most suitable for our needs. Proofs of the Nakayama lemma, in (more

2 Actually, googling for the statement of Lemma A.2 is a good way to find lecture notes in
abstract algebra.

3The statements referred to as the “Nakayama lemma” in literature are numerous, and
some of them are harder to derive from each other than prove from scratch. Nevertheless,
they are widely regarded as equivalent (not merely like any two correct assertions). The form
of the Nakayama lemma that we are using is probably the one most familiar to commutative
algebraists.

The Nakayama lemma is also known as the “NAK lemma”, with “NAK” abbreviating
“Nakayama-Azumaya-Krull” rather than “NAKayama”.
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or less) the form given above, can be found in [9, Corollary 2.5], [8, Theorem
0.3.1], [11, Lemma 2], [10, Theorem 2.2] and various other places.

Consider the situation of Lemma A.3. Let T be an indeterminate, and con-
sider the polynomial ring R [T]. By the universal property of the polynomial
ring, there exists one and only one R-algebra homomorphism R [T] — End M
which sends T to f. Consider the R-module M as an R [T]-module via this
homomorphism. Then, clearly, T acts as f on this R [T]-module M. In other
words, Tm = f (m) for every m € M.

Let I be the ideal (T) of R[T]. Then, T € I, so that T- M C I - M. But since

T-M{IT/ | mEM}{f(m) | meM}=f(M)=M
=f(m)

(since M is surjective), this rewrites as M C I - M. Combined with the obvious
inclusion I - M C M, this yields I - M = M. Hence, the Nakayama lemma
(applied to S = R[T] and N = M) yields that there exists an s € R [T] such
that s = 1mod I and sM = 0. Consider this s.

Since s = 1mod I, there exists a g € I such that s = 1 4 4. Consider this g.
Since q € I = (T), the polynomial g is divisible by T. Thus, there exists some

r € RIT] such that g = rT. Consider this r. Then,s =14+ g =1+7rT, so
~—
=rT

that every m € M satisfies

m—(—rT)ym=m+rTm=(14+rT)m=sm=0
——

=8

(since s _m &€ sM = 0). In other words, every m € M satisfies

eM
m=(—1T)m=—r Tm, = —r-f(m).
=f(m)
Hence, every m € M such that f (m) = 0 satisfies m = —r- f(m) = —r-
=0

0 = 0. In other words, f is injective. Since we know that f is surjective,
this yields that f is bijective. Combined with the fact that f is an R-module
homomorphism, this yields that f is an R-module isomorphism. Lemma A.3
is proven. [

Proof of Lemma A.4. Since n # m, we have either n < m or m < n. Since the
scenery is symmetric in 7 and m, we can WLOG assume that n < m. Assume
this.



Since R" = R™ as R-modules, there exists an isomorphism I : R" — R™.
Consider this I. Since I is an isomorphism, we have I (R") = R™.

Let (e1, ey, ..., en) be the standard basis of the free R-module R". Let (f1, f2, ..., fm)
be the standard basis of the free R-module R™.

Now, recall that we can define an R-linear map from a free R-module by
specifying its values on the elements of a basis. Hence, we can define an
R-linear map g : R — R" by setting

(g (fi) = { 81” ilffl.lf:’ for every i € {1,2,...,m}> :
Consider this map g. Since n < m, it is easily seen that the map g is surjective
(since all elements of the basis (e1,ep,...,en) of R" occur as images of basis
vectors f; under g). Hence, goI : R — R™ is also surjective (as I is an
isomorphism). According to Lemma A.3 (applied to M = R" and f = go ),
this entails that g o I is an R-module isomorphism. Thus, g o I is injective,
so that g is injective as well. But the definition of g yields g (fx) = 0 (since
m > n), and thus (by the injectivity of g) we have f,, = 0. Since f;, is an
element of a basis of the R-module R" (namely, of the basis (f1, f2, ..., fm)),
this yields that 1 = 0 in R. In other words, R is the trivial ring. Lemma A.4 is

proven.
O

An alternative proof of Lemma A.4 would be to apply [14] Corollary 5.11].

Proof of Lemma A.5. Since S1, Sp and T are finite free R-modules, there exist
elements s;, s, and t of N such that S; & R%, S, = R2 and T = Rf as
R-modules. Consider these sq, s, and t.

If s; = sp, then Lemma A.5 is obvious (since s; = sp leads to S1 = R°1 =
R*2 = S5, as R-modules). Hence, let us now assume (for the rest of the proof
of Lemma A.5) that s; # sp. Thus, s; + t # s» + t. But

Sy & T =R @R =R as R-modules,
LY~
~Rs1 =R

and similarly S, & T = R%2"" as R-modules. Thus, RS =~ § T X S, & T =
R%2"" as R-modules. Thus, Lemma A.4 (applied to n = s; + t and m = s, + t)
yields that R is the trivial ring. But since every module over the trivial ring is
0, this shows that S; = 0 and S; = 0, so that S = 0 = S, as R-modules. This

proves Lemma A.5.
O



Proof of Lemma A.6. Applying Lemma A.1to S = N; and f = p;, we obtain
the following: There exists an R-submodule |; of M such that M = J; @&
(Ker (p1)) (an internal direct sum) and such that p; [;,: J; — Nj is an R-
module isomorphism. Fix such a Jj.

Similarly, fix an R-submodule ], of M such that M = ], & (Ker (p2)) (an in-
ternal direct sum) and such that p, |},: Jo = N is an R-module isomorphism.
The existence of such a J; is guaranteed by Lemma A.1 again.

We know that every submodule of a finite free R-module is finite free (due
to Lemma A.2). Thus, the R-modules Ji, ], Ker (p1) and Ker (py) are finite
free (being submodules of the finite free R-module M).

Since the map p» |,: Jo = N; is an R-module isomorphism, its inverse
(p2 | ]2)_1 : Np — J» is well-defined and an R-module isomorphism as well.

Since all three maps p; |f,: J1 = N1, j: Nt = Ny and (p2 |]2)_1 :Np = b
are R-module isomorphisms, their composition (p; | ]2)_1 ojo(pily):h —
J» must also be an R-module isomorphism. Thus, J, = J; as R-modules. Now,

(Ker (p1)) & 1 = ) & (Ker (p1) = M=_Ja_& (Ker (p2))
=N

= J1 & (Ker (p2)) = (Ker (p2)) & 1

as R-modules. Thus, Lemma A.5 (applied to S; = Ker (p1), S» = Ker (p2) and
T = J1) yields that Ker (p;) = Ker (py) as R-modules. Thus, there exists an
R-module isomorphism I : Ker (p1) — Ker (p;). Consider this I.

Now, define a map

P :J1 @ (Ker (p1)) = ]2 ® (Ker (p2))
by
®(u,0) = (((p2 1) ejo(prly)) (w),1(2))
for every (u,v) € J; x (Ker (p1)).

Clearly, ® is an R-module isomorphism from J; & (Ker (p1)) to [, & (Ker (p2))

(in fact, @ is the direct sum of the isomorphisms (p; | ]2)*1 ojo(pilp):h—

Jo and I : Ker (p1) — Ker (py)). Since both J; & (Ker (p1)) and ], & (Ker (p2))

are simply M, this means that ® is an R-module isomorphism from M to M.
Now, every x € M satisfies

(P20 @) (x) = (jop1) (x)

(as revealed by a straightforward computatiorﬁ). In other words, py 0o ® =
jopr

4Proof. Let x € M. Since x € M = J; @ (Ker (p1)), we can write x in the form x = u + v
p
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So we know that ® is an R-module isomorphism from M to M such that
p2 0P = jo p;. Hence, there exists an R-module isomorphism k : M — M
such that p; o k = j o p; (namely, k = ®). This proves Lemma A.6. O

Proof of Proposition A.7. First of all, if there exists a U € GL (M) satisfying
A; = AyU, then we clearly have A; (M) = Ay (M) [}

for some u € J; and v € Ker (p1). Consider these 1 and v. Then, x = u + v corresponds to
the pair (u,v) under the identification of the internal direct sum M = J; @ (Ker (p1)) with
the external direct sum J; & (Ker (p1)). Hence, x = (1, v). On the other hand, identifying the
internal direct sum M = J, & (Ker (p2)) with the external direct sum ], & (Ker (p2)), we have

(((p21R) oo (pr1n)) ), 1) = ((p2 1) " ojo (b1 1)) (W) +1 (),

so that

o x| =2mo)=(((r21p) oo (prly)) ), 1))

=(u0)
= ((p2 1) " ojo (pr lp)) () + 1 (0).

Applying the map p; to both sides of this equality, we obtain

(p2o®) (x) = p2 (((p2 1) "o jo (pr 1)) (W) +1(0))
=p2(((r2 1) "eio(pi 1) W)+ pa(i (o))
(since I(v )gKer(Pz))
=p2 (((Pz R) " ejo (pr |h)> (u))
= (2o (p211) ") (Go (pr11)) )

(P2l )o(p2lyy) '=id

o (prln)) () =j(pr ().

On the other hand, since x = u + v, we have

pr(x)=pr(u+o)=p1(u)+ p1(v) (since p; is linear)
N
(since vglo<er(p1))

=p1(u),

so that py (u) = p1 (x). Thus, (p20 @) (x) = | p1 (1) | =j(p1(x)) = (jop1) (x), qed.

=p1(x)
SProof. Assume that there exists a U € GL (M) satisfying A; = A,U. Consider this U.
Since U € GL (M), we know that U is an R-module automorphism of M, so that U (M) = M.



We now only need to prove the opposite direction . So assume that
A1 (M) = Ay (M). We shall prove that there exists a U € GL (M) satisfy-
il’lg A1 == A2 u.

Let M’ be the R-submodule A; (M) of M.

By Lemma A.2, every submodule of a finite free R-module is finite free.
Thus, M’ (being a submodule of the finite free R-module M) is finite free.

Since A1 (M) = M’, we can define a surjective R-module homomorphism
p1: M — M by

(p1(x) = Aq (x) for every x € M). (1)

Consider this p;.
Since A (M) = A1 (M) = M/, we can define a surjective R-module homo-
morphism p, : M — M’ by

(p2 (x) = Az (x) for every x € M). ()

Consider this p».

Lemma A.6 (applied to Ny = M/, N, = M’ and j = id)y) shows that there
exists an R-module isomorphism k : M — M such that py ok = idy op;.
Consider this k. We know that k is an R-module isomorphism M — M, thus
an R-module automorphism of M. Thus, k € GL (M).

But we have A; ok = Aj. (Indeed, this follows from p; ok = idpp op1 = p1
upon noticing that the maps p; and p; are identical with the maps A; and
Ay, respectively, apart from having a different target set.)

Thus, there exists a U € GL (M) satisfying A; = AU (namely, U = k).
This completes the proof of Proposition A.7. O

§3. Generalizing [1]

Proposition A.7 allows us to generalize the results of Conrad’s [1]. First
of all, our Proposition A.7 is obviously a generalization of [1, Lemma 2]. The
notions of “aligned bases” and “simultaneously aligned bases” defined in [1]
can be generalized:

Definition. Let R be a PID, n be a positive integer, and M be a
finite free R-module of rank n.

(@) Let M' be a submodule of M (not necessarily of rank n). The
structure theorem for modules over a PID (or the theory of the

N——

Now, from A; = AU, we conclude that A; (M) = (AU) (M) = Ay (U(M)) = Ay (M),
=M

ged.
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Smith normal form) shows that there exists a basis (ey, ey, ..., e,) of

n
M and scalars ay, ay, ..., a,, such that M’ = @ Ra;e;. In such a situa-
i=1
tion, we will say that (eq, ey, ..., e,) and (ayeq, azey, ..., ane,) are a pair
of aligned bases for M and M’, whether or not (aiey, azey, ..., aney)
. . , . .
is a basis of M'. (Of course, (akek)ke{l,z,...,n}; a0 1S a basis of
M’ in this case, so the only thing that can keep the sequence
(aie1,aze, ..., ane,) from being a basis of M’ are zero elements.)

(b) Let M’ and M" be two submodules of M. If there exists a basis

n
(e1,€2,...,en) of M and scalars a}, a5, ..., a, such that M' = @ Rae;,
i=1
n
as well as scalars a7, a}), ..., a}, such that M" = 691 Rbje;, then we say
i=
that M’ and M" admit simultaneously aligned bases.

With this definition, [1, Theorem 3] still holds without the conditions
det A # 0 and det B # 0, and [1} Corollary 5] is still valid if the “with nonzero
determinants” condition is removed. The proofs of these results don’t require
any new arguments apart from replacing the (easy) proof of [1, Lemma 2] by
the (not so easy) proof of our Proposition A.7.
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