A remark on polyhedral cones from packed words and from finite topologies

Darij Grinberg

July 10, 2020 (unfinished!)

Contents

1. The main theorem 1
2. The proof 4
3. Application: an alternating sum identity 23

1. The main theorem

The purpose of this little note is to prove [2, Theorem 5.2] using the machinery of [1].

I shall use the notations of [1] (except that I write WQSym instead of WQSym). Here is a brief overview of these notations:

- We fix a field \mathbb{K}.
- We let $\mathbb{N}=\{0,1,2, \ldots\}$ and $\mathbb{N}_{>0}=\{1,2,3, \ldots\}$.
- For each $n \in \mathbb{N}$, we let $[n]$ denote the set $\{1,2, \ldots, n\}$. In particular, $[0]=\varnothing$.
- A word means a n-tuple of positive integers for some $n \in \mathbb{N}$. In this case, the n is called the length of the word. A word $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ is identified with the map $[n] \rightarrow \mathbb{N}_{>0}, i \mapsto w_{i}$.
- A word $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ is said to be packed if and only if $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}=$ $[k]$ for some $k \in \mathbb{N}$. In this case, the k is denoted by $\max w$. (Note that k is the largest entry of w if w is nonempty.)

For example, the word $(3,1,2,1,3)$ is packed (with max $(3,1,2,1,3)=3$), and so is the empty word () (with max ()$=0$); but the word $(3,1,3)$ is not packed.

- If w is any word, then the packing of w is the packed word Pack w obtained by replacing the smallest number that appears in w by 1 (as often as it appears), replacing the second-smallest number that appears in w by 2 (as often as it appears), and so on. More formally, it can be defined as follows: Write w as $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$. Let $W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ be the set of all entries of w, and let $m=|W|$. Let ϕ be the unique increasing bijection from W to $[m]$. Then, Pack w is defined to be the word $\left(\phi\left(w_{1}\right), \phi\left(w_{2}\right), \ldots, \phi\left(w_{n}\right)\right)$.
For example,

$$
\operatorname{Pack}(4,1,7,2,4,1)=(3,1,4,2,3,1) \quad \text { and } \quad \operatorname{Pack}(4,2)=(2,1)
$$

Also, Pack $w=w$ for any packed word w.

- We let WQSym denote the free \mathbb{K}-vector space with basis $(w)_{w}$ is a packed word . We define a K-bilinear operation . (you're reading right: our symbol for this operation is a period) on this vector space WQSym by setting

$$
f . g=\sum_{\substack{h=\left(h_{1}, h_{2}, \ldots, h_{n+m}\right) \text { is a packed word of length } n+m ; \\ \operatorname{Pack}\left(h_{1}, h_{2}, \ldots, h_{n}\right)=f \text { and } \operatorname{Pack}\left(h_{n+1}, h_{n+2}, \ldots, h_{n+m}\right)=g}} h
$$

for any two packed words f and g, where n and m are the lengths of f and g. Equipping WQSym with this operation . as multiplication, we obtain a \mathbb{K}-algebra with unity () (the empty word). When we refer to the \mathbb{K}-algebra WQSym below, we shall always understand it to be equipped with this \mathbb{K}-algebra structure.

For example, in WQSym, we have

$$
(1,1) \cdot(2,1)=(1,1,2,1)+(2,2,2,1)+(1,1,3,2)+(2,2,3,1)+(3,3,2,1) .
$$

The \mathbb{K}-algebra WQSym has various further structures - such as a Hopf algebra structure, and an embedding into the ring of noncommutative formal power series (see [2, §4.3.2], where WQSym is constructed via this embedding, and where the image of a packed word u under this embedding is denoted by \mathbf{M}_{u}). We won't need this extra structure.

Let me add a few more definitions. 1

[^0]Definition 1.1. Let $n \in \mathbb{N}$. Let u be a packed word of length n. Let $r=$ $\max u$. Define $B_{i}=u^{-1}(\{i\})$ for every $i \in[r]$. (Thus, $\left(B_{1}, B_{2}, \ldots, B_{r}\right)$ is a set composition of $[n]$; it is what is called the "set composition of $[n]$ encoded by $u^{\prime \prime}$ in [2].) Now, we define a polyhedral cone K_{u} in \mathbb{R}^{n} by

$$
K_{u}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid \sum_{j=1}^{k} \sum_{i \in B_{j}} x_{i} \geq 0 \quad \text { for all } k=1,2, \ldots, r\right\}
$$

Definition 1.2. For any two sets X and Y, let Map (X, Y) denote the set of all maps from X to Y. Define a \mathbb{K}-vector space \mathfrak{M} by $\mathfrak{M}=\underset{n \geq 0}{\oplus} \operatorname{Map}\left(\mathbb{R}^{n}, \mathbb{K}\right)$ (where each $\operatorname{Map}\left(\mathbb{R}^{n}, \mathbb{K}\right)$ becomes a \mathbb{K}-vector space by pointwise addition and multiplication with scalars). We make \mathfrak{M} into a \mathbb{K}-algebra, whose multiplication is defined as follows: For any $n \in \mathbb{N}$, any $m \in \mathbb{N}$, any $f \in \operatorname{Map}\left(\mathbb{R}^{n}, \mathbb{K}\right)$ and $g \in \operatorname{Map}\left(\mathbb{R}^{m}, \mathbb{K}\right)$, we define $f g$ to be the element of $\operatorname{Map}\left(\mathbb{R}^{n+m}, \mathbb{K}\right)$ which sends every $\left(x_{1}, x_{2}, \ldots, x_{n+m}\right) \in \mathbb{R}^{n+m}$ to $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) g\left(x_{n+1}, x_{n+2}, \ldots, x_{n+m}\right)$.

Definition 1.3. For every $n \in \mathbb{N}$ and any subset S of \mathbb{R}^{n}, we define a map $\underline{1}_{S} \in \operatorname{Map}\left(\mathbb{R}^{n}, \mathbb{K}\right) \subseteq \mathfrak{M}$ as the indicator function of S (that is, the map which sends every $s \in S$ to 1 and every $s \in \mathbb{R}^{n} \backslash S$ to 0).

Our goal is to show:
Theorem 1.4. The map

$$
\begin{aligned}
\alpha: \text { WQSym } & \rightarrow \mathfrak{M}, \\
u & \mapsto(-1)^{\max u} \underline{1}_{K_{u}}
\end{aligned}
$$

is a \mathbb{K}-algebra homomorphism.
This is a stronger version of [2, Theorem 5.2] ${ }^{2}$, and a particular case of [2, Theorem 8.1] ${ }^{3}$

[^1]
2. The proof

We shall prove Theorem 1.4 using a detour via the algebra $\mathbf{H}_{\mathbf{T}}$ defined in [1, Chapter 2]. We shall use the following notations from [1, Chapter 2]:

- If X is a set, then a topology on X is defined to be a family \mathcal{T} of subsets of X that satisfies the following three properties:
- We have $\varnothing \in \mathcal{T}$ and $X \in \mathcal{T}$.
- The union of any number of sets in \mathcal{T} is again a set in \mathcal{T}.
- The intersection of any finite number of sets in \mathcal{T} is again a set in \mathcal{T}.

We will only use this concept in the case when X is finite; in this case, the difference between "any number of sets in \mathcal{T} " and "any finite number of sets in $\mathcal{T}^{\prime \prime}$ is immaterial (since \mathcal{T} itself must be finite), and therefore unions and intersections play symmetric roles in the notion of a topology on X.

- If \mathcal{T} is a topology on X, then the sets belonging to \mathcal{T} are called the open sets of \mathcal{T}. The complements of these open sets (inside X) are called the closed sets of \mathcal{T}.
- If X is a set, then a preorder on X is defined to be a binary relation \preccurlyeq on X that is reflexive and transitive (but, unlike a partial order, doesn't need to be antisymmetric). Both partial orders and equivalence relations are preorders.
- If X is a set, and if \preccurlyeq is a preorder on X, then an ideal of (X, \preccurlyeq) means a subset I of X that has the following property:
- If $i \in I$ and $j \in X$ satisfy $i \preccurlyeq j$, then $j \in I$.
- If X is a finite set, then there is a canonical bijection between $\{$ topologies on $X\}$ and $\{$ preorders on $X\}$. This bijection (sometimes called the Alexandrov correspondence) proceeds as follows:
- If \preccurlyeq is a preorder on X, then we can define a topology $\mathcal{T}_{\preccurlyeq}$ on X by

$$
\mathcal{T}_{\preccurlyeq}=\{\text { ideals of }(X, \preccurlyeq)\} .
$$

We shall denote this topology $\mathcal{T}_{\preccurlyeq}$ as the topology corresponding to \preccurlyeq.

- If \mathcal{T} is a topology on X, then we can define five binary relations $\leq_{\mathcal{T}}$, $\geq_{\mathcal{T}}$ and $\sim_{\mathcal{T}}$ on X by setting

$$
\begin{aligned}
& (a \leq \mathcal{T} b) \Longleftrightarrow(\text { each } I \in \mathcal{T} \text { satisfying } a \in I \text { satisfies } b \in I) ; \\
& (a \geq \mathcal{T} b) \Longleftrightarrow(\text { each } I \in \mathcal{T} \text { satisfying } b \in I \text { satisfies } a \in I) ;
\end{aligned}
$$

$\left(a \sim_{\mathcal{T}} b\right) \Longleftrightarrow($ each $I \in \mathcal{T}$ satisfies the equivalence $(a \in I) \Longleftrightarrow(b \in I))$;

$$
\begin{aligned}
& \left(a<_{\mathcal{T}} b\right) \Longleftrightarrow\left(a \leq_{\mathcal{T}} b \text { but not } a \geq_{\mathcal{T}} b\right) \Longleftrightarrow\left(a \leq_{\mathcal{T} b} b \text { but not } a \sim_{\mathcal{T}} b\right) ; \\
& \left(a>_{\mathcal{T}} b\right) \Longleftrightarrow\left(a \geq_{\mathcal{T}} b \text { but not } a \leq_{\mathcal{T}} b\right) \Longleftrightarrow\left(a \geq_{\mathcal{T}} b \text { but not } a \sim_{\mathcal{T}} b\right) .
\end{aligned}
$$

The three binary relations $\leq_{\mathcal{T}}, \geq_{\mathcal{T}}$ and $\sim_{\mathcal{T}}$ are preorders on X, and the relation $\sim_{\mathcal{T}}$ is an equivalence relation (whence the quotient set $X / \sim_{\mathcal{T}}$ is well-defined). The relations $<_{\mathcal{T}}$ and $>_{\mathcal{T}}$ are strict partial orders. We shall refer to the relation $\leq_{\mathcal{T}}$ as the preorder corresponding to \mathcal{T}.

These assignments of a topology to a preorder and vice versa are mutually inverse: If \preccurlyeq is a preorder on X, then $\leq \mathcal{T}_{\curvearrowright}$ is precisely \preccurlyeq. Conversely, if \mathcal{T} is a topology on X, then $\mathcal{T}_{\leq_{\mathcal{T}}}$ is precisely \mathcal{T}.

- For each $n \in \mathbb{N}$, we let \mathbf{T}_{n} denote the set of all topologies on the set $[n]=\{1,2, \ldots, n\}$.
- We let \mathbf{T} denote the set $\underset{n \in \mathbb{N}}{\bigsqcup} \mathbf{T}_{n}$.
- If f is a packed word of length $n \in \mathbb{N}$, then we define a preorder \leq_{f} on the set $[n]$ by setting

$$
\left(a \leq_{f} b\right) \Longleftrightarrow(f(a) \leq f(b))
$$

Furthermore, if f is a packed word of length $n \in \mathbb{N}$, then we let \mathcal{T}_{f} be the topology $\mathcal{T}_{\leq_{f}}$ corresponding to this preorder \leq_{f}. The closed sets of this topology \mathcal{T}_{f} are the sets $f^{-1}(\{1,2, \ldots, i\})$ for $i \in\{0,1, \ldots, \max f\}$.

- If $P \subseteq \mathbb{N}$ and $n \in \mathbb{N}$, then $P(+n)$ shall denote the set $\{k+n \mid k \in P\}$. (In other words, $P(+n)$ is the set P shifted right by n units on the number line.)
- If $\mathcal{T} \in \mathbf{T}_{n}$ and $\mathcal{S} \in \mathbf{T}_{m}$ are two topologies (on the sets $[n]$ and $[m]$, respectively) for some $n \in \mathbb{N}$ and $m \in \mathbb{N}$, then we define a topology $\mathcal{T} . \mathcal{S} \in \mathbf{T}_{n+m}$ on the set $[n+m]$ by

$$
\mathcal{T} . \mathcal{S}=\{O \cup(P(+n)) \mid O \in \mathcal{T} \text { and } P \in \mathcal{S}\} .
$$

Thus, we have defined a binary operation . on T. This binary operation . is associative (by [1, Proposition 3]), and the topology $\{\varnothing\} \in \mathbf{T}_{0}$ is its neutral element.

- We let $\mathbf{H}_{\mathbf{T}}$ be the free \mathbb{K}-vector space with basis \mathbf{T}. We equip $\mathbf{H}_{\mathbf{T}}$ with a multiplication . that linearly extends the operation . on \mathbf{T} (that is, the restriction of the multiplication $\mathbf{H}_{\mathbf{T}}$ to the basis \mathbf{T} should be the operation . on \mathbf{T}). Thus, $\mathbf{H}_{\mathbf{T}}$ becomes a \mathbb{K}-algebra with unity $\{\varnothing\} \in \mathbf{T}_{0}$.

The \mathbb{K}-algebra $\mathbf{H}_{\mathbf{T}}$ also has the structure of a Hopf algebra, but we shall not need it, so we don't define it here.

We shall also use the following notation from [1, Chapter 4]:

- If X is a set, and if \mathcal{T} is a topology on X, then we set

$$
\begin{gathered}
\mathcal{P}(\mathcal{T})=\bigsqcup_{p \in \mathbb{N}}\{\text { surjective maps } f: X \rightarrow[p] \text { such that every } c \in X \text { and } d \in X \\
\text { satisfying } c \leq \mathcal{T} d \text { satisfy } f(x) \leq f(d)\} .
\end{gathered}
$$

Thus, if $X=[n]$ for some $n \in \mathbb{N}$, then all elements of $\mathcal{P}(\mathcal{T})$ are packed words of length n.

Next, we define a polyhedral cone for every $\mathcal{T} \in \mathbf{T}$:
Definition 2.1. Let $n \in \mathbb{N}$ and $\mathcal{T} \in \mathbf{T}_{n}$ (that is, let \mathcal{T} be a topology on the set $[n]=\{1,2, \ldots, n\})$. Then, we define a polyhedral cone $K_{\mathcal{T}}$ in \mathbb{R}^{n} by

$$
K_{\mathcal{T}}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid \sum_{i \in C} x_{i} \geq 0 \quad \text { for all closed sets } C \text { of } \mathcal{T}\right\}
$$

The following follows from the definitions:
Remark 2.2. Let u be a packed word. Then, $K_{u}=K_{\mathcal{T}_{u}}$, where \mathcal{T}_{u} is as defined in [1, §2.1].

Let us define a few more things:
Definition 2.3. Let X be a finite totally ordered set, and let \mathcal{T} be a topology on X. We define $\mathcal{U}(\mathcal{T})$ to be the set of all $f \in \mathcal{P}(\mathcal{T})$ having the property that any two elements i and j of X satisfying $i<\mathcal{T} j$ must satisfy $f(i)<f(j)$. Notice that $\mathcal{U}(\mathcal{T}) \subseteq \mathcal{P}(\mathcal{T})$. (We can call the elements of $\mathcal{U}(\mathcal{T})$ "strictly increasing packed words" for \mathcal{T}.) (It can also be shown that $\mathcal{L}(\mathcal{T}) \subseteq \mathcal{U}(T)$, where $\mathcal{L}(T)$ is as defined in [1, Definition 15].)

Definition 2.4. We define a K-linear map $U: \mathbf{H}_{\mathbf{T}} \rightarrow$ WQSym by

$$
U(\mathcal{T})=\sum_{f \in \mathcal{U}(\mathcal{T})} f \quad \text { for every } \mathcal{T} \in \mathbf{T}
$$

Remark 2.5. This map U is easily seen to be the map $\Gamma_{(0,0,1)}$ in the notation of [1, Proposition 14]. Thus, U is a surjective Hopf algebra homomorphism.

Now, here is a rather trivial fact:

Proposition 2.6. The map

$$
\begin{aligned}
\beta: \mathbf{H}_{\mathbf{T}} & \rightarrow \mathfrak{M}, \\
\mathcal{T} & \mapsto(-1)^{\left|[n] / \sim_{\mathcal{T}}\right|} \underline{1}_{K_{\mathcal{T}}}
\end{aligned}
$$

is a \mathbb{K}-algebra homomorphism from $\mathbf{H}_{\mathbf{T}}=\left(\mathbf{H}_{\mathrm{T}},.\right)$ to \mathfrak{M}.
Proof of Proposition 2.6 (sketched). The proof boils down to the observation that if $n \in \mathbb{N}, m \in \mathbb{N}, \mathcal{T} \in \mathbf{T}_{n}$ and $\mathcal{S} \in \mathbf{T}_{m}$, then

$$
\begin{gathered}
K_{\mathcal{T} . \mathcal{S}}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n+m}\right) \in \mathbb{R}^{n+m} \mid\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in K_{\mathcal{T}}\right. \\
\text { and } \left.\left(x_{n+1}, x_{n+2}, \ldots, x_{n+m}\right) \in K_{\mathcal{S}}\right\} .
\end{gathered}
$$

Now, we claim:
Theorem 2.7. The diagram

commutes. That is, we have $\beta=\alpha \circ U$.
Before we prove this, we introduce some more notations.
Definition 2.8. We define a \mathbb{K}-linear map $Z: \mathbf{H}_{\mathbf{T}} \rightarrow \mathbf{H}_{\mathbf{T}}$ by

$$
\mathrm{Z}(\mathcal{T})=(-1)^{\left|[n] / \sim_{\mathcal{T}}\right|} \mathcal{T} \quad \text { for every } n \in \mathbb{N} \text { and } \mathcal{T} \in \mathbf{T}_{n}
$$

It is easy to see that Z is an involutive Hopf algebra isomorphism.
Definition 2.9. Let X be a finite totally ordered set, and let \mathcal{T} be a topology on X. Let a and b be two elements of X. We define three new topologies $\mathcal{T} \leftrightarrow(a \leq b), \mathcal{T} \leftrightarrow(a \geq b)$ and $\mathcal{T} \leftrightarrows(a \sim b)$ on X as follows:

$$
\begin{aligned}
& \mathcal{T} \leftrightarrow(a \leq b)=\{O \in \mathcal{T} \mid \quad(a \in O \Longrightarrow b \in O)\} \\
& \mathcal{T} \leftrightarrow(a \geq b)=\{O \in \mathcal{T} \mid(b \in O \Longrightarrow a \in O)\} \\
& \mathcal{T} \leftrightarrow(a \sim b)=\{O \in \mathcal{T} \mid(a \in O \Longleftrightarrow b \in O)\}
\end{aligned}
$$

(It is easy to check that these are actually topologies. Of course, $\mathcal{T} \leftarrow$ $(a \geq b)=\mathcal{T} \leftrightarrow(b \leq a)$.)

Here comes a collection of simple properties of these three new topologies:

Lemma 2.10. Let X be a finite totally ordered set, and let \mathcal{T} be a topology on X. Let a and b be two elements of X.
(a) We have

$$
\begin{align*}
& (\mathcal{T} \leftrightarrow(a \leq b)) \cap(\mathcal{T} \leftrightarrow(a \geq b))=\mathcal{T} \leftrightarrow(a \sim b) \quad \text { and } \tag{1}\\
& (\mathcal{T} \leftrightarrow(a \leq b)) \cup(\mathcal{T} \leftrightarrow(a \geq b))=\mathcal{T} . \tag{2}
\end{align*}
$$

(b) We have
$\mathcal{T} \leftrightarrows(a \sim b)=(\mathcal{T} \leftrightarrows(a \leq b)) \leftarrow(a \geq b)=(\mathcal{T} \leftrightarrows(a \geq b)) \leftarrow(a \leq b)$.
(c) If $a \leq \mathcal{T} b$, then $\mathcal{T} \leftrightarrow(a \leq b)=\mathcal{T}$ and $\mathcal{T} \leftarrow(a \sim b)=\mathcal{T} \leftrightarrow(a \geq b)$.
(d) If $b \leq \mathcal{T} a$, then $\mathcal{T} \leftrightarrows(a \geq b)=\mathcal{T}$ and $\mathcal{T} \leftrightarrow(a \sim b)=\mathcal{T} \leftrightarrows(a \leq b)$.
(e) If c and d are two elements of X, then $c \leq_{\mathcal{T} \oplus(a \leq b)} d$ holds if and only if

$$
\left(c \leq_{\mathcal{T}} d \text { or }\left(c \leq_{\mathcal{T}} a \text { and } b \leq_{\mathcal{T}} d\right)\right)
$$

(f) If c and d are two elements of X, then $c \leq_{\mathcal{T} \leftarrow(a \geq b)} d$ holds if and only if $(c \leq \mathcal{T} d$ or $(c \leq \mathcal{T} b$ and $a \leq \mathcal{T} d))$.
(g) If c and d are two elements of X, then $c \leq_{\mathcal{T} \Leftarrow(a \sim b)} d$ holds if and only if $\left(c \leq_{\mathcal{T}} d\right.$ or $\left(c \leq_{\mathcal{T}} a\right.$ and $\left.b \leq_{\mathcal{T}} d\right)$ or $\left(c \leq_{\mathcal{T}} b\right.$ and $\left.\left.a \leq_{\mathcal{T}} d\right)\right)$.
(h) If c and d are two elements of X, then $c \leq_{\mathcal{T} \leftarrow(a \sim b)} d$ holds if and only if

$$
\left(c \leq_{\mathcal{T} \leftrightarrow(a \leq b)} d \text { or } c \leq_{\mathcal{T} \leftarrow(a \geq b)} d\right) .
$$

(i) If c and d are two elements of X, then $c \leq_{\mathcal{T}} d$ holds if and only if

$$
\left(c \leq_{\mathcal{T} \leftrightarrow(a \leq b)} d \text { and } c \leq_{\mathcal{T} \leftrightarrow(a \geq b)} d\right) .
$$

(j) If c and d are two elements of X, then $c \sim_{\mathcal{T} \oplus(a \leq b)} d$ holds if and only if

$$
\left(c \sim_{\mathcal{T}} d \text { or }\left(b \leq_{\mathcal{T}} c \leq_{\mathcal{T}} a \text { and } b \leq_{\mathcal{T}} d \leq_{\mathcal{T}} a\right)\right)
$$

(k) If c and d are two elements of X, and if we have neither $a \leq \mathcal{T} b$ nor $b \leq_{\mathcal{T}} a$, then $c \sim_{\mathcal{T} \uparrow(a \sim b)} d$ holds if and only if
$\left(c \sim_{\mathcal{T}} d\right.$ or $\left(c \sim_{\mathcal{T}} a\right.$ and $\left.d \sim_{\mathcal{T}} b\right)$ or $\left(c \sim_{\mathcal{T}} b\right.$ and $\left.\left.d \sim_{\mathcal{T}} a\right)\right)$.
(1) We have
$\mathcal{P}(\mathcal{T} \leftrightarrow(a \leq b)) \cap \mathcal{P}(\mathcal{T} \leftrightarrow(a \geq b))=\mathcal{P}(\mathcal{T} \leftrightarrow(a \sim b)) \quad$ and $\mathcal{P}(\mathcal{T} \leftrightarrow(a \leq b)) \cup \mathcal{P}(\mathcal{T} \leftrightarrow(a \geq b))=\mathcal{P}(\mathcal{T})$.
(m) Assume that neither $a \leq_{\mathcal{T}} b$ nor $b \leq_{\mathcal{T}} a$. Then, the three sets $\mathcal{U}(\mathcal{T} \leftrightarrow(a \leq b)), \mathcal{U}(\mathcal{T} \leftrightarrow(a \geq b))$ and $\mathcal{U}(\mathcal{T} \leftrightarrow(a \sim b))$ are disjoint, and their union is $\mathcal{U}(\mathcal{T})$.
(n) Assume that neither $a \leq_{\mathcal{T}} b$ nor $b \leq_{\mathcal{T}} a$. Then,

$$
\begin{aligned}
& \left|X / \sim_{\mathcal{T} \leftrightarrow(a \leq b)}\right|=\left|X / \sim_{\mathcal{T} \leftarrow(a \geq b)}\right|=\left|X / \sim_{\mathcal{T}}\right| \quad \text { and } \\
& \left|X / \sim_{\mathcal{T} \uparrow(a \sim b)}\right|=\left|X / \sim_{\mathcal{T}}\right|-1 .
\end{aligned}
$$

Proof of Lemma 2.10 (sketched). Parts (a) and (b) are straightforward to check.
(c) Assume that $a \leq \mathcal{T} b$. Then, every $O \in \mathcal{T}$ satisfies $(a \in \mathcal{T} \Longrightarrow b \in \mathcal{T})$. Hence, $\mathcal{T} \leftrightarrow(a \leq b)=\mathcal{T}$ by the definition of $\mathcal{T} \leftarrow(a \leq b)$. From Lemma 2.10 (b), we have $\mathcal{T} \leftarrow(a \sim b)=\underbrace{(\mathcal{T} \leftrightarrows(a \leq b))}_{=\mathcal{T}} \leftrightarrows(a \geq b)=\mathcal{T} \leftrightarrow(a \geq b)$. Thus, Lemma 2.10 (c) is proven.
(d) The proof of part (d) is similar to that of (c).
(e) \Longleftarrow : Assume that $\left(c \leq_{\mathcal{T}} d\right.$ or $\left(c \leq_{\mathcal{T}} a\right.$ and $\left.b \leq_{\mathcal{T}} d\right)$). We need to check that $c \leq_{\mathcal{T} \oplus(a \leq b)} d$ holds. In other words, we need to check that every $O \in \mathcal{T} \leftarrow$ $(a \leq b)$ satisfying $c \in O$ satisfies $d \in O$. So let us fix an $O \in \mathcal{T} \leftrightarrow(a \leq b)$ satisfying $c \in O$. We must prove that $d \in O$.

We have $O \in \mathcal{T} \leftrightarrow(a \leq b) \subseteq \mathcal{T}$ (by the definition of $\mathcal{T} \leftrightarrow(a \leq b)$). Thus, if $c \leq \mathcal{T} d$, then $d \in O$. Hence, for the rest of this proof, we WLOG assume that we don't have $c \leq \mathcal{T} d$. Thus, by assumption, we have $c \leq \mathcal{T} a$ and $b \leq \mathcal{T} d$. Therefore, $a \in O$ (since $c \in O$ and $c \leq_{\mathcal{T}} a$). But $O \in \mathcal{T} \leftrightarrow(a \leq b)$, and therefore $(a \in O \Longrightarrow b \in O)$ (by the definition of $\mathcal{T} \leftrightarrow(a \leq b)$), so that $b \in O$ (since $a \in O$), and thus $d \in O$ (since $b \leq_{\mathcal{T}} d$). This completes the proof of the \Longleftarrow direction of Lemma 2.10 (e).
\Longrightarrow : Assume that $c \leq_{\mathcal{T} \oplus(a \leq b)} d$ holds. We need to check that
$\left(c \leq_{\mathcal{T}} d\right.$ or $\left(c \leq_{\mathcal{T}} a\right.$ and $\left.b \leq_{\mathcal{T}} d\right)$). We can WLOG assume that we don't have $c \leq_{\mathcal{T}} d$. Then, we must prove that $\left(c \leq_{\mathcal{T}} a\right.$ and $\left.b \leq_{\mathcal{T}} d\right)$.

We don't have $c \leq_{\mathcal{T}} d$. Hence, there exists a $Q \in \mathcal{T}$ such that $c \in Q$ but $d \notin Q$. Consider this Q. If we had $(a \in Q \Longrightarrow b \in Q)$, then Q would belong to $\mathcal{T} \leftrightarrow(a \leq b)$, which would yield $d \in Q$ (since $c \leq_{\mathcal{T} \leftarrow(a \leq b)} d$ and $c \in Q$), which would contradict $d \notin Q$. Hence, we cannot have ($a \in Q \Longrightarrow b \in Q$). Thus, $a \in Q$ and $b \notin Q$.

Let $O \in \mathcal{T}$ be such that $c \in O$. We shall prove that $a \in O$. Indeed, assume the contrary. Then, $a \notin O$. Thus, $a \notin Q \cap O$, so that $(a \in Q \cap O \Longrightarrow b \in Q \cap O)$. Since $Q \cap O \in \mathcal{T}$ (because $Q \in \mathcal{T}$ and $O \in \mathcal{T}$), this yields $Q \cap O \in \mathcal{T} \leftrightarrow(a \leq b)$. Since we also have $c \in Q \cap O$ (since $c \in Q$ and $c \in O$), this yields $d \in Q \cap O$ (since $c \leq_{\mathcal{T}+\uparrow(a \leq b)} d$), so that $d \in Q \cap O \subseteq Q$, which contradicts $d \notin Q$. This contradiction proves that our assumption was wrong. Hence, $a \in O$ is proven. Forget now that we fixed O. Thus we have shown that $a \in O$ for every $O \in \mathcal{T}$ which satisfies $c \in O$. In other words, $c \leq_{\mathcal{T}} a$.

Let $O \in \mathcal{T}$ be such that $b \in O$. We shall prove that $d \in O$. Indeed, assume the contrary. Then, $d \notin O$. Thus, $d \notin Q \cup O$ (since $d \notin Q$ and $d \notin O$). But $b \in O \subseteq$ $Q \cup O$, so that $(a \in Q \cup O \Longrightarrow b \in Q \cup O)$. Since $Q \cup O \in \mathcal{T}$ (because $Q \in \mathcal{T}$ and $O \in \mathcal{T}$), this yields $Q \cup O \in \mathcal{T} \leftrightarrows(a \leq b)$. Since we also have $c \in Q \cup O$ (since $c \in Q$), this yields $d \in Q \cup O$ (since $c \leq_{\mathcal{T} \leftarrow(a \leq b)} d$), which contradicts $d \notin Q \cup O$. This contradiction proves that our assumption was wrong. Hence, $d \in O$ is proven. Forget now that we fixed O. Thus we have shown that $d \in O$ for every $O \in \mathcal{T}$ which satisfies $b \in O$. In other words, $b \leq_{\mathcal{T}} d$.

We thus have shown that $\left(c \leq_{\mathcal{T}} a\right.$ and $\left.b \leq_{\mathcal{T}} d\right)$. This completes the proof of the \Longrightarrow direction of Lemma 2.10 (e).
(f) The proof of part (f) is analogous to that of (e).
(g) Let c and d be two elements of X. Then, we have the following logical equivalence:
$\left(c \leq_{\mathcal{T} \leftrightarrow(a \sim b)} d\right)$
$\Longleftrightarrow\left(c \leq_{(\mathcal{T} \leftarrow(a \leq b)) \leftarrow+(a \geq b)} d\right) \quad$ (by Lemma 2.10 (b))
$\Longleftrightarrow\left(c \leq_{\mathcal{T} \leftarrow(a \leq b)} d\right.$ or $\left(c \leq_{\mathcal{T} \leftarrow(a \leq b)} b\right.$ and $\left.\left.a \leq_{(\mathcal{T} \leftarrow(a \leq b))} d\right)\right)$
(by Lemma 2.10 (f))
$\Longleftrightarrow\left(\left(c \leq_{\mathcal{T}} d\right.\right.$ or $\left(c \leq_{\mathcal{T}} a\right.$ and $\left.\left.b \leq_{\mathcal{T}} d\right)\right)$ or $\left(\left(c \leq_{\mathcal{T}} b\right.\right.$ or $\left(c \leq_{\mathcal{T}} a\right.$ and $\left.\left.b \leq_{\mathcal{T}} b\right)\right)$ and $\left(a \leq_{\mathcal{T}} d\right.$ or $\left(a \leq_{\mathcal{T}} a\right.$ and $\left.\left.\left.\left.b \leq_{\mathcal{T}} d\right)\right)\right)\right)$
(by Lemma 2.10 (e), applied to each of the three inequalities)
$\Longleftrightarrow\left(c \leq_{\mathcal{T}} d\right.$ or $\left(c \leq_{\mathcal{T}} a\right.$ and $\left.b \leq_{\mathcal{T}} d\right)$ or $\left(c \leq_{\mathcal{T}} b\right.$ and $\left.\left.a \leq_{\mathcal{T}} d\right)\right)$
(after simplifying using the transitivity and reflexivity of $\leq \mathcal{T}$).
This proves Lemma 2.10 (g).
(h) This is just a rewriting of Lemma 2.10 (g) using parts (e) and (f).
(i) \Longrightarrow : This is clear.
\Longleftarrow : Assume that $\left(c \leq_{\mathcal{T} \uparrow(a \leq b)} d\right.$ and $\left.c \leq_{\mathcal{T}, p(a \geq b)} d\right)$. We need to show that $c \leq_{\mathcal{T}} d$. Indeed, assume the contrary.

We have $c \leq_{\mathcal{T} \leftarrow(a \leq b)} d$. Thus, Lemma 2.10 (e) yields that we must have $\left(c \leq_{\mathcal{T}} d\right.$ or $\left(c \leq_{\mathcal{T}} a\right.$ and $\left.b \leq_{\mathcal{T}} d\right)$). Since we assumed that $c \leq_{\mathcal{T}} d$ does not hold, this yields $\left(c \leq_{\mathcal{T}} a\right.$ and $\left.b \leq_{\mathcal{T}} d\right)$. Similarly, $\left(c \leq_{\mathcal{T}} b\right.$ and $\left.a \leq_{\mathcal{T}} d\right)$. Thus, $c \leq_{\mathcal{T}} b \leq_{\mathcal{T}} d$, which contradicts our assumption that not $c \leq_{\mathcal{T}} d$. This contradiction completes the proof.
(j) We have $c \sim_{\mathcal{T} \leftarrow(a \leq b)} d$ if and only if $\left(c \leq_{\mathcal{T} \leftrightarrow(a \leq b)} d\right.$ and $\left.d \leq_{\mathcal{T} \oplus(a \leq b)} c\right)$. We can rewrite each of the two statements $c \leq_{\mathcal{T} \oplus(a \leq b)} d$ and $d \leq_{\mathcal{T} \oplus(a \leq b)} c$ using Lemma 2.10 (e), and then simplify the result; we end up with Lemma 2.10 (j).
(k) Let c and d be two elements of X. Assume that we have neither $a \leq_{\mathcal{T}} b$ nor $b \leq_{\mathcal{T}} a$. We have $c \sim_{\mathcal{T} \leftrightarrow(a \sim b)} d$ if and only if $\left(c \leq_{\mathcal{T} \uparrow(a \sim b)} d\right.$ and $\left.d \leq_{\mathcal{T} \leftrightarrow(a \sim b)} c\right)$. We can rewrite each of the two statements $c \leq_{\mathcal{T} \oplus(a \sim b)} d$ and $d \leq_{\mathcal{T} \leftarrow(a \sim b)} c$ using Lemma 2.10 (\mathbf{g}), and then simplify the result (a disjunction with 9 cases, of which many can be ruled out due to the assumption that neither $a \leq_{\mathcal{T}} b$ nor $b \leq_{\mathcal{T}} a$); we end up with Lemma 2.10 (k).
(1) Proof of $\mathcal{P}(\mathcal{T} \leftarrow(a \leq b)) \cap \mathcal{P}(\mathcal{T} \leftarrow(a \geq b))=\mathcal{P}(\mathcal{T} \leftarrow(a \sim b))$: Whenever f is a surjective map $X \rightarrow[p]$ for some $p \in \mathbb{N}$, we have the following
logical equivalence:

$$
\begin{aligned}
& (f \in \mathcal{P}(\mathcal{T} \leftrightarrow(a \leq b)) \cap \mathcal{P}(\mathcal{T} \leftrightarrow(a \geq b))) \\
& \Longleftrightarrow \underbrace{\underbrace{(f \in \mathcal{P}(\mathcal{T} \leftrightarrow(a \leq b)))}} \\
& \Longleftrightarrow\left(\text { every } c \in X \text { and } d \in X \text { satisfying } c \leq \leq_{\leftarrow \leftarrow(a \leq b)} d \text { satisfy } f(c) \leq f(d)\right)
\end{aligned}
$$

satisfy $f(c) \leq f(d))$
$\Longleftrightarrow\left(\right.$ every $c \in X$ and $d \in X$ satisfying $c \leq_{\mathcal{T} \leftarrow(a \sim b)} d$ satisfy $\left.f(c) \leq f(d)\right)$
$\Longleftrightarrow(f \in \mathcal{P}(\mathcal{T} \leftrightarrow(a \sim b)))$.
Thus, $\mathcal{P}(\mathcal{T} \leftrightarrows(a \leq b)) \cap \mathcal{P}(\mathcal{T} \leftrightarrows(a \geq b))=\mathcal{P}(\mathcal{T} \leftrightarrows(a \sim b))$ is proven.
It remains to prove $\mathcal{P}(\mathcal{T} \leftrightarrow(a \leq b)) \cup \mathcal{P}(\mathcal{T} \leftarrow(a \geq b))=\mathcal{P}(\mathcal{T})$. We shall achieve this by proving both inclusions separately:

Proof of $\mathcal{P}(\mathcal{T}) \subseteq \mathcal{P}(\mathcal{T} \leftrightarrow(a \leq b)) \cup \mathcal{P}(\mathcal{T} \leftrightarrow(a \geq b))$: Let $f \in \mathcal{P}(\mathcal{T})$. We must prove that $f \in \mathcal{P}(\mathcal{T} \leftrightarrow(a \leq b)) \cup \mathcal{P}(\mathcal{T} \leftrightarrow(a \geq b))$.

We WLOG assume that $f(a) \leq f(b)$. We shall now show that $f \in \mathcal{P}(\mathcal{T} \leftrightarrow(a \leq b))$. This will yield that $f \in \mathcal{P}(\mathcal{T} \leftrightarrows(a \leq b)) \cup \mathcal{P}(\mathcal{T} \leftrightarrows(a \geq b))$, and thus complete this proof of $\mathcal{P}(\mathcal{T}) \subseteq \mathcal{P}(\mathcal{T} \leftarrow(a \leq b)) \cup \mathcal{P}(\mathcal{T} \leftarrow(a \geq b))$.

Let $c \in X$ and $d \in X$ be such that $c \leq_{\mathcal{T}+(a \leq b)} d$. In order to prove that $f \in \mathcal{P}(\mathcal{T} \leftrightarrow(a \leq b))$, we must now show that $f(c) \leq f(d)$.

We have $c \leq_{\mathcal{T}, \oplus(a \leq b)} d$. Due to Lemma 2.10(e), this yields that $\left(c \leq_{\mathcal{T}} d\right.$ or $\left(c \leq_{\mathcal{T}} a\right.$ and $\left.b \leq_{\mathcal{T}} d\right)$). In the first of these cases, $f(c) \leq f(d)$ follows immediately from $f \in \mathcal{P}(\mathcal{T})$; thus, let us assume that we are in the second case. Thus, $c \leq \mathcal{T}$ a and $b \leq \mathcal{T} d$. From $f \in \mathcal{P}(\mathcal{T})$, we thus obtain $f(c) \leq f(a)$ and $f(b) \leq f(d)$. Hence, $f(c) \leq f(a) \leq f(b) \leq f(d)$, qed.

Proof of $\mathcal{P}(\mathcal{T} \leftrightarrow(a \leq b)) \cup \mathcal{P}(\mathcal{T} \leftrightarrow(a \geq b)) \subseteq \mathcal{P}(\mathcal{T})$: We now need to show that $\mathcal{P}(\mathcal{T} \leftrightarrow(a \leq b)) \cup \mathcal{P}(\mathcal{T} \leftrightarrow(a \geq b)) \subseteq \mathcal{P}(\mathcal{T})$. To do so, it is clearly enough to prove $\mathcal{P}(\mathcal{T} \leftrightarrows(a \leq b)) \subseteq \mathcal{P}(\mathcal{T})$ and $\mathcal{P}(\mathcal{T} \leftarrow(a \geq b)) \subseteq \mathcal{P}(\mathcal{T})$. We shall
only show the first of these two relations, as the second is analogous. Let $f \in$ $\mathcal{P}(\mathcal{T} \leftrightarrow(a \leq b))$. Then, every $c \in X$ and $d \in X$ satisfying $c \leq_{\mathcal{T} \oplus(a \leq b)} d$ satisfy $f(c) \leq f(d)$. Hence, every $c \in X$ and $d \in X$ satisfying $c \leq \mathcal{T} d$ satisfy $f(c) \leq$ $f(d)$ (since every $c \in X$ and $d \in X$ satisfying $c \leq_{\mathcal{T}} d$ satisfy $c \leq_{\mathcal{T}, ค(a \leq b)} d$ (due to Lemma 2.10 (e))). In other words, $f \in \mathcal{P}(\mathcal{T})$. Since this is proven for every $f \in \mathcal{P}(\mathcal{T} \leftrightarrows(a \leq b))$, we thus conclude that $\mathcal{P}(\mathcal{T} \leftrightarrow(a \leq b)) \subseteq \mathcal{P}(\mathcal{T})$.

The proof of Lemma 2.10 (1) is thus complete.
(\mathbf{m}) It is clearly enough to prove the three equalities

$$
\begin{align*}
& \mathcal{U}(\mathcal{T} \leftrightarrows(a \leq b))=\{f \in \mathcal{U}(\mathcal{T}) \mid f(a)<f(b)\} ; \tag{3}\\
& \mathcal{U}(\mathcal{T} \leftrightarrows(a \sim b))=\{f \in \mathcal{U}(\mathcal{T}) \mid f(a)=f(b)\} ; \tag{4}\\
& \mathcal{U}(\mathcal{T} \leftrightarrow(a \geq b))=\{f \in \mathcal{U}(\mathcal{T}) \mid f(a)>f(b)\} \tag{5}
\end{align*}
$$

We shall only check the first two of these three equalities (since the third one is analogous to the first).

Let us first check that $a<_{\mathcal{T} \oplus(a \leq b)} b$. Indeed, it is clear from the definition of $\mathcal{T} \leftrightarrow(a \leq b)$ that $a \leq_{\mathcal{T} \leftarrow(a \leq b)} b$. Thus, in order to prove that $a<\mathcal{T} \leftrightarrow(a \leq b) b$, we must only show that we don't have $b \leq_{\mathcal{T} \uparrow(a \leq b)} a$. To achieve this, we assume the contrary. Lemma 2.10 (e) (applied to $c=b$ and $d=a$) thus yields that ($b \leq_{\mathcal{T}} a$ or $\left(b \leq_{\mathcal{T}} a\right.$ and $\left.b \leq_{\mathcal{T}} a\right)$). In either of these cases, we must have $b \leq_{\mathcal{T}} a$, which contradicts the assumption that neither $a \leq \mathcal{T} b$ nor $b \leq \mathcal{T} a$. So $a<\mathcal{T} \oplus(a \leq b)$ b is proven.

Next, we are going to prove (3) by showing its two inclusions separately:
Proof of $\mathcal{U}(\mathcal{T} \leftrightarrow(a \leq b)) \subseteq\{f \in \mathcal{U}(\mathcal{T}) \mid f(a)<f(b)\}$: Let $g \in \mathcal{U}(\mathcal{T} \leftrightarrow(a \leq b))$. Thus, $g \in \mathcal{P}(\mathcal{T} \leftrightarrow(a \leq b))$, and every two elements i and j of X satisfying $i<\mathcal{T}_{\leftarrow f(a \leq b)} j$ must satisfy $g(i)<g(j)$. Applying the latter fact to $i=a$ and $j=b$, we obtain $g(a)<g(b)$ (since $a<\mathcal{T}+(a \leq b) b$).

Moreover, $g \in \mathcal{P}(\mathcal{T} \leftrightarrows(a \leq b)) \subseteq \mathcal{P}(\mathcal{T} \leftrightarrows(a \leq b)) \cup \mathcal{P}(\mathcal{T} \leftrightarrow(a \geq b))=$ $\mathcal{P}(\mathcal{T})$ (by Lemma 2.10 (1)).

Let now i and j be any two elements of X satisfying $i<_{\mathcal{T}} j$. We shall show that $g(i)<g(j)$.

Indeed, $i<\mathcal{T} j$, thus $i \leq \mathcal{T} j$ and therefore $i \leq_{\mathcal{T} \oplus(a \leq b)} j$ (due to Lemma 2.10 (e)). Assume (for the sake of contradiction) that $\bar{j} \leq_{\mathcal{T} f(a \leq b)} i$. Then, $i \sim_{\mathcal{T}, f(a \leq b)} j$, and thus (by Lemma $2.10(\mathbf{j})$, applied to $c=i$ and $d=j$) we have $\left(i \sim_{\mathcal{T}} j\right.$ or $\left(b \leq_{\mathcal{T}} i \leq_{\mathcal{T}} a\right.$ and $\left.b \leq_{\mathcal{T}} j \leq_{\mathcal{T}} a\right)$. But neither of these two cases can occur (since $i<_{\mathcal{T}} j$ precludes $i \sim_{\mathcal{T}} j$, and since $b \leq_{\mathcal{T}} i \leq_{\mathcal{T}}$ a contradicts our assumption that not $b \leq \mathcal{T} a$). Hence, we have our contradiction. Thus, our assumption (that $j \leq_{\mathcal{T}+(a \leq b)}$) was false. We therefore have $i \leq_{\mathcal{T}, \stackrel{P}{(a \leq b)}} j$ but not $j \leq_{\mathcal{T}, \oplus(a \leq b)} i$. In other words, $i<\mathcal{T} \uparrow(a \leq b)^{j}$. Thus, $g(i)<g(j)$ (since $g \in \mathcal{U}(\mathcal{T} \leftrightarrow(a \leq b)))$.

Now, let us forget that we fixed i and j. We thus have shown that any two elements i and j of X satisfying $i<\mathcal{T} j$ satisfy $g(i)<g(j)$. In other words, $g \in$ $\mathcal{U}(\mathcal{T})$ (since we already know that $g \in \mathcal{P}(\mathcal{T})$). Thus, g is an element of $\mathcal{U}(\mathcal{T})$ and satisfies $g(a)<g(b)$. In other words, $g \in\{f \in \mathcal{U}(\mathcal{T}) \mid f(a)<f(b)\}$.

Since this is proven for every $g \in \mathcal{U}(\mathcal{T} \leftrightarrow(a \leq b))$, we thus conclude that
$\mathcal{U}(\mathcal{T} \leftrightarrow(a \leq b)) \subseteq\{f \in \mathcal{U}(\mathcal{T}) \mid f(a)<f(b)\}$.
Proof of $\{f \in \mathcal{U}(\mathcal{T}) \mid f(a)<f(b)\} \subseteq \mathcal{U}(\mathcal{T} \leftrightarrow(a \leq b))$: Let
$g \in\{f \in \mathcal{U}(\mathcal{T}) \mid f(a)<f(b)\}$. Then, $g \in \mathcal{U}(\mathcal{T})$ and $g(a)<g(b)$. From $g \in \mathcal{U}(\mathcal{T})$, we obtain $g \in \mathcal{P}(\mathcal{T})$.

Let now $c \in X$ and $d \in X$ be such that $c \leq_{\mathcal{T} \leftrightarrow(a \leq b)} d$. We now aim to show that $g(c) \leq g(d)$.

Indeed, from $c \leq_{\mathcal{T} \mathscr{P}(a \leq b)} d$, we obtain $\left(c \leq_{\mathcal{T}} d\right.$ or $\left(c \leq_{\mathcal{T}} a\right.$ and $\left.b \leq_{\mathcal{T}} d\right)$) (by Lemma 2.10 (e)). In the first of these two cases, we obtain $g(c) \leq g(d)$ immediately (since $g \in \mathcal{P}(\mathcal{T})$), while in the second case we obtain

$$
\begin{aligned}
g(c) & \leq g(a) \quad(\text { since } c \leq \mathcal{T} a \text { and } g \in \mathcal{P}(\mathcal{T})) \\
& <g(b) \leq g(d) \quad(\text { since } b \leq \mathcal{T} d \text { and } g \in \mathcal{P}(\mathcal{T})) .
\end{aligned}
$$

Thus, $g(c) \leq g(d)$ is proven in either case.
Now, let us forget that we fixed c and d. We thus have proven that $g(c) \leq$ $g(d)$ for any $c \in X$ and $d \in X$ satisfying $c \leq_{\mathcal{T} \oplus(a \leq b)} d$. In other words, $g \in$ $\mathcal{P}(\mathcal{T} \leftrightarrow(a \leq b))$.

Now, let $c \in X$ and $d \in X$ be such that $c<_{\mathcal{T} \oplus(a \leq b)} d$. We now aim to show that $g(c)<g(d)$.

Indeed, from $c<_{\mathcal{T} \oplus(a \leq b)} d$, we obtain $c \leq_{\mathcal{T} \oplus(a \leq b)} d$, and thus $\left(c \leq_{\mathcal{T}} d\right.$ or $\left(c \leq_{\mathcal{T}} a\right.$ and $\left.b \leq_{\mathcal{T}} d\right)$) (by Lemma 2.10 (e)). In the second of these two cases, we have

$$
\begin{aligned}
g(c) & \leq g(a) \quad(\text { since } c \leq \mathcal{T} a \text { and } g \in \mathcal{P}(\mathcal{T})) \\
& <g(b) \leq g(d) \quad(\text { since } b \leq \mathcal{T} d \text { and } g \in \mathcal{P}(\mathcal{T})) .
\end{aligned}
$$

Thus, $g(c)<g(d)$ is proven in the second case. We thus WLOG assume that we are in the first case. That is, we have $c \leq_{\mathcal{T}} d$. If $c<_{\mathcal{T}} d$, then we can immediately conclude that $g(c)<g(d)$ (since $g \in \mathcal{U}(\mathcal{T})$). Hence, we WLOG assume that we don't have $c<_{\mathcal{T}} d$. Thus, $c \sim_{\mathcal{T}} d$ (since $c \leq_{\mathcal{T}} d$), so that $d \leq \mathcal{T} c$. Hence, ($d \leq_{\mathcal{T}}$ c or $\left(d \leq_{\mathcal{T}} a\right.$ and $\left.b \leq_{\mathcal{T}} c\right)$), so that Lemma 2.10 (e) (applied to d and c instead of c and d) yields $d \leq_{\mathcal{T} \uparrow(a \leq b)} c$. But this contradicts $c<_{\mathcal{T} \oplus(a \leq b)} d$. Thus, we have obtained a contradiction, and our proof of $g(c)<g(d)$ is complete.

Now, let us forget that we fixed c and d. We thus have proven that $g(c)<g(d)$ for any $c \in X$ and $d \in X$ satisfying $c<_{\mathcal{T} \leftarrow(a \leq b)} d$. In other words, $g \in$ $\mathcal{U}(\mathcal{T} \leftrightarrows(a \leq b))($ since $g \in \mathcal{P}(\mathcal{T} \leftrightarrows(a \leq b)))$. Since this is proven for every $g \in$ $\{f \in \mathcal{U}(\mathcal{T}) \mid f(a)<f(b)\}$, we thus conclude that $\{f \in \mathcal{U}(\mathcal{T}) \mid f(a)<f(b)\} \subseteq$ $\mathcal{U}(\mathcal{T} \leftrightarrow(a \leq b))$.

Combining $\mathcal{U}(\mathcal{T} \leftarrow(a \leq b)) \subseteq\{f \in \mathcal{U}(\mathcal{T}) \mid f(a)<f(b)\}$ with $\{f \in \mathcal{U}(\mathcal{T}) \mid f(a)<f(b)\} \subseteq \mathcal{U}(\mathcal{T} \leftrightarrow(a \leq b))$, we obtain (3).

Let us next check that $a \sim_{\mathcal{T}+\rho(a \leq b)} b$. Indeed, it is clear from the definition of $\mathcal{T} \leftrightarrow(a \sim b)$ that $a \leq_{\mathcal{T} \leftarrow(a \sim b)} b$ and that $b \leq_{\mathcal{T} \leftrightarrow(a \sim b)} a$. Combining these, we obtain $a \sim_{\mathcal{T} \leftarrow(a \sim b)} b$.

Next, we are going to prove (4) by showing its two inclusions separately:
Proof of $\mathcal{U}(\mathcal{T} \leftrightarrows(a \sim b)) \subseteq\{f \in \mathcal{U}(\mathcal{T}) \mid f(a)=f(b)\}$: Let $g \in \mathcal{U}(\mathcal{T} \leftrightarrow(a \sim b))$.
Thus, $g \in \mathcal{P}(\mathcal{T} \leftrightarrow(a \sim b))$, and every two elements i and j of X satisfying $i<_{\mathcal{T} \leftrightarrow(a \sim b)} j$ must satisfy $g(i)<g(j)$. We have $a \sim_{\mathcal{T} \leftrightarrow(a \sim b)} b$ and $g \in \mathcal{P}(\mathcal{T} \leftrightarrow(a \sim b))$; thus, $g(a)=g(b)$.

Moreover,

$$
\begin{aligned}
g & \in \mathcal{P}(\mathcal{T} \leftrightarrow(a \sim b))=\mathcal{P}(\mathcal{T} \leftrightarrow(a \leq b)) \cap \mathcal{P}(\mathcal{T} \leftrightarrow(a \geq b)) \\
& \quad(\text { by Lemma } 2.10(\mathbf{1})) \\
& \subseteq \mathcal{P}(\mathcal{T} \leftrightarrow(a \leq b)) \subseteq \mathcal{P}(\mathcal{T} \leftrightarrow(a \leq b)) \cup \mathcal{P}(\mathcal{T} \leftrightarrow(a \geq b))=\mathcal{P}(\mathcal{T})
\end{aligned}
$$

(by Lemma 2.10 (1)).
Now, let i and j be any two elements of X satisfying $i<_{\mathcal{T}} j$. We shall show that $g(i)<g(j)$.

Indeed, $i<_{\mathcal{T}} j$, thus $i \leq_{\mathcal{T}} j$ and therefore $i \leq_{\mathcal{T} \oplus(a \sim b)} j$ (due to Lemma 2.10 (g)). Assume (for the sake of contradiction) that $j \leq_{\mathcal{T} \uparrow \uparrow(a \sim b)} i$. Then, $i \sim_{\mathcal{T}, \uparrow(a \sim b)} j$, and thus (by Lemma 2.10 (k), applied to $c=i$ and $d=j$) we have $\left(i \sim_{\mathcal{T}} j\right.$ or $\left(i \sim_{\mathcal{T}} a\right.$ and $\left.j \sim_{\mathcal{T}} b\right)$ or $\left(i \sim_{\mathcal{T}} b\right.$ and $\left.j \sim_{\mathcal{T}} a\right)$). But neither of these three cases can occur ${ }^{4}$. Hence, we have our contradiction. Thus, our assumption (that $j \leq_{\mathcal{T} \leftarrow(a \sim b)} i$) was false. We therefore have $i \leq_{\mathcal{T} \leftrightarrow(a \sim b)} j$ but not $j \leq_{\mathcal{T} \leftrightarrow(a \sim b)} i$. In other words, $i<_{\mathcal{T} \leftarrow(a \sim b)} j$. Thus, $g(i)<g(j)$ (since $g \in \mathcal{U}(\mathcal{T} \leftrightarrows(a \sim b)))$.

Now, let us forget that we fixed i and j. We thus have shown that any two elements i and j of X satisfying $i<\mathcal{T} j$ satisfy $g(i)<g(j)$. In other words, $g \in$ $\mathcal{U}(\mathcal{T})$ (since we already know that $g \in \mathcal{P}(\mathcal{T})$). Thus, g is an element of $\mathcal{U}(\mathcal{T})$ and satisfies $g(a)=g(b)$. In other words, $g \in\{f \in \mathcal{U}(\mathcal{T}) \mid f(a)=f(b)\}$. Since this is proven for every $g \in \mathcal{U}(\mathcal{T} \leftrightarrow(a \sim b))$, we thus conclude that
$\mathcal{U}(\mathcal{T} \leftrightarrow(a \sim b)) \subseteq\{f \in \mathcal{U}(\mathcal{T}) \mid f(a)=f(b)\}$.
Proof of $\{f \in \mathcal{U}(\mathcal{T}) \mid f(a)=f(b)\} \subseteq \mathcal{U}(\mathcal{T} \leftrightarrows(a \sim b))$: Let
$g \in\{f \in \mathcal{U}(\mathcal{T}) \mid f(a)=f(b)\}$. Then, $g \in \mathcal{U}(\mathcal{T})$ and $g(a)=g(b)$. From $g \in \mathcal{U}(\mathcal{T})$, we obtain $g \in \mathcal{P}(\mathcal{T})$.

Let now $c \in X$ and $d \in X$ be such that $c \leq_{\mathcal{T}, \mathscr{P}(a \sim b)} d$. We now aim to show that $g(c) \leq g(d)$.

Indeed, from $c \leq_{\mathcal{T} \uparrow f(a \sim b)} d$, we obtain
$\left(c \leq_{\mathcal{T}} d\right.$ or $\left(c \leq_{\mathcal{T}} a\right.$ and $\left.b \leq_{\mathcal{T}} d\right)$ or $\left(c \leq_{\mathcal{T}} b\right.$ and $\left.a \leq_{\mathcal{T}} d\right)$) (by Lemma 2.10 (g)). In the first of these three cases, we obtain $g(c) \leq g(d)$ immediately (since $g \in$ $\mathcal{P}(\mathcal{T}))$. In the second case, we obtain

$$
\begin{aligned}
g(c) & \leq g(a) \quad(\text { since } c \leq \mathcal{T} a \text { and } g \in \mathcal{P}(\mathcal{T})) \\
& =g(b) \leq g(d) \quad(\text { since } b \leq \mathcal{T} d \text { and } g \in \mathcal{P}(\mathcal{T})) .
\end{aligned}
$$

[^2]In the third case, we obtain

$$
\begin{aligned}
g(c) & \leq g(b) \quad(\text { since } c \leq \mathcal{T} b \text { and } g \in \mathcal{P}(\mathcal{T})) \\
& =g(a) \leq g(d) \quad(\text { since } a \leq \mathcal{T} d \text { and } g \in \mathcal{P}(\mathcal{T})) .
\end{aligned}
$$

Thus, $g(c) \leq g(d)$ is proven in either case.
Now, let us forget that we fixed c and d. We thus have proven that $g(c) \leq$ $g(d)$ for any $c \in X$ and $d \in X$ satisfying $c \leq_{\mathcal{T} \uparrow(a \sim b)} d$. In other words, $g \in$ $\mathcal{P}(\mathcal{T} \leftrightarrow(a \sim b))$.

Now, let $c \in X$ and $d \in X$ be such that $c<_{\mathcal{T} \uparrow(a \sim b)} d$. We now aim to show that $g(c)<g(d)$.

Indeed, from $c<_{\mathcal{T} \leftarrow(a \sim b)} d$, we obtain $c \leq_{\mathcal{T} \oplus(a \sim b)} d$, and thus $\left(c \leq_{\mathcal{T}} d\right.$ or $\left(c \leq_{\mathcal{T}} a\right.$ and $\left.b \leq_{\mathcal{T}} d\right)$ or $\left(c \leq_{\mathcal{T}} b\right.$ and $\left.a \leq_{\mathcal{T}} d\right)$) (by Lemma 2.10 (g)). We study these three cases separately:

- Assume that we are in the first case, i.e., we have $c \leq_{\mathcal{T}} d$. Then, $c<_{\mathcal{T}} d$ (since otherwise, we would have $d \leq \mathcal{T} c$, and therefore $d \leq_{\mathcal{T} \leftarrow(a \sim b)} c$ (by Lemma $2.10(\mathrm{~g})$), which would contradict $\left.c<_{\mathcal{T} \leftarrow(a \sim b)} d\right)$. Hence, $g(c)<$ $g(d)$ (since $g \in \mathcal{U}(\mathcal{T})$).
- Assume that we are in the second case, i.e., we have ($c \leq_{\mathcal{T}} a$ and $\left.b \leq_{\mathcal{T}} d\right)$. Then,

$$
\begin{aligned}
g(c) & \leq g(a) \quad(\text { since } c \leq \mathcal{T} a \text { and } g \in \mathcal{P}(\mathcal{T})) \\
& =g(b) \leq g(d) \quad(\text { since } b \leq \mathcal{T} d \text { and } g \in \mathcal{P}(\mathcal{T})) .
\end{aligned}
$$

If at least one of the strict inequalities $c<\mathcal{T} a$ or $b<\mathcal{T} d$ holds, then we can strengthen this to a strict inequality $g(c)<g(d)$ (because $g \in \mathcal{U}(\mathcal{T})$), and thus be done. Hence, we WLOG assume that none of the inequalities $c<\mathcal{T} a$ or $b<\mathcal{T} d$ holds. Thus, $c \sim_{\mathcal{T}} a$ and $b \sim_{\mathcal{T}} d$. Hence, $c \sim_{\mathcal{T} \leftarrow(a \sim b)} a$ and $b \sim_{\mathcal{T} \leftarrow(a \sim b)} d$ (by Lemma 2.10 (k)), so that $c \sim_{\mathcal{T} \leftrightarrow p(a \sim b)} a \sim_{\mathcal{T} \uparrow(a \sim b)}$ $b \sim_{\mathcal{T} \uparrow(a \sim b)} d$, which contradicts $c<_{\mathcal{T} \uparrow(a \sim b)} d$. Hence, we are done in the second case as well.

- The third case is similar to the second case.

Thus, our proof of $g(c)<g(d)$ is complete in each case.
Now, let us forget that we fixed c and d. We thus have proven that $g(c)<g(d)$ for any $c \in X$ and $d \in X$ satisfying $c<_{\mathcal{T} \uparrow(a \sim b)} d$. In other words, $g \in$ $\mathcal{U}(\mathcal{T} \leftrightarrows(a \sim b))($ since $g \in \mathcal{P}(\mathcal{T} \leftrightarrows(a \sim b)))$. Since this is proven for every $g \in$ $\{f \in \mathcal{U}(\mathcal{T}) \mid f(a)=f(b)\}$, we thus conclude that $\{f \in \mathcal{U}(\mathcal{T}) \mid f(a)=f(b)\} \subseteq$ $\mathcal{U}(\mathcal{T} \leftrightarrow(a \sim b))$.

Combining $\mathcal{U}(\mathcal{T} \leftrightarrows(a \sim b)) \subseteq\{f \in \mathcal{U}(\mathcal{T}) \mid f(a)=f(b)\}$ with $\{f \in \mathcal{U}(\mathcal{T}) \mid f(a)=f(b)\} \subseteq \mathcal{U}(\mathcal{T} \leftarrow(a \sim b))$, we obtain (4).

Now, our proof of Lemma 2.10 (\mathbf{m}) is complete.
(n) If c and d are two elements of X, then $c \sim_{\mathcal{T} \leftarrow(a \leq b)} d$ holds if and only if

$$
\left(c \sim_{\mathcal{T}} d \text { or }\left(b \leq_{\mathcal{T}} c \leq_{\mathcal{T}} a \text { and } b \leq_{\mathcal{T}} d \leq_{\mathcal{T}} a\right)\right)
$$

(according to Lemma 2.10 (j)). Since $\left(b \leq_{\mathcal{T} c} \leq_{\mathcal{T}} a\right.$ and $\left.b \leq_{\mathcal{T}} d \leq_{\mathcal{T}} a\right)$ cannot hold (because of our assumption that not $b \leq_{\mathcal{T}} a$), this simplifies as follows: If c and d are two elements of X, then $c \sim_{\mathcal{T} \uparrow(a \leq b)} d$ holds if and only if $c \sim_{\mathcal{T}} d$. Thus, the equivalence relation $\sim_{\mathcal{T} \leftrightarrow(a \leq b)}$ is identical to $\sim_{\mathcal{T}}$. Hence, $\left|X / \sim_{\mathcal{T} \&(a \leq b)}\right|=$ $\left|X / \sim_{\mathcal{T}}\right|$. Similarly, $\left|X / \sim_{\mathcal{T} \leftarrow(a \geq b)}\right|=\left|X / \sim_{\mathcal{T}}\right|$. Thus, $\left|X / \sim_{\mathcal{T} \leftrightarrow(a \leq b)}\right|=\left|X / \sim_{\mathcal{T} \leftrightarrow \mathscr{P}(a \geq b)}\right|=\left|X / \sim_{\mathcal{T}}\right|$ is proven. It remains to show $\left|X / \sim_{\mathcal{T} \leftrightarrow(a \sim b)}\right|=\left|X / \sim_{\mathcal{T}}\right|-1$.
Lemma 2.10 (\mathbf{k}) yields the following: If c and d are two elements of X, then $c \sim_{\mathcal{T} \&(a \sim b)} d$ holds if and only if

$$
\left(c \sim_{\mathcal{T}} d \text { or }\left(c \sim_{\mathcal{T}} a \text { and } d \sim_{\mathcal{T}} b\right) \text { or }\left(c \sim_{\mathcal{T}} b \text { and } d \sim_{\mathcal{T}} a\right)\right)
$$

In other words, two elements of X are equivalent under the equivalence relation $\sim_{\mathcal{T} \leftrightarrow \oplus(a \sim b)}$ if and only if either they are equivalent under $\sim_{\mathcal{T}}$, or one of them is in the $\sim_{\mathcal{T}}$-class of a while the other is in the $\sim_{\mathcal{T}}$-class of b. Thus, when passing from the equivalence relation $\sim_{\mathcal{T}}$ to $\sim_{\mathcal{T} \oplus(a \sim b)}$, the equivalence classes of a and b get merged (and these two classes used to be separate for $\sim_{\mathcal{T}}$, because of our assumption that neither $a \leq_{\mathcal{T}} b$ nor $b \leq_{\mathcal{T}} a$), while all other equivalence classes stay as they were. Thus, the total number of equivalence classes decreases by 1. In other words, $\left|X / \sim_{\mathcal{T} \leftarrow(a \sim b)}\right|=\left|X / \sim_{\mathcal{T}}\right|-1$. This completes the proof of Lemma 2.10 (\mathbf{n}).

Lemma 2.11. Let $n \in \mathbb{N}$ and $\mathcal{T} \in \mathbf{T}_{n}$. Let a and b be two elements of $[n]$. Then,

$$
\underline{1}_{K_{\mathcal{T}}}=\underline{1}_{K_{\mathcal{T} \leftrightarrow(a \leq b)}}+\underline{1}_{K_{\mathcal{T} \leftrightarrow(a \geq b)}}-\underline{1}_{K_{\mathcal{T}+(a \sim b)}} .
$$

Proof of Lemma 2.11. It is clearly enough to prove that

$$
\begin{equation*}
K_{\mathcal{T}}=K_{\mathcal{T} \rightleftarrows(a \leq b)} \cap K_{\mathcal{T} \leftarrow(a \geq b)} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{\mathcal{T} \oplus(a \sim b)}=K_{\mathcal{T} \leftrightarrow \oplus(a \leq b)} \cup K_{\mathcal{T} \hookrightarrow(a \geq b)} . \tag{7}
\end{equation*}
$$

Before we start proving these statements, let us rewrite the definition of $K_{\mathcal{S}}$ for any topology \mathcal{S} on $[n]$. Namely, if O is a subset of $[n]$, then we define a subset K_{O} of \mathbb{R}^{n} by

$$
K_{O}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid \sum_{i \in[n] \backslash O} x_{i} \geq 0\right\} .
$$

It is now clear that any topology \mathcal{S} on $[n]$ satisfies

$$
\begin{equation*}
K_{\mathcal{S}}=\bigcap_{O \in \mathcal{S}} K_{O} . \tag{8}
\end{equation*}
$$

(Indeed, this is just a restatement of the definition of $K_{\mathcal{S}}$, since the closed sets of \mathcal{S} are the sets of the form $[n] \backslash O$ with O being an open set of \mathcal{S}.)

Proof of (6): From (8), we obtain $K_{\mathcal{T}}=\bigcap_{O \in \mathcal{T}} K_{O}$ and $K_{\mathcal{T} \leftrightarrow(a \leq b)}=\bigcap_{O \in \mathcal{T} \leftrightarrow(a \leq b)} K_{O}$ and $K_{\mathcal{T} \leftarrow(a \geq b)}=\bigcap_{O \in \mathcal{T} \leftrightarrow(a \geq b)} K_{O}$. Thus,

$$
\begin{aligned}
& \underbrace{K_{\mathcal{T} \leftrightarrow(a \leq b)}}_{\underset{O \in \mathcal{T} \leftrightarrow(a \leq b)}{ }} \cap K_{0} \underbrace{K_{O}}_{\substack{ \\
K_{\mathcal{T} \leftrightarrow \oplus(a \geq b)}+(a \geq b)}}=\left(\bigcap_{O \in \mathcal{T} \leftrightarrow(a \leq b)} K_{O}\right) \cap\left(\bigcap_{O \in \mathcal{T} \leftrightarrow(a \geq b)} K_{O}\right) \\
& =\bigcap_{O \in(\mathcal{T} \leftarrow(a \leq b)) \cup(\mathcal{T} \leftarrow(a \geq b))} K_{O} \\
& =\bigcap_{O \in \mathcal{T}} K_{O} \quad(\text { by (2) }) \\
& =K_{\mathcal{T}} \text {. }
\end{aligned}
$$

This proves (6).
Proof of (7): It is easy to see that $K_{\mathcal{T} \uparrow(a \leq b)} \subseteq K_{\mathcal{T} \oplus(a \sim b)}{ }^{5}$, and similarly $K_{\mathcal{T} \oplus(a \geq b)} \subseteq K_{\mathcal{T} \oplus(a \sim b)}$. Combining these two relations, we obtain $K_{\mathcal{T} \leftarrow(a \leq b)} \cup$ $K_{\mathcal{T}+(a \geq b)} \subseteq K_{\mathcal{T} \leftarrow(a \sim b)}$. Hence, in order to prove (7), it remains to show that $K_{\mathcal{T}+(a \sim b)} \subseteq K_{\mathcal{T}+(a \leq b)} \cup K_{\mathcal{T}+p(a \geq b)}$. So let us do this now.

Let $y \in K_{\mathcal{T} \oplus(a \sim b)}$. Our goal is to show that $y \in K_{\mathcal{T} \oplus(a \leq b)} \cup K_{\mathcal{T} \oplus(a \geq b)}$. In fact, assume the contrary. Then, $y \notin K_{\mathcal{T}, \stackrel{\oplus}{ }(a \leq b)}$ and $y \notin K_{\mathcal{T}, \oplus(a \geq b)}$.

We have $y \notin K_{\mathcal{T} \oplus(a \leq b)}=\bigcap_{O \in \mathcal{T} \oplus(a \leq b)} K_{O}$ (by (8)). Hence, there exists a $P \in$ $\mathcal{T} \leftrightarrow(a \leq b)$ such that $y \notin K_{p}$. Similarly, using $y \notin K_{\mathcal{T} \leftarrow(a \geq b)}$, we can see that there exists a $Q \in \mathcal{T} \leftrightarrows(a \geq b)$ such that $y \notin K_{Q}$. Consider these P and Q.

We have $P \in \mathcal{T} \leftarrow(a \leq b)=\{O \in \mathcal{T} \mid(a \in O \Longrightarrow b \in O)\}$. Thus, $P \in \mathcal{T}$

```
\({ }^{5}\) Proof. Indeed, 11 yields \((\mathcal{T} \leftrightarrow(a \leq b)) \cap(\mathcal{T} \leftrightarrow(a \geq b))=\mathcal{T} \leftrightarrow(a \sim b)\), so that \(\mathcal{T} \leftrightarrow\) \((a \sim b) \subseteq \mathcal{T} \leftrightarrow(a \leq b)\). Now, from (8), we obtain \(K_{\mathcal{T} \leftrightarrow(a \leq b)}=\bigcap_{O \in \mathcal{T} \leftrightarrow(a \leq b)} K_{O}\) and \(K_{\mathcal{T} \leftarrow(a \sim b)}=\bigcap_{O \in \mathcal{T} \leftrightarrow \oplus(a \sim b)} K_{O}\). Thus,
\[
\begin{aligned}
K_{\mathcal{T} \leftrightarrow(a \leq b)} & =\bigcap_{O \in \mathcal{T} \leftrightarrow(a \leq b)} K_{O} \subseteq \bigcap_{O \in \mathcal{T} \leftrightarrow \oplus(a \sim b)} K_{O} \quad(\text { since } \mathcal{T} \leftrightarrow(a \sim b) \subseteq \mathcal{T} \leftrightarrow(a \leq b)) \\
& =K_{\mathcal{T} \leftrightarrow \oplus(a \sim b)},
\end{aligned}
\]
```

qed.
and $(a \in P \Longrightarrow b \in P)$. But we do not have $(b \in P \Longrightarrow a \in P) \quad{ }^{6}$. Hence, $a \notin P$ and $b \in P$ (since $(a \in P \Longrightarrow b \in P)$ but not $(b \in P \Longrightarrow a \in P)$).

We have thus shown that $P \in \mathcal{T}, a \notin P$ and $b \in P$. Similarly, we find that $Q \in \mathcal{T}, b \notin Q$ and $a \in Q$. Now, it is easy to see that $P \cap Q \in \mathcal{T} \leftrightarrow(a \sim b) \quad 7$ and $P \cup Q \in \mathcal{T} \leftrightarrow(a \sim b) \quad{ }^{8}$.

Let us write $y \in \mathbb{R}^{n}$ in the form $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$. We have $\left(y_{1}, y_{2}, \ldots, y_{n}\right)=$ $y \notin K_{P}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid \sum_{i \in[n] \backslash P} x_{i} \geq 0\right\}$. Hence, $\sum_{i \in[n] \backslash P} y_{i}<0$. Similarly, from $y \notin K_{Q}$, we obtain $\sum_{i \in[n] \backslash Q} y_{i}<0$.

We have

$$
\begin{aligned}
\left(y_{1}, y_{2}, \ldots, y_{n}\right) & =y \in K_{\mathcal{T} \leftrightarrow(a \sim b)}=\bigcap_{O \in \mathcal{T} \leftrightarrow(a \sim b)} K_{O} \quad(\text { by (8)) } \\
& \subseteq K_{P \cap Q} \quad(\text { since } P \cap Q \in \mathcal{T} \leftrightarrow(a \sim b)) \\
& =\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid \sum_{i \in[n] \backslash(P \cap Q)} x_{i} \geq 0\right\},
\end{aligned}
$$

so that $\sum_{i \in[n] \backslash(P \cap Q)} y_{i} \geq 0$. The same argument can be applied to $P \cup Q$ instead of $P \cap Q$, and leads to $\sum_{i \in[n] \backslash(P \cup Q)} y_{i} \geq 0$.

But any two subsets A and B of $[n]$ satisfy $\sum_{i \in A} y_{i}+\sum_{i \in B} y_{i}=\sum_{i \in A \cup B} y_{i}+\sum_{i \in A \cap B} y_{i}$.

[^3]Applying this to $A=[n] \backslash P$ and $B=[n] \backslash Q$, we obtain

$$
\begin{aligned}
\sum_{i \in[n] \backslash P} y_{i}+\sum_{i \in[n] \backslash Q} y_{i} & =\sum_{i \in([n] \backslash P) \cup([n] \backslash Q)} y_{i}+\sum_{i \in([n] \backslash P) \cap([n] \backslash Q)} y_{i} \\
& =\sum_{i \in[n] \backslash(P \cap Q)} y_{i}+\sum_{i \in[n] \backslash(P \cup Q)} y_{i}
\end{aligned}
$$

(since $([n] \backslash P) \cup([n] \backslash Q)=[n] \backslash(P \cap Q)$ and $([n] \backslash P) \cap([n] \backslash Q)=[n] \backslash(P \cup Q)$. Thus,

$$
\sum_{i \in[n] \backslash(P \cap Q)} y_{i}+\sum_{i \in[n] \backslash(P \cup Q)} y_{i}=\underbrace{\sum_{i \in[n] \backslash P} y_{i}}_{<0}+\underbrace{\sum_{i \in[n] \backslash Q} y_{i}}_{<0}<0 .
$$

This contradicts

$$
\underbrace{\sum_{i \in[n] \backslash(P \cap Q)} y_{i}}_{\geq 0}+\underbrace{\sum_{i \in[n] \backslash(P \cup Q)} y_{i}}_{\geq 0} \geq 0 .
$$

This contradiction proves that our assumption was wrong. Hence, $y \in K_{\mathcal{T} \leftarrow p(a \leq b)} \cup$
 that $K_{\mathcal{T} \leftrightarrow(a \sim b)} \subseteq K_{\mathcal{T} \leftrightarrow \oplus(a \leq b)} \cup K_{\mathcal{T} \oplus(a \geq b)}$. This finishes the proof of (7).

Now that both (6) and (7) are proven, Lemma 2.11 easily follows.
Definition 2.12. Let V be a \mathbb{K}-vector space. A \mathbb{K}-linear map $f: \mathbf{H}_{\mathbf{T}} \rightarrow V$ is said to be T-additive if and only if every $n \in \mathbb{N}$, every $\mathcal{T} \in \mathbf{T}_{n}$ and every two distinct elements a and b of $[n]$ satisfy

$$
\begin{equation*}
f(\mathcal{T})=f(\mathcal{T} \leftrightarrow(a \leq b))+f(\mathcal{T} \leftarrow(a \geq b))-f(\mathcal{T} \leftrightarrow(a \sim b)) \tag{9}
\end{equation*}
$$

Proposition 2.13. Let V be a \mathbb{K}-vector space. Let f and g be two T-additive \mathbb{K}-linear maps $\mathbf{H}_{\mathbf{T}} \rightarrow V$. Assume that $f\left(\mathcal{T}_{u}\right)=g\left(\mathcal{T}_{u}\right)$ for every packed word u. Then, $f=g$.

Proof of Proposition 2.13 It is clearly enough to show that

$$
\begin{equation*}
f(\mathcal{T})=g(\mathcal{T}) \quad \text { for every } \mathcal{T} \in \mathbf{T} \tag{10}
\end{equation*}
$$

For any topology \mathcal{T} on a finite set X, we let $h(\mathcal{T})$ denote the nonnegative integer $\sharp\left\{(x, y) \in X^{2} \mid\right.$ neither $x \leq_{\mathcal{T}} y$ nor $\left.y \leq_{\mathcal{T}} x\right\}$. We shall prove 10 by strong induction over $h(\mathcal{T})$. So we fix some $\mathcal{T} \in \mathbf{T}$, and we want to prove (10), assuming that every $\mathcal{S} \in \mathbf{T}$ satisfying $h(\mathcal{S})<h(\mathcal{T})$ satisfies

$$
\begin{equation*}
f(\mathcal{S})=g(\mathcal{S}) \tag{11}
\end{equation*}
$$

Let $n \in \mathbb{N}$ be such that $\mathcal{T} \in \mathbf{T}_{n}$. If there exist no two elements a and b of [n] satisfying neither $a \leq \mathcal{T} b$ nor $b \leq \mathcal{T} a$, then we have $\mathcal{T}=\mathcal{T}_{u}$ for some
packed word u, and this u satisfies $f\left(\mathcal{T}_{u}\right)=g\left(\mathcal{T}_{u}\right)$ (due to the assumption of the proposition); thus, (10) follows immediately (since $\mathcal{T}=\mathcal{T}_{u}$). Hence, we can WLOG assume that such two elements a and b exist. Consider these two elements. Of course, a and b are distinct.

If \mathcal{S} is any of the three posets $\mathcal{T} \leftrightarrow(a \leq b), \mathcal{T} \leftrightarrows(a \geq b)$ and $\mathcal{T} \leftarrow(a \sim b)$, then $h(\mathcal{S})<h(\mathcal{T}) \quad 9$. Hence, we can apply (11) to each of these three posets. We obtain

$$
\begin{aligned}
& f(\mathcal{T} \leftrightarrow(a \leq b))=g(\mathcal{T} \leftrightarrow(a \leq b)) ; \\
& f(\mathcal{T} \leftrightarrow(a \geq b))=g(\mathcal{T} \leftrightarrow(a \geq b)) ; \\
& f(\mathcal{T} \leftrightarrow(a \sim b))=g(\mathcal{T} \leftrightarrow(a \sim b)) .
\end{aligned}
$$

But since f is T-additive, we have

$$
\begin{aligned}
f(\mathcal{T}) & =\underbrace{f(\mathcal{T} \leftrightarrow(a \leq b))}_{=g(\mathcal{T} \leftrightarrow(a \leq b))}+\underbrace{f(\mathcal{T} \leftrightarrow(a \geq b))}_{=g(\mathcal{T} \leftrightarrows(a \geq b))}-f \underbrace{(\mathcal{T} \leftrightarrow(a \sim b))}_{=g(\mathcal{T} \leftrightarrow(a \sim b))} \\
& =g(\mathcal{T} \leftrightarrow(a \leq b))+g(\mathcal{T} \leftrightarrow(a \geq b))-g(\mathcal{T} \leftrightarrow(a \sim b))=g(\mathcal{T})
\end{aligned}
$$

(since g is T-additive). Thus, (10) is proven, and the induction step is complete.

Proof of Theorem 2.7(sketched). We need to show that $\beta=\alpha \circ U$.
We notice that every topology \mathcal{S} on $[n]$ satisfies

$$
\begin{align*}
(\beta \circ Z)(\mathcal{S}) & =\beta(\underbrace{Z(\mathcal{S})}_{\begin{array}{c}
=(-1)^{[n]] / \sim \mathcal{S} \mid} \mathcal{S} \\
\text { (by the definition of } Z)
\end{array}})=(-1)^{|[n] / \sim \mathcal{S}|} \underbrace{\beta(\mathcal{S})}_{\begin{array}{c}
\text { (-1) } \\
\text { (by the definition of } \beta \text {) }
\end{array}} \\
& =\underbrace{(-1)^{|[n] / \sim \mathcal{S}|}(-1)^{|[n] / \sim \mathcal{S}|}} \underline{1}_{K_{\mathcal{S}}} \\
& =\underline{1}_{K_{\mathcal{S}}} \tag{12}
\end{align*}
$$

[^4]and
\[

$$
\begin{align*}
& (\alpha \circ U \circ Z)(\mathcal{S})=\alpha(U(\underbrace{Z(\mathcal{S})}_{\begin{array}{c}
=(-1)[[n] / \sim \mathcal{S} \mid \mathcal{S} \\
\text { (by the definition of } Z)
\end{array}}) \\
& =(-1)^{|[n] / \sim \mathcal{S}|} \alpha\left(\begin{array}{c}
\underbrace{U(\mathcal{S})}_{\substack{f \in \mathcal{U}(\mathcal{S}) \\
(\text { by the definition of } U)}}
\end{array}\right) \\
& =(-1)^{|[n] / \sim \mathcal{S}|} \sum_{f \in \mathcal{U}(\mathcal{S})} \alpha(f) \text {. } \tag{13}
\end{align*}
$$
\]

We shall now show that both maps $\beta \circ \mathrm{Z}: \mathbf{H}_{\mathbf{T}} \rightarrow$ WQSym and $\alpha \circ U \circ Z$: $\mathbf{H}_{\mathbf{T}} \rightarrow$ WQSym are T-additive.

Proof that the map $\beta \circ \mathrm{Z}$ is \mathbf{T}-additive: Let $n \in \mathbb{N}$. Let $\mathcal{T} \in \mathbf{T}_{n}$. Let a and b be two distinct elements of $[n]$. In order to show that $\beta \circ \mathrm{Z}$ is T -additive, we must prove that

$$
\begin{align*}
& (\beta \circ \mathrm{Z})(\mathcal{T}) \\
& =(\beta \circ \mathrm{Z})(\mathcal{T} \leftrightarrow(a \leq b))+(\beta \circ \mathrm{Z})(\mathcal{T} \leftrightarrow(a \geq b))-(\beta \circ \mathrm{Z})(\mathcal{T} \leftrightarrow(a \sim b)) . \tag{14}
\end{align*}
$$

This rewrites as follows:

$$
\underline{1}_{K_{\mathcal{T}}}=\underline{1}_{K_{T+(a \leq b)}}+\underline{1}_{K_{\mathcal{T}+(a \geq b)}}-\underline{1}_{K_{T+f(a \sim b)}}
$$

(because of (12)). But this is precisely the claim of Lemma 2.11. Hence, (14) is proven. We thus have shown that the map $\beta \circ \mathrm{Z}$ is T -additive.

Proof that the map $\alpha \circ U \circ Z$ is \mathbf{T}-additive: Let $n \in \mathbb{N}$. Let $\mathcal{T} \in \mathbf{T}_{n}$. Let a and b be two distinct elements of $[n]$. In order to show that $\alpha \circ U \circ \mathrm{Z}$ is T -additive, we must prove that

$$
\begin{align*}
& (\alpha \circ U \circ Z)(\mathcal{T}) \\
& =(\alpha \circ U \circ Z)(\mathcal{T} \leftrightarrow(a \leq b))+(\alpha \circ U \circ Z)(\mathcal{T} \leftrightarrow(a \geq b)) \\
& \quad-(\alpha \circ U \circ Z)(\mathcal{T} \leftrightarrow(a \sim b)) . \tag{15}
\end{align*}
$$

This is rather obvious if $a \leq_{\mathcal{T}} b \quad 10$. Hence, for the rest of this proof, we

```
\({ }^{10}\) Proof. Assume that \(a \leq \mathcal{T} b\). Then, Lemma 2.10 (c) yields \(\mathcal{T} \leftrightarrow(a \leq b)=\mathcal{T}\) and \(\mathcal{T} \leftrightarrow(a \sim b)=\)
    \(\mathcal{T} \leftrightarrow(a \geq b)\). Hence, (15) rewrites as
\[
\begin{aligned}
& (\alpha \circ U \circ Z)(\mathcal{T}) \\
& =(\alpha \circ U \circ Z)(\mathcal{T})+(\alpha \circ U \circ Z)(\mathcal{T} \leftrightarrow(a \geq b))-(\alpha \circ U \circ Z)(\mathcal{T} \leftrightarrow(a \geq b)) .
\end{aligned}
\]
```

But this is obvious.

WLOG assume that we don't have $a \leq \mathcal{T} b$. Similarly, we WLOG assume that we don't have $b \leq_{\mathcal{T}} a$. Now, using (13), we can rewrite the equality (15) as follows:

$$
\begin{aligned}
& (-1)^{|[n] / \sim \mathcal{T}|} \sum_{f \in \mathcal{U}(\mathcal{T})} \alpha(f) \\
& =(-1)^{\left|[n] / \sim_{\mathcal{T} \leftrightarrow(a \leq b)}\right|} \sum_{f \in \mathcal{U}(\mathcal{T} \leftrightarrow+(a \leq b))} \alpha(f)+(-1)^{\left|[n] / \sim_{\mathcal{T} \leftrightarrow P(a \geq b)}\right|} \sum_{f \in \mathcal{U}(\mathcal{T} \leftrightarrow P(a \geq b))} \alpha(f) \\
& \quad-(-1)^{\left|[n] / \sim_{\mathcal{T} \leftrightarrow(a \sim b)}\right|} \sum_{f \in \mathcal{U}(\mathcal{T} \leftrightarrow(a \sim b))} \alpha(f) .
\end{aligned}
$$

This can be rewritten further as

$$
\begin{aligned}
& (-1)^{|[n] / \sim \mathcal{T}|} \sum_{\substack{f \in \mathcal{U}(\mathcal{T})}} \alpha(f) \\
& =(-1)^{|[n] / \sim \mathcal{T}|} \sum_{\substack{f \in \mathcal{U}(\mathcal{T} \leftrightarrow(a \leq b))}} \alpha(f)+(-1)^{|[n] / \sim \mathcal{T}|} \sum_{f \in \mathcal{U}(\mathcal{T} \leftrightarrow(a \geq b))} \alpha(f) \\
& -(-1)^{|[n] / \sim \mathcal{T}|-1} \sum_{f \in \mathcal{U}(\mathcal{T} \leftarrow(a \sim b))} \alpha(f)
\end{aligned}
$$

(because Lemma 2.10 (\mathbf{n}) (applied to $X=[n]$) yields
$\left|[n] / \sim_{\mathcal{T} \uparrow(a \leq b)}\right|=\left|[n] / \sim_{\mathcal{T} \uparrow(a \geq b)}\right|=\left|[n] / \sim_{\mathcal{T}}\right|$ and
$\left.\left|[n] / \sim_{\mathcal{T} \leftarrow(a \sim b)}\right|=\left|[n] / \sim_{\mathcal{T}}\right|-1\right)$. Upon cancelling $(-1)^{\left|[n] / \sim_{\mathcal{T}}\right|}$, this simplifies
to

$$
\sum_{f \in \mathcal{U}(\mathcal{T})} \alpha(f)=\sum_{f \in \mathcal{U}(\mathcal{T}+P(a \leq b))} \alpha(f)+\sum_{f \in \mathcal{U}(\mathcal{T}+p(a \geq b))} \alpha(f)+\sum_{f \in \mathcal{U}(\mathcal{T} \leftarrow+(a \sim b))} \alpha(f) .
$$

But this follows immediately from Lemma 2.10 (m) (applied to $X=[n]$). Thus, (15) is proven. We have thus shown that $\alpha \circ U \circ \mathrm{Z}$ is T -additive.

Now, it is easy to see that $(\beta \circ Z)\left(\mathcal{T}_{u}\right)=(\alpha \circ U \circ Z)\left(\mathcal{T}_{u}\right)$ for every packed word u 11. Hence, Proposition 2.13 (applied to $V=\mathfrak{M}, f=\beta \circ Z$ and $g=\alpha \circ U \circ Z$) yields $\beta \circ Z=\alpha \circ \bar{U} \circ \mathrm{Z}$. Since Z is an isomorphism, we can cancel Z from this equality, and obtain $\beta=\alpha \circ U$. This proves Theorem 2.7.
${ }^{11}$ Proof. Let u be a packed word. Applying 12 to $\mathcal{S}=\mathcal{T}_{u}$, we obtain $(\beta \circ Z)\left(\mathcal{T}_{u}\right)=\underline{1}_{K_{\mathcal{T}_{u}}}=\underline{1}_{K_{u}}$ (since Remark 2.2 yields $K_{\mathcal{T}_{u}}=K_{u}$). But applying (13) to $\mathcal{S}=\mathcal{T}_{u}$ leads to

$$
\begin{aligned}
& (\alpha \circ \mathcal{U} \circ \mathrm{Z})\left(\mathcal{T}_{u}\right)=\underbrace{(-1)^{\left|[n] / \mathcal{T}_{u}\right|}}_{\substack{=(-1)^{\max u} \\
\left(\text { since }\left|[n] / \sim_{\mathcal{T}}\right|=\max u\right)}} \underbrace{\sum_{f \in \mathcal{U}\left(\mathcal{T}_{u}\right)} \alpha(f)}_{\begin{array}{c}
=\alpha(u) \\
\left(\text { since } \mathcal{U}\left(\mathcal{T}_{u}\right)=\{u\}\right)
\end{array}} \\
& =(-1)^{\max u} \underbrace{\alpha(u)}_{\begin{array}{c}
=(-1)^{\max u} 1_{K_{u}} \\
\text { (by the definition of } \alpha)
\end{array}}=\underbrace{(-1)^{\max u}(-1)^{\max u}}_{=1} \underline{1}_{K_{u}}=\underline{1}_{K_{u}} \\
& =(\beta \circ \mathrm{Z})\left(\mathcal{T}_{u}\right) \text {, }
\end{aligned}
$$

qed.

Proof of Theorem 1.4 Theorem 2.7 yields $\beta=\alpha \circ U$. Since both β and U are \mathbb{K} algebra homomorphisms, and since U is surjective, this easily yields that α is a \mathbb{K}-algebra homomorphism. (Indeed, let $p \in \mathrm{WQSym}$ and $q \in \mathrm{WQSym}$. Then, thanks to the surjectivity of U, there exist $\mathcal{P} \in \mathbf{H}_{\mathbf{T}}$ and $\mathcal{Q} \in \mathbf{H}_{\mathbf{T}}$ satisfying $p=U(\mathcal{P})$ and $q=U(\mathcal{Q})$. Consider these \mathcal{P} and \mathcal{Q}. Since U is a \mathbb{K}-algebra homomorphism, we have $U(\mathcal{P} . \mathcal{Q})=\underbrace{U(\mathcal{P})}_{=p} \underbrace{U(\mathcal{Q})}_{=q}=p q$. Now,

$$
\begin{aligned}
& \alpha(\underbrace{p}_{=U(\mathcal{P})}) \cdot \alpha(\underbrace{q}_{==U(\mathcal{Q})}) \\
& =\underbrace{\alpha(\mathcal{P}))}_{=(\alpha \circ U)(\mathcal{P})} \cdot \underbrace{\alpha(U(\mathcal{Q}))}_{=(\alpha \circ U)(\mathcal{Q})}=\underbrace{(\alpha \circ U)}_{=\beta}(\mathcal{P}) \cdot \underbrace{(\alpha \circ U)}_{=\beta}(\mathcal{Q}) \\
& =\beta(\mathcal{P}) \cdot \beta(\mathcal{Q})=\underbrace{\beta}_{=\alpha \circ U}(\mathcal{P} . \mathcal{Q}) \quad \text { (since } \beta \text { is a } \mathbb{K} \text {-algebra homomorphism) } \\
& =(\alpha \circ U)(\mathcal{P} . \mathcal{Q})=\alpha(\underbrace{U(\mathcal{P} . \mathcal{Q})}_{=p q})=\alpha(p q),
\end{aligned}
$$

and this shows that α is a \mathbb{K}-algebra homomorphism.) Theorem 1.4 is proven.

3. Application: an alternating sum identity

As an application of Theorem 1.4 we can prove the following fact, which is analogous to [3, Corollary 4.8]:

Corollary 3.1. Let $n \in \mathbb{N}$. Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathbb{R}^{n}$. Then,

$$
\sum_{\substack{u \text { is a packed word } \\ \text { of length } n ; \\ \lambda \in K_{u}}}(-1)^{\max u}= \begin{cases}(-1)^{n}, & \text { if } \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \geq 0 ; \\ 0, & \text { otherwise } .\end{cases}
$$

This will rely on the following equality in WQSym:
Proposition 3.2. Let ζ be the packed word (1) of length 1 . Then, in WQSym, we have

$$
\zeta^{n}=\sum_{\substack{u \text { is a packed word } \\ \text { of length } n}} u .
$$

Proof sketch. Induction on n (details are left to the reader).
Proof of Corollary 3.1 Let \mathbb{R}_{+}denote the set of all nonnegative reals. Let $\zeta \in$ WQSym be the packed word (1) of length 1.

Consider the map α from Theorem 1.4. The definition of this map α yields

$$
\alpha(\zeta)=\underbrace{(-1)^{\max \zeta}}_{\substack{=-1 \\(\text { since } \max \zeta=1)}} \underline{1}_{K_{\zeta}}=-\underline{1}_{K_{\zeta}}=-\underline{1}_{\mathbb{R}_{+}}
$$

(since the definition of K_{ζ} yields $K_{\zeta}=\mathbb{R}_{+}$). Hence,

$$
(\alpha(\zeta))^{n}=\left(-\underline{1}_{\mathbb{R}_{+}}\right)^{n}=(-1)^{n} \underbrace{\left(\underline{1}_{\mathbb{R}_{+}}\right)^{n}}_{\begin{array}{c}
=\underline{R}_{\mathbb{R}_{+}^{n}} \\
\text { (this follows easily from the } \\
\text { definition of multiplication on } \mathfrak{M})
\end{array}}=(-1)^{n} \underline{1}_{\mathbb{R}_{+}^{n}} \cdot
$$

But Proposition 3.2 yields

$$
\zeta^{n}=\sum_{\substack{u \text { is a packed word } \\ \text { of length } n}} u .
$$

Applying the map α to both sides of this equality, we obtain

$$
\begin{aligned}
\alpha\left(\zeta^{n}\right) & =\alpha\left(\sum_{\begin{array}{c}
u \text { is a packed word } \\
\text { of length } n
\end{array}} u\right)=\sum_{\begin{array}{c}
u \text { is a packed word } \\
\text { of length } n
\end{array}} \underbrace{\alpha(u)}_{\begin{array}{c}
=(-1)^{\max u} 1_{K_{u}} \\
\text { (by the definition of }
\end{array}} \\
& =\sum_{\substack{u \text { is a packed word } \\
\text { of length } n}}(-1)^{\max u} \underline{1}_{K_{u}} .
\end{aligned}
$$

Applying both sides of this equality to λ, we obtain

$$
\begin{aligned}
\left(\alpha\left(\zeta^{n}\right)\right)(\lambda)= & \sum_{\substack{u \text { is a packed word } \\
\text { of length } n}}(-1)^{\max u} \quad \underbrace{1_{K_{u}}(\lambda)} \\
& = \begin{cases}1, & \text { if } \lambda \in K_{u} ; \\
0, & \text { if } \lambda \notin K_{u} \\
\text { (by the definition of } \left.\underline{1}_{K_{u}}\right)\end{cases}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \sum_{\begin{array}{c}
u \text { is a packed word } \\
\text { of length } n ; \\
\lambda \in K_{u}
\end{array}}(-1)^{\max u}=\underbrace{\left(\alpha\left(\zeta^{n}\right)\right)}_{\begin{array}{c}
=(\alpha(\zeta))^{n} \\
(\text { since } \alpha \text { is a K-algebra } \\
\text { homomorphism) }
\end{array}}(\lambda)=\underbrace{(\alpha(\zeta))^{n}}_{=(-1)^{n} 1_{\mathbb{R}_{+}^{n}}^{n}}(\lambda) \\
&=(-1)^{n} \underbrace{\mathbb{R}_{+}^{n}}_{\mathbb{R}_{+}^{n}(\lambda)}=(-1)^{n} \begin{cases}1, & \text { if } \lambda \in \mathbb{R}_{+}^{n} ; \\
0, & \text { otherwise }\end{cases} \\
&= \begin{cases}1, & \text { if } \lambda \in \mathbb{R}_{+}^{n} ; \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

(since the condition " $\lambda \in \mathbb{R}_{+}^{n}$ " is equivalent to " $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \geq 0$ "). This proves Corollary 3.1.

From Corollary 3.1, we can in turn derive the precise statement of [3, Corollary 4.8]:

Corollary 3.3. Let $n \in \mathbb{N}$. Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathbb{R}^{n}$. Then,

$$
\sum_{\substack{u \text { is a packed word } \\ \text { of length } \\ \lambda \in K_{u} n}}(-1)^{\max u}= \begin{cases}(-1)^{n}, & \text { if } \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}>0 ; \\ 0, & \text { otherwise. }\end{cases}
$$

Here, for any packed word u of length n, we define the subset K_{u}° of \mathbb{R}^{n} in the same way as we defined K_{u}, but with the " \geq " sign replaced by " $>$ ".

Proof sketch. Pick a small $\varepsilon>0$, and let $\lambda^{\prime}:=\left(\lambda_{1}-\varepsilon, \lambda_{2}-\varepsilon, \ldots, \lambda_{n}-\varepsilon\right)$. If ε has been chosen small enough (say,

$$
0<\varepsilon<\frac{1}{n} \min \left\{\sum_{i \in I} \lambda_{i} \mid I \subseteq[n] \text { satisfying } \sum_{i \in I} \lambda_{i}>0\right\}
$$

), then any packed word u of length n will satisfy $\lambda \in K_{u}^{\circ}$ if and only if it satisfies $\lambda^{\prime} \in K_{u}$, and we will have $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}>0$ if and only if $\lambda_{1}-\varepsilon, \lambda_{2}-\varepsilon, \ldots, \lambda_{n}-$ $\varepsilon \geq 0$. Hence, Corollary 3.3 follows from Corollary 3.1 (applied to λ^{\prime} and $\lambda_{i}-\varepsilon$ instead of λ and λ_{i}).

References

[1] Loic Foissy and Claudia Malvenuto, The Hopf algebra of finite topologies and T-partitions, arXiv preprint arXiv:1407.0476v2.
http://arxiv.org/abs/1407.0476v2
See https://darijgrinberg.gitlab.io/algebra/topologies-errata.pdf for unofficial errata.
[2] Frédéric Menous, Jean-Christophe Novelli, Jean-Yves Thibon, Mould calculus, polyhedral cones, and characters of combinatorial Hopf algebras, arXiv preprint arXiv:1109.1634v2.
http://arxiv.org/abs/1109.1634v2
[3] Richard Ehrenborg, Sophie Morel, Margaret Readdy, Some combinatorial identities appearing in the calculation of the cohomology of Siegel modular varieties, Algebraic Combinatorics 2, issue 5 (2019), pp. 863-878.
http://alco.centre-mersenne.org/item/ALCO_2019__2_5_863_0

[^0]: ${ }^{1}$ A set composition of a set X means a tuple $\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ of disjoint nonempty subsets of X such that $X_{1} \cup X_{2} \cup \cdots \cup X_{k}=X$.

[^1]: ${ }^{2}$ Notice that [2, Theorem 5.2] talks not about our map $\alpha:$ WQSym $\rightarrow \mathfrak{M}$, but rather about a map $\mathcal{P} \rightarrow$ WQSym where \mathcal{P} is a certain subquotient of \mathfrak{M} (namely, the subalgebra of \mathfrak{M} generated by $\underline{1}_{K_{u}}$, taken modulo functions with measure-zero support). These two maps are "in some sense" inverse (allowing us to derive [2, Theorem 5.2] from Theorem 1.4). I find Theorem 1.4 the more natural statement.

 Notice that [2] denotes by $\left(\mathbf{M}_{u}\right)_{u \text { is a packed word }}$ the basis of WQSym that we call $(u)_{u \text { is a packed word }}$.
 ${ }^{3}$ At least, I suspect so - I have not checked all the details. I also suspect that the whole [2, Theorem 8.1] can be obtained in a similar way as we prove Theorem 1.4 below.

[^2]: ${ }^{4}$ Indeed, the first case $\left(i \sim_{\mathcal{T}} j\right.$) is precluded by the fact that $i<_{\mathcal{T}} j$. The second case $\left(i \sim_{\mathcal{T}} a\right.$ and $j \sim_{\mathcal{T}} b$) cannot occur since it would lead to $a \sim_{\mathcal{T}} i \leq \mathcal{T} j \sim_{\mathcal{T}} b$, which would contradict the assumption that we have neither $a \leq_{\mathcal{T}} b$ nor $b \leq_{\mathcal{T}} a$. The third case $\left(i \sim_{\mathcal{T}} b\right.$ and $\left.j \sim_{\mathcal{T}} a\right)$ cannot occur for a similar reason.

[^3]: ${ }^{6}$ Proof. Assume the contrary. Then, $(b \in P \Longrightarrow a \in P)$. Combining this with $(a \in P \Longrightarrow b \in P)$, we obtain $(a \in P \Longleftrightarrow b \in P)$. Hence, $P \in \mathcal{T} \leftrightarrow(a \sim b)$ (by the definition of $\mathcal{T} \leftrightarrow(a \sim b)$). Now, $y \in K_{\mathcal{T} \leftrightarrow(a \sim b)}=\bigcap_{O \in \mathcal{T} \leftrightarrow(a \sim b)} K_{O}$ (by (8)). But $\bigcap_{O \in \mathcal{T} \leftrightarrow \uparrow(a \sim b)}^{\bigcap_{P}} K_{O} \subseteq K_{P}$ (since $P \in \mathcal{T} \leftrightarrow(a \sim b)$), so that $y \in \bigcap_{O \in \mathcal{T} \leftrightarrow(a \sim b)} K_{O} \subseteq K_{P}$, which contradicts $y \notin K_{P}$. This contradiction proves that our assumption was wrong, qed.
 ${ }^{7}$ Proof. From $P \in \mathcal{T}$ and $Q \in \mathcal{T}$, we infer that $P \cap Q \in \mathcal{T}$. Also, a $\notin P \cap Q$ (since $a \notin P$), so that $(a \in P \cap Q \Longrightarrow b \in P \cap Q$). Moreover, $b \notin P \cap Q$ (since $b \notin$ Q), and thus $(b \in P \cap Q \Longrightarrow a \in P \cap Q)$. Combined with ($a \in P \cap Q \Longrightarrow b \in P \cap Q$), this yields $(a \in P \cap Q \Longleftrightarrow b \in P \cap Q)$. Thus, $P \cap Q$ is an element of \mathcal{T} satisfying $(a \in P \cap Q \Longleftrightarrow b \in P \cap Q)$. Hence, $P \cap Q \in\{O \in \mathcal{T} \mid(a \in O \Longleftrightarrow b \in O)\}=\mathcal{T} \leftrightarrow$ $(a \sim b)$, qed.
 ${ }^{8}$ Proof. From $P \in \mathcal{T}$ and $Q \in \mathcal{T}$, we infer that $P \cup Q \in \mathcal{T}$. Also, $b \in P \cup Q$ (since $b \in P$), so that $(a \in P \cup Q \Longrightarrow b \in P \cup Q)$. Moreover, $a \in P \cup Q$ (since $a \in$ $Q)$, and thus $(b \in P \cup Q \Longrightarrow a \in P \cup Q)$. Combined with ($a \in P \cup Q \Longrightarrow b \in P \cup Q$), this yields $(a \in P \cup Q \Longleftrightarrow b \in P \cup Q)$. Thus, $P \cup Q$ is an element of \mathcal{T} satisfying $(a \in P \cup Q \Longleftrightarrow b \in P \cup Q)$. Hence, $P \cup Q \in\{O \in \mathcal{T} \mid(a \in O \Longleftrightarrow b \in O)\}=\mathcal{T} \leftrightarrow$ $(a \sim b)$, qed.

[^4]: ${ }^{9}$ This is because $\left\{(x, y) \in X^{2} \mid\right.$ neither $x \leq_{\mathcal{S}} y$ nor $\left.y \leq_{\mathcal{S}} x\right\}$ is a proper subset of $\left\{(x, y) \in X^{2} \mid\right.$ neither $x \leq_{\mathcal{T}} y$ nor $\left.y \leq_{\mathcal{T}} x\right\}$. (Proper because (a, b) or (b, a) belongs to the latter but not to the former.)

