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1. The statements

1.1. The main theorems

Convention 1.1. In this paper, the word “ring” will always mean “ring with
unity”.

Furthermore, the letter N shall always mean the set {0, 1, 2, . . .}.

Consider the following fact:

Theorem 1.2. Let A be a commutative ring. Let n ∈N. Let f ∈ A [X1, X2, . . . , Xn]
be a polynomial in the n indeterminates X1, X2, . . . , Xn over A. Assume that f
is divisible by Xi − Xj for every (i, j) ∈ {1, 2, . . . , n}2 satisfying i < j. Then, f is
divisible by ∏

1≤i<j≤n

(
Xi − Xj

)
.

(Here, the symbol “ ∏
1≤i<j≤n

” is an abbreviation for “ ∏
(i,j)∈{1,2,...,n}2;

i<j

”. Thus, when

n = 0 or n = 1, the product ∏
1≤i<j≤n

(
Xi − Xj

)
is an empty product and therefore
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equals 1.)

Theorem 1.2 is rather obvious in the case when A is a unique factorization
domain (because then, A [X1, X2, . . . , Xn] is also a unique factorization domain1).
However, I would not call Theorem 1.2 obvious in the general case. One of the
goals of this note is to prove Theorem 1.2 in full generality.

Actually, I shall prove the following more general fact:

Theorem 1.3. Let A be a commutative ring with unity. Let n ∈ N. Let G be a
subset of the set

{
(i, j) ∈ {1, 2, . . . , n}2 | i < j

}
.

Let f ∈ A [X1, X2, . . . , Xn] be a polynomial in the n indeterminates
X1, X2, . . . , Xn over A. Assume that f is divisible by Xi − Xj for every (i, j) ∈ G.
Then, f is divisible by ∏

(i,j)∈G

(
Xi − Xj

)
.

Clearly, Theorem 1.2 is the particular case of Theorem 1.3 obtained when G ={
(i, j) ∈ {1, 2, . . . , n}2 | i < j

}
. Theorem 1.3 is also evident when A is a unique

factorization domain, but not in the general case.

1.2. Applications

First of all, why is Theorem 1.2 (and thus, by extension, Theorem 1.3) useful? Here
are four applications:

• The Vandermonde determinant formula (in one of its many forms) is the state-
ment that if n ∈ N, and if x1, x2, . . . , xn are n elements of a commutative ring
A, then

det


1 1 1 · · · 1
x1 x2 x3 · · · xn

x2
1 x2

2 x2
3 · · · x2

n
...

...
... . . . ...

xn−1
1 xn−1

2 xn−1
3 · · · xn−1

n

 = ∏
1≤i<j≤n

(
xj − xi

)
. (1)

One of the shortest proofs of this fact (given, e.g., in [Garrett09, §17.1]) pro-
ceeds by observing that both the left hand side and the right hand side of
(1) are polynomials in the variables x1, x2, . . . , xn, whence we can replace the
elements x1, x2, . . . , xn by the indeterminates X1, X2, . . . , Xn in the polynomial
ring Z [X1, X2, . . . , Xn]; but once this has been done, we can observe that the
left hand side of (1) is divisible by Xi−Xj for every (i, j) ∈ {1, 2, . . . , n}2 satis-
fying i < j, and therefore (by Theorem 1.2) is also divisible by ∏

1≤i<j≤n

(
Xi − Xj

)
.

1This follows from one of the many results known as “Gauss’s theorem” (e.g., [Knapp2016, Corol-
lary 8.21], applied n times).
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This is not the whole proof, but the rest of the proof (degree considerations
as well as a comparison of a single coefficient) is not difficult (see [Garrett09,
§17.1] for details). What matters for us is that this argument uses Theorem
1.2 (although only in the case when A = Z; as we have said, this is an easy
case, since Z is a unique factorization domain).

• A similar proof that uses Theorem 1.3 (although, again, only in a simple
case in which A is a unique factorization domain) is [EGHLSVY11, proof of
Lemma 5.15.3]2.

• Theorem 1.2 is used in [LLPT95, proof of Lemma (6.1)]3. In fact, [LLPT95,
proof of Lemma (6.1)] involves an argument saying that “Clearly, f is divisible
by all differences aq − ap for p < q if and only if f is divisible by the product
of all the differences”. I believe the word “Clearly” is inappropriate in this
argument, and should be replaced by an application of Theorem 1.2.

• Theorem 1.2 is used in [GriRei18, proof of Proposition 2.6.4]. Indeed, [GriRei18,
proof of Proposition 2.6.4] involves an argument saying that the polynomial
f (x) must “be divisible by xi − xj, so divisible by the entire product

∏
1≤i<j≤n

(
xi − xj

)
= aρ”. Again, this argument only uses Theorem 1.2 in the

particular case when A is a unique factorization domain (because [GriRei18,
Proposition 2.6.4] is only stated for k being Z or a field of characteristic 6= 2;
but all such k are unique factorization domains). However, knowing that The-
orem 1.2 holds for arbitrary A, we can extend [GriRei18, Proposition 2.6.4] to
the case of k being an arbitrary commutative ring (as long as Λsgn is defined
appropriately).

On our way to the proofs of Theorem 1.2 and Theorem 1.3, we shall develop
some basics of commutative algebra from scratch: most importantly, division with
remainder by a monic polynomial, and the fact that monic polynomials are non-
zero-divisors (or, as we call them, regular elements). This is, of course, perfectly
well-known in the case of univariate polynomials over a field; but in the general
case, it is rarely discussed in detail in the literature.

We shall then explore the surroundings of these results: alternative proofs, ana-
logues for formal power series, applications to other symmetric polynomials.

1.3. Plan of this paper

In Section 2, we shall define the notion of “regular elements” (also known as non-
zero-divisors) and show some very basic properties (such as the fact that a product
of regular elements is again regular).

2This is the proof of Lemma 4.48 in the arXiv draft of [EGHLSVY11].
3Notice that the ap in [LLPT95] are the Xp in Theorem 1.2.
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In Section 3, we shall review (with proofs) the basic theory of monic polynomials
over a commutative ring, including the fact that division with remainder always
works when we are dividing by a monic polynomial (even if the base ring is not
a field). We will show that monic polynomials are regular, and prove a first step
(Corollary 3.21) towards Theorem 1.3.

In Section 4, we will start studying polynomial rings A [X1, X2, . . . , Xn] in mul-
tiple indeterminates, and we will prove some basic properties of the polynomials
Xi and Xi − Xj (with i 6= j) in these rings. In particular, we will show that these
polynomials are regular, and have a “coprimality” property (the particular case of
Theorem 1.3 for |G| = 2).

In Section 5, we shall prove the crucial Proposition 5.1 about when an intersec-
tion of principal ideals of a commutative ring equals the product of these ideals.
This will let us derive the full Theorem 1.3 (and thus Theorem 1.2) from this “co-
primality” property.

In Section 6, we will start extending our results about polynomials to formal
power series. Some things will extend easily, but many will change, either requiring
new proofs or ceasing to be valid in the new setting. We will show that analogues
of Theorem 1.3 and Theorem 1.2 for power series still hold, but our proofs no
longer apply to this case.

In Section 7, we will give a second proof of Proposition 5.1, this time using
quotient rings.

In Section 8, we shall rewrite Theorem 1.2 in terms of substitutions of variables.
In Section 9, we shall apply Theorem 1.2 to the construction of symmetric poly-

nomials.
In Section 10 (work in progress), we shall continue our study of univariate power

series started in Section 6.

1.4. Prerequisites

I have written this paper with the express purpose of being as accessible as it
possibly can; only basic notions and facts of abstract algebra (rings, polynomials,
formal power series, nilpotence) are assumed. Even the use of quotient rings has
been kept to a minimum. The occasional counterexample uses more advanced
notions, but counterexamples can be skipped without loss.

2. Regular elements (a.k.a. non-zero-divisors)

2.1. Definition

We begin with a basic notation:

Definition 2.1. Let A be a commutative ring. Let a ∈ A. The element a of A is
said to be regular if and only if every x ∈ A satisfying ax = 0 satisfies x = 0.
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Instead of saying that a is regular, one can also say that “a is cancellable”, or
that “a is a non-zero-divisor”.

This notion of “regular” elements has nothing to do with various other notions
of “regularity” in commutative algebra (for example, it is completely unrelated to
the notion of a “von Neumann regular element” of a ring). It might sound like a
bad idea to employ a word like “regular” that has already seen so much different
uses; however, we are not really adding a new conflicting meaning for this word,
because the word is already being used in this meaning by various authors (among
them, the authors of [LLPT95]), and because our use of “regular” is closely related
to the standard notion of a “regular sequence” in a commutative ring4.

Many authors (for example, Knapp in [Knapp2016]) define a zero divisor in a
commutative ring A to be a nonzero element of A that is not regular.5 Thus, at
least in classical logic, regular elements are the same as elements that are not zero
divisors (with the possible exception of 0). I find the notion of a “zero divisor”
less natural than that of a regular element (it is the regular elements, not the zero
divisors, that usually exhibit the nicer behavior), and it is much less suitable for
constructive logic (as it muddies the waters with an unnecessary negation), but it
appears to be more popular for traditional reasons.

2.2. Properties of regular elements

Let me state some basic properties of regular elements:

Proposition 2.2. Let A be a commutative ring. Let a ∈ A and b ∈ A be two
regular elements of A. Then, the element ab of A is regular.

Proof of Proposition 2.2. Every x ∈ A satisfying (ab) x = 0 satisfies a (bx) = (ab) x =
0, thus bx = 0 (since a is regular), and therefore x = 0 (since b is regular). In other
words, ab is regular. This proves Proposition 2.2.

Proposition 2.3. Let A be a commutative ring. Let G be a finite set. For every
g ∈ G, let ag be a regular element of A. Then, the element ∏

g∈G
ag of A is regular.

Proof of Proposition 2.3. This follows by induction on |G|, using Proposition 2.2 in
the induction step6.

The following trivial proposition just says that the regularity of an element is
unchanged under ring isomorphisms:

4Namely: An element a of a commutative ring A is regular if and only if the one-element sequence
(a) is regular.

5Some authors drop the “nonzero” requirement in this definition; so they count 0 as a zero divisor,
provided A is not a trivial ring.

6The induction base involves showing that the element 1 of A is regular; but this is obvious.
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Proposition 2.4. Let A and B be two commutative rings. Let f : A→ B be a ring
isomorphism. Let a be a regular element of A. Then, f (a) is a regular element
of B.

The next proposition is also fairly trivial:

Proposition 2.5. Let B be a commutative ring. Let A be a subring of B. Let a
be an element of A such that a is a regular element of B. Then, a is a regular
element of A.

3. Monic polynomials and division with remainder

3.1. Monic polynomials, [Xn] p and A [X]≤n

Now, let me discuss monic polynomials over a commutative ring A. This is not an
introduction into the notion of polynomials; we will just introduce the nonstandard
notations that we will need, and prove a few basic facts.

Definition 3.1. Let A be a commutative ring.
(a) If p ∈ A [X] is a polynomial in some indeterminate X over A, and if n ∈N,

then [Xn] p will denote the coefficient of Xn in p. For example,[
X3
] (

2X4 + 5X3 + 7X + 2
)
= 5;[

X4
] (

X2 + 1
)
= 0;[

X0
]
(3X + 7) = 7.

Clearly, every polynomial p ∈ A [X] satisfies p = ∑
n∈N

([Xn] p) Xn. (The sum

∑
n∈N

([Xn] p) Xn is well-defined, because all but finitely many among its addends

are 0.)
(b) If n ∈ Z, then we define an A-submodule A [X]≤n of A [X] as follows:

A [X]≤n = {p ∈ A [X] | [Xm] p = 0 for every m ∈N satisfying m > n} .

(In other words, A [X]≤n is the set of all polynomials p ∈ A [X] having degree
≤ n, provided that we understand the degree of the zero polynomial to be a
symbol −∞ that is smaller than any integer. However, we want to avoid using
the concept of “degree”, so we are using the above definition of A [X]≤n instead.)

(c) Let n ∈ N. A polynomial p ∈ A [X] is said to be monic of degree n if and
only if it satisfies [Xn] p = 1 and

([Xm] p = 0 for every m ∈N satisfying m > n) .

Instead of saying that p “is monic of degree n”, we can also say that p “is a monic
polynomial of degree n”.
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Remark 3.2. I am going to avoid the notion of the “degree” of a polynomial, since
it is (in my opinion) inferior to working with A [X]≤n (for various reasons: it is
not defined when A the trivial ring; it is not preserved by ring homomorphisms;
it depends on the vanishing of some coefficients and is therefore not generally
meaningful in constructive mathematics; it requires some care in handling deg 0).
Nevertheless, I will use the terminology “monic of degree n” introduced in Def-
inition 3.1; the way I have defined it above, it is independent of the notion of
degree. Please be aware of the following quirk of this terminology: If A is the
trivial ring, then there exists only one polynomial p ∈ A [X], and this polynomial
is monic of degree n for every n ∈ N. Thus, a polynomial p can be monic of
degree n for many different n. (But this only happens when A is trivial.)

3.2. Basic rules for polynomials

Recall how polynomials are added, scaled and multiplied:

Proposition 3.3. Let A be a commutative ring. Let n ∈N.
(a) Every p ∈ A [X] and q ∈ A [X] satisfy [Xn] (p + q) = [Xn] p + [Xn] q.
(b) Every λ ∈ A and p ∈ A [X] satisfy [Xn] (λp) = λ [Xn] p.

(c) Every p ∈ A [X] and q ∈ A [X] satisfy [Xn] (pq) =
n
∑

k=0

([
Xk] p

)
·
([

Xn−k] q
)
.

Let us next state a few trivial facts:

Lemma 3.4. Let A be a commutative ring. Let n ∈N.
(a) We have [Xn] (Xn) = 1.
(b) For every k ∈N satisfying k 6= n, we have

[
Xk] (Xn) = 0.

Lemma 3.5. Let A be a commutative ring. Let n ∈ Z.
(a) For every q ∈ A [X]≤n and every m ∈N satisfying m > n, we have [Xm] q =

0.
(b) Let q ∈ A [X]. Assume that [Xm] q = 0 for every m ∈ N satisfying m > n.

Then, q ∈ A [X]≤n.

Proposition 3.6. Let A be a commutative ring. Then, A [X] =
⋃

n∈N

A [X]≤n.

Lemma 3.7. Let A be a commutative ring. Let n ∈ N. Let p ∈ A [X] be a monic
polynomial of degree n. Then:

(a) We have [Xn] p = 1.
(b) We have [Xm] p = 0 for every m ∈N satisfying m > n.
(c) We have p ∈ A [X]≤n.
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Lemma 3.8. Let A be a commutative ring. Let n ∈ N. Let p ∈ A [X]≤n be such
that [Xn] p = 1. Then, p is a monic polynomial of degree n.

Lemma 3.9. Let A be a commutative ring. Let n ∈ N. Let q ∈ A [X]≤n. Assume
that [Xn] q = 0. Then, q ∈ A [X]≤n−1.

Lemma 3.10. Let A be a commutative ring. Then, A [X]≤−1 = {0}.

Lemma 3.11. Let A be a commutative ring. Let g and h be two elements of Z

such that g ≤ h. Then, A [X]≤g ⊆ A [X]≤h.

Next, we show an easy fact about the product of a polynomial with a monic
polynomial:

Lemma 3.12. Let A be a commutative ring. Let n ∈N. Let p ∈ A [X] be a monic
polynomial of degree n. Let g ∈N. Let q ∈ A [X]≤g. Then:

(a) We have pq ∈ A [X]≤g+n.
(b) We have [Xg+n] (pq) = [Xg] q.

Proof of Lemma 3.12. Let m ∈N be such that m ≥ g+n. For every k ∈ {0, 1, . . . , n− 1},
we have [

Xm−k
]

q = 0 (2)

7. For every k ∈ {n + 1, n + 2, . . . , m}, we have[
Xk
]

p = 0 (3)

8. Now, 0 ≤ n (since n ∈ N); also, from g ∈ N, we obtain n ≤ g + n ≤ m.

7Proof of (2): Let k ∈ {0, 1, . . . , n− 1}. Then, m︸︷︷︸
≥g+n

− k︸︷︷︸
≤n−1<n

> (g + n) − n = g ≥ 0, so that

m− k ∈ N. Also, m− k > g; hence, Lemma 3.5 (a) (applied to g and m− k instead of n and m)
yields

[
Xm−k

]
q = 0. This proves (2).

8Proof of (2): Let k ∈ {n + 1, n + 2, . . . , m}. Thus, k > n. Also, k ∈ N. Hence, Lemma 3.7 (b)
(applied to k instead of m) shows that

[
Xk
]

p = 0. This proves (3).
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Proposition 3.3 (c) (applied to m instead of n) yields

[Xm] (pq) =
m

∑
k=0

([
Xk
]

p
)
·
([

Xm−k
]

q
)

=
n−1

∑
k=0

([
Xk
]

p
)
·
([

Xm−k
]

q
)

︸ ︷︷ ︸
=0

(by (2))

+
m

∑
k=n

([
Xk
]

p
)
·
([

Xm−k
]

q
)

(since 0 ≤ n ≤ m)

=
n−1

∑
k=0

([
Xk
]

p
)
· 0︸ ︷︷ ︸

=0

+
m

∑
k=n

([
Xk
]

p
)
·
([

Xm−k
]

q
)

=
m

∑
k=n

([
Xk
]

p
)
·
([

Xm−k
]

q
)

= ([Xn] p)︸ ︷︷ ︸
=1

(by Lemma 3.7 (a))

·
([

Xm−n] q
)
+

m

∑
k=n+1

([
Xk
]

p
)

︸ ︷︷ ︸
=0

(by (3))

·
([

Xm−k
]

q
)

(since n ≤ m)

=
[
Xm−n] q +

m

∑
k=n+1

0 ·
([

Xm−k
]

q
)

︸ ︷︷ ︸
=0

=
[
Xm−n] q. (4)

Now, forget that we fixed m. We thus have proven (4) for every m ∈N satisfying
m ≥ g + n.

(a) For every m ∈N satisfying m > g + n, we have

[Xm] (pq) =
[
Xm−n] q (by (4))

= 0

 by Lemma 3.5 (a), applied to m− n and g
instead of m and n

(since q ∈ A [X]≤g and m− n > g (since m > g + n))

 .

Hence, Lemma 3.5 (b) (applied to g + n and pq instead of n and q) shows that
pq ∈ A [X]≤g+n. This proves Lemma 3.12 (a).

(b) Applying (4) to m = g + n, we find [Xg+n] (pq) = [Xg+n−n] q = [Xg] q. This
proves Lemma 3.12 (b).

3.3. Monic polynomials are regular

The next proposition says that if we multiply a monic polynomial p of some degree
n with a polynomial q and the result turns out to have degree < n (that is, formally
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speaking: pq ∈ A [X]≤n−1), then q must have been 0 to begin with. This will help
us prove that monic polynomials are regular.

Proposition 3.13. Let A be a commutative ring. Let n ∈ N. Let p ∈ A [X] be a
monic polynomial of degree n. Let q ∈ A [X] be such that pq ∈ A [X]≤n−1. Then,
q = 0.

Proof of Proposition 3.13. Renaming the index n as d in Proposition 3.6, we obtain
A [X] =

⋃
d∈N

A [X]≤d.

Now, q ∈ A [X] =
⋃

d∈N

A [X]≤d. Hence, there exists some d ∈ N such that

q ∈ A [X]≤d. Consider this d.
We shall now show that

q ∈ A [X]≤d−i for every i ∈ {0, 1, . . . , d + 1} . (5)

Proof of (5): We shall prove (5) by induction over i:
Induction base: We have q ∈ A [X]≤d. In other words, (5) holds for i = 0.
Induction step: Let j ∈ {0, 1, . . . , d + 1} be positive. Assume that (5) holds for

i = j− 1. We now must prove that (5) holds for i = j.
We have assumed that (5) holds for i = j − 1. In other words, we have q ∈

A [X]≤d−(j−1).
Set g = d− (j− 1). Then, g = d− (j− 1) = (d + 1)− j ≥ 0 (since j ≤ d + 1), so

that g ∈N.
Lemma 3.12 (b) yields [Xg+n] (pq) = [Xg] q. But g︸︷︷︸

≥0

+n ≥ n > n− 1. Hence,

Lemma 3.5 (a) (applied to pq, n − 1 and g + n instead of q, n and m) yields
[Xg+n] (pq) = 0 (since pq ∈ A [X]≤n−1). Comparing this with [Xg+n] (pq) = [Xg] q,
we obtain [Xg] q = 0.

But q ∈ A [X]≤d−(j−1) = A [X]≤g (since d− (j− 1) = g). Lemma 3.9 (applied to g
instead of n) thus shows that q ∈ A [X]≤g−1 (since [Xg] q = 0). Since g︸︷︷︸

=d−(j−1)

−1 =

d − (j− 1) − 1 = d − j, this rewrites as q ∈ A [X]≤d−j. In other words, (5) holds
for i = j. This completes the induction step. Thus, the induction proof of (5) is
complete.

Now, applying (5) to i = d + 1, we obtain q ∈ A [X]≤d−(d+1) = A [X]≤−1 = {0}
(by Lemma 3.10). In other words, q = 0. This proves Proposition 3.13.

Corollary 3.14. Let A be a commutative ring. Let n ∈ N. Let p ∈ A [X] be a
monic polynomial of degree n. Let u ∈ A [X]≤n−1 be such that p | u (in the ring
A [X]). Then, u = 0.

Proof of Corollary 3.14. We have p | u. In other words, there exists some q ∈ A [X]
such that u = pq. Consider this q. We have pq = u ∈ A [X]≤n−1. Thus, Proposition
3.13 shows that q = 0. Hence, u = p q︸︷︷︸

=0

= 0. This proves Corollary 3.14.
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Corollary 3.15. Let A be a commutative ring. Let n ∈ N. Let p ∈ A [X] be a
monic polynomial of degree n. Then, the element p of A [X] is regular.

Proof of Corollary 3.15. We must prove that p is regular. In other words, we must
prove that every x ∈ A [X] satisfying px = 0 satisfies x = 0 (because this is what it
means for p to be regular).

So let x ∈ A [X] satisfy px = 0. Then, px = 0 ∈ A [X]≤n−1. Hence, Proposition
3.13 (applied to q = x) yields x = 0. This completes our proof of Corollary 3.15.

3.4. Division with remainder

Now, we shall state the most important result in this section: division with remain-
der by a monic polynomial:

Theorem 3.16. Let A be a commutative ring. Let n ∈ N. Let p ∈ A [X] be a
monic polynomial of degree n. Let f ∈ A [X]. Then, there exists a unique pair
(q, r) ∈ A [X]× A [X]≤n−1 such that f = qp + r.

Remark 3.17. Let A, n, p and f be as in Theorem 3.16. Theorem 3.16 claims that
there exists a unique pair (q, r) ∈ A [X]× A [X]≤n−1 such that f = qp + r. The
two entries q and r of this pair (q, r) are called the quotient and the remainder
(respectively) obtained when dividing f by p. Note that the remainder r belongs to
A [X]≤n−1 (since (q, r) ∈ A [X]× A [X]≤n−1).

We shall prove the existence and the uniqueness parts of Theorem 3.16 separately,
beginning with the uniqueness part:

Lemma 3.18. Let A be a commutative ring. Let n ∈ N. Let p ∈ A [X] be a
monic polynomial of degree n. Let f ∈ A [X]. Then, there exists at most one
pair (q, r) ∈ A [X]× A [X]≤n−1 such that f = qp + r.

Proof of Lemma 3.18. Let (q1, r1) and (q2, r2) be two pairs (q, r) ∈ A [X]× A [X]≤n−1
such that f = qp + r. We shall prove that (q1, r1) = (q2, r2).

We know that (q1, r1) is a pair (q, r) ∈ A [X]× A [X]≤n−1 such that f = qp + r. In
other words, (q1, r1) is a pair in A [X]× A [X]≤n−1 such that f = q1p+ r1. Similarly,
(q2, r2) is a pair in A [X]× A [X]≤n−1 such that f = q2p + r2.

We have r1 ∈ A [X]≤n−1 (since (q1, r1) ∈ A [X]× A [X]≤n−1) and r2 ∈ A [X]≤n−1
(similarly). Thus, r2 − r1 ∈ A [X]≤n−1. Now, q1p + r1 = f = q2p + r2. Hence,
q1p − q2p = r2 − r1 ∈ A [X]≤n−1. Thus, p (q1 − q2) = (q1 − q2) p = q1p − q2p ∈
A [X]≤n−1. Proposition 3.13 (applied to q = q1 − q2) thus shows that q1 − q2 = 0.
In other words, q1 = q2. Hence, r2 − r1 = q1︸︷︷︸

=q2

p − q2p = q2p − q2p = 0, so that

r1 = r2. Now,

 q1︸︷︷︸
=q2

, r1︸︷︷︸
=r2

 = (q2, r2).
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We thus have shown that if (q1, r1) and (q2, r2) are two pairs (q, r) ∈ A [X] ×
A [X]≤n−1 such that f = qp + r, then (q1, r1) = (q2, r2). In other words, there exists
at most one pair (q, r) ∈ A [X] × A [X]≤n−1 such that f = qp + r. This proves
Lemma 3.18.

Now, let us state the existence part of Theorem 3.16; actually, let us make a
slightly stronger claim:

Lemma 3.19. Let A be a commutative ring. Let n ∈N. Let p ∈ A [X] be a monic
polynomial of degree n. Let d ∈ {−1, 0, 1, . . .}. Let f ∈ A [X]≤d. Then, there
exists at least one pair (q, r) ∈ A [X]≤d−n × A [X]≤n−1 such that f = qp + r.

Proof of Lemma 3.19. We shall prove Lemma 3.19 by induction on d:
Induction base: Lemma 3.19 holds in the case when d = −1 (because in this case,

we have f ∈ A [X]≤d = A [X]≤−1 = {0} and therefore f = 0, so that we can take
(q, r) = (0, 0)).

Induction step: Let D ∈ N. Assume that Lemma 3.19 holds in the case when
d = D− 1. We must prove that Lemma 3.19 holds in the case when d = D.

Let A, n and p be as in Lemma 3.19. Let f ∈ A [X]≤D. We are going to show the
following claim:

Claim 1: There exists at least one pair (q, r) ∈ A [X]≤D−n × A [X]≤n−1
such that f = qp + r.

Proof of Claim 1: If D ≤ n − 1, then A [X]≤D ⊆ A [X]≤n−1 (by Lemma 3.11).
Hence, if D ≤ n − 1, then Claim 1 holds (because we can just set (q, r) = (0, f ),
using the fact that f ∈ A [X]≤D ⊆ A [X]≤n−1). Hence, we WLOG assume that we
don’t have D ≤ n− 1. Thus, D ≥ n (since D and n are integers), so that D− n ∈N.

Define an element α ∈ A by α =
[
XD] f . Then, the polynomial αXD−n ∈ A [X] is

well-defined (since D− n ∈ N) and belongs to A [X]≤D−n. Hence, Lemma 3.12 (a)
(applied to D− n and αXD−n instead of g and q) yields pαXD−n ∈ A [X]≤(D−n)+n =

A [X]≤D. Moreover, Lemma 3.12 (b) (applied to D− n and αXD−n instead of g and
q) yields [

X(D−n)+n
] (

pαXD−n
)
=
[

XD−n
] (

αXD−n
)
= α.

Since (D− n) + n = D, this rewrites as
[
XD] (pαXD−n) = α.

Both f and pαXD−n belong to A [X]≤D. Hence, the difference f − pαXD−n also
belongs to A [X]≤D (since A [X]≤D is an A-submodule of A [X]). In other words,
f − pαXD−n ∈ A [X]≤D. Furthermore,[

XD
] (

f − pαXD−n
)
=
[

XD
]

f︸ ︷︷ ︸
=α

−
[

XD
] (

pαXD−n
)

︸ ︷︷ ︸
=α

= α− α = 0.

Hence, Lemma 3.9 (applied to D and f − pαXD−n instead of n and q) shows that
f − pαXD−n ∈ A [X]≤D−1. Therefore, we can apply Lemma 3.19 to D − 1 and
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f − pαXD−n instead of d and f (since we have assumed that Lemma 3.19 holds
in the case when d = D − 1). We thus obtain that there exists at least one pair
(q, r) ∈ A [X]≤(D−1)−n × A [X]≤n−1 such that f − pαXD−n = qp + r. Denote this
pair (q, r) by (q̃, r̃). Thus, (q̃, r̃) is a pair in A [X]≤(D−1)−n × A [X]≤n−1 satisfying
f − pαXD−n = q̃p + r̃.

We have (q̃, r̃) ∈ A [X]≤(D−1)−n × A [X]≤n−1; in other words, q̃ ∈ A [X]≤(D−1)−n
and r̃ ∈ A [X]≤n−1. Now, q̃ ∈ A [X]≤(D−1)−n ⊆ A [X]≤D−n (since (D− 1) − n ≤
D − n). Hence, both q̃ and αXD−n belong to A [X]≤D−n (since we know that
αXD−n ∈ A [X]≤D−n). Thus, the sum q̃ + αXD−n also belongs to A [X]≤D−n (since
A [X]≤D−n is an A-submodule of A [X]). In other words, q̃ + αXD−n ∈ A [X]≤D−n.
Combining this with r̃ ∈ A [X]≤n−1, we obtain

(
q̃ + αXD−n, r̃

)
∈ A [X]≤D−n ×

A [X]≤n−1. Furthermore, from f − pαXD−n = q̃p + r̃, we obtain

f = pαXD−n + q̃p︸ ︷︷ ︸
=(q̃+αXD−n)p

+r̃ =
(

q̃ + αXD−n
)

p + r̃.

Thus, there exists at least one pair (q, r) ∈ A [X]≤D−n × A [X]≤n−1 such that f =

qp + r (namely, (q, r) =
(
q̃ + αXD−n, r̃

)
). This proves Claim 1.

Now, forget that we have fixed A, n, p and f . We thus have shown that if A,
n and p are as in Lemma 3.19, and if f ∈ A [X]≤D, then Claim 1 holds. In other
words, Lemma 3.19 holds in the case when d = D. This completes the induction
step. The induction proof of Lemma 3.19 is thus complete.

Finally, we can prove Theorem 3.16:

Proof of Theorem 3.16. The existence of the pair (q, r) follows from Lemma 3.199; its
uniqueness from Lemma 3.18.

3.5. aR ∩ pR = apR for monic p and arbitrary a

Convention 3.20. Here and in the following, we shall observe the following con-
vention: Multiplication (of elements of a ring, or of ideals of a ring, or of an
element of a ring with an ideal of a ring) precedes set-theoretical operations such
as ∩ and ∪. Thus, if A is a ring, if S and T are two ideals of A, and if a is an ele-
ment of A, then the expression “aS ∩ T” means “(aS) ∩ T” (and not “a (S ∩ T)”).
Similarly, if U, V and W are three ideals of a ring, then the expression “U ∩VW”
means “U ∩ (VW)” (and not “(U ∩V)W”).

Now, let us prove a consequence of Theorem 3.16 that will reveal its use later:

9Here we are using the fact that there exists some d ∈ N such that f ∈ A [X]≤d. (But this follows
immediately from Proposition 3.6.)
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Corollary 3.21. Let A be a commutative ring. Let n ∈ N. Let p ∈ A [X] be a
monic polynomial of degree n. Let a ∈ A. Set R = A [X]. Then, aR ∩ pR = apR.

Proof of Corollary 3.21. Combining a pR︸︷︷︸
⊆R

⊆ aR with ap︸︷︷︸
=pa

R = p aR︸︷︷︸
⊆R

⊆ pR, we

obtain apR ⊆ aR ∩ pR.
Now, let u ∈ aR ∩ pR. Thus, u ∈ aR ∩ pR ⊆ aR. In other words, there exists

some f ∈ R such that u = a f . Consider this f .
We have f ∈ R = A [X]. Hence, Theorem 3.16 shows that there exists a unique

pair (q, r) ∈ A [X]× A [X]≤n−1 such that f = qp + r. Consider this (q, r).
We have (q, r) ∈ A [X]× A [X]≤n−1; in other words, q ∈ A [X] and r ∈ A [X]≤n−1.

Now, u = a f︸︷︷︸
=qp+r

= a (qp + r) = aqp + ar.

On the other hand, u ∈ aR ∩ pR ⊆ pR. In other words, there exists some v ∈ R
such that u = pv. Consider this v. We have pv = u = aqp + ar. Solving this
equation for ar, we obtain ar = pv− aqp = pv− paq = p (v− aq).

But r ∈ A [X]≤n−1 and thus ar ∈ A [X]≤n−1 (since a ∈ A and since A [X]≤n−1 is
an A-submodule of A [X]). Hence, p (v− aq) = ar ∈ A [X]≤n−1. Thus, Proposition
3.13 (applied to v − aq instead of q) yields v − aq = 0. Hence, v = aq, so that
u = p v︸︷︷︸

=aq

= paq = ap q︸︷︷︸
∈R

∈ apR.

Now, forget that we fixed u. We thus have shown that every u ∈ aR∩ pR satisfies
u ∈ apR. In other words, aR ∩ pR = apR. Combined with apR ⊆ aR ∩ pR, this
yields aR ∩ pR = apR. This proves Corollary 3.21.

The claim of Corollary 3.21 can be restated as follows: If A, n, p, a and R as in
Corollary 3.21, then every polynomial in R that is divisible by a and by p must be
divisible by ap. This is a “sort of coprimality statement” (not in the usual sense of
the word “coprimality”, but more akin to the property of coprime positive integers
m and n to satisfy lcm (m, n) = mn). Theorems 1.3 and 1.2 are also statements of
this kind, and ultimately we will use Corollary 3.21 as the first stepping stone in
deriving these two theorems.

For the sake of (future) convenience, let us state a variant of Corollary 3.21 “trans-
lated through a ring isomorphism”:

Corollary 3.22. Let A and B be two commutative rings. Let f : A [X] → B be
a ring isomorphism. Let n ∈ N. Let p ∈ B be such that f−1 (p) is a monic
polynomial of degree n. Let b ∈ B be such that f−1 (b) ∈ A. Then, bB ∩ pB =
bpB.

Proof of Corollary 3.22. Set R = A [X]. Corollary 3.21 (applied to f−1 (b) and f−1 (p)
instead of a and p) yields f−1 (b) R ∩ f−1 (p) R = f−1 (b) f−1 (p) R.

But f is a ring isomorphism from A [X] to B, thus from R to B (since R =
A [X]). Hence, applying f to both sides of the equality f−1 (b) R ∩ f−1 (p) R =
f−1 (b) f−1 (p) R, we obtain bB ∩ pB = bpB. This proves Corollary 3.22.
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4. On multivariate polynomials

4.1. Notations and the isomorphisms ρi

Next, we shall discuss some properties of multivariate polynomial rings of the
form A [X1, X2, . . . , Xn]. First, we recall that such rings can be obtained recursively
by adjoining one variable after the other; indeed, for each n ∈ N and each i ∈
{1, 2, . . . , n}, there is a canonical isomorphism

A [X1, X2, . . . , Xn] ∼=
(

A
[

X1, X2, . . . , X̂i, . . . , Xn

])
[Xi] (6)

(where the “X̂i” means that the element Xi is removed from the list), which is often
used to identify A [X1, X2, . . . , Xn] with

(
A
[

X1, X2, . . . , X̂i, . . . , Xn

])
[Xi] (though

we shall not make such identification). Let us first explain our notations:

Convention 4.1. Let n ∈ N. Let (u1, u2, . . . , un) be a list of n arbitrary ob-
jects. Let i ∈ {1, 2, . . . , n}. Then, (u1, u2, . . . , ûi, . . . , un) will denote the list
(u1, u2, . . . , ui−1, ui+1, ui+2, . . . , un) (this is a list of n − 1 objects). Thus, the
hat over the symbol ui signifies that the i-th entry of the list is being re-
moved. (It does not mean that every object that happens to be equal to ui is
removed from the list; we only remove the i-th object. So, for example, the list(
(−5)2 , (−4)2 , . . . , 2̂2, . . . , 52

)
contains the entry (−2)2, even though this entry

equals the removed entry 22.)

Definition 4.2. Let A be a commutative ring. Let n ∈ N. Let R denote the poly-
nomial ring A [X1, X2, . . . , Xn]. For each i ∈ {1, 2, . . . , n}, we let Ri denote the
polynomial ring A

[
X1, X2, . . . , X̂i, . . . , Xn

]
(a polynomial ring in n − 1 indeter-

minates).
For each i ∈ {1, 2, . . . , n}, we regard Ri as an A-subalgebra of R. For

each i ∈ {1, 2, . . . , n}, we let ρi : Ri [X] → R be the Ri-algebra homo-
morphism which sends every p ∈ Ri [X] to p (Xi). In other words, ρi :(

A
[

X1, X2, . . . , X̂i, . . . , Xn

])
[X]→ A [X1, X2, . . . , Xn] is the A-algebra homomor-

phism which satisfies(
ρi
(
Xj
)
= Xj for every j ∈

{
1, 2, . . . , î, . . . , n

})
(7)

an
ρi (X) = Xi. (8)

It is well-known that this ρi is actually an Ri-algebra isomorphism. Indeed, this
ρi is the isomorphism responsible for (6) (at least if we rename the indeterminate
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X in Ri [X] as Xi). Since the map ρi is a Ri-algebra isomorphism, its inverse ρ−1
i

is well-defined and also a Ri-algebra isomorphism.
These notations A, n, R, Ri and ρi shall be in place for the whole Section 4.

4.2. Regularity of Xi − Xj

Proposition 4.3. Let i and j be two distinct elements of {1, 2, . . . , n}.
(a) The polynomial ρ−1

i
(
Xi − Xj

)
∈ Ri [X] is monic of degree 1.

(b) The element Xi − Xj of R is regular.

Proof of Proposition 4.3. The definition of Ri yields Ri = A
[

X1, X2, . . . , X̂i, . . . , Xn

]
.

Combining j ∈ {1, 2, . . . , n} with j 6= i (since i and j are distinct), we obtain j ∈
{1, 2, . . . , n} \ {i} =

{
1, 2, . . . , î, . . . , n

}
. Hence, Xj ∈ A

[
X1, X2, . . . , X̂i, . . . , Xn

]
=

Ri. Hence, X − Xj is a well-defined polynomial in Ri [X]. Clearly, this polynomial
X− Xj ∈ Ri [X] is monic of degree 1.

Now, ρi is an Ri-algebra homomorphism. Hence,

ρi
(
X− Xj

)
= ρi (X)︸ ︷︷ ︸

=Xi
(by (8))

− ρi
(
Xj
)︸ ︷︷ ︸

=Xj
(by (7))

= Xi − Xj.

Hence, X− Xj = ρ−1
i
(
Xi − Xj

)
.

Now, recall that the polynomial X − Xj ∈ Ri [X] is monic of degree 1. Since
X − Xj = ρ−1

i
(
Xi − Xj

)
, this rewrites as follows: The polynomial ρ−1

i
(
Xi − Xj

)
∈

Ri [X] is monic of degree 1. This proves Proposition 4.3 (a).
(b) The map ρi : Ri [X] → R is an Ri-algebra isomorphism, thus a ring isomor-

phism.
The polynomial X − Xj ∈ Ri [X] is monic of degree 1. Thus, Corollary 3.15

(applied to 1, Ri and X − Xj instead of n, A and p) shows that the element X − Xj
of Ri [X] is regular. Hence, Proposition 2.4 (applied to Ri [X], R, ρi and X − Xj
instead of A, B, f and a) shows that ρi

(
X− Xj

)
is a regular element of R (since

ρi : Ri [X]→ R is a ring isomorphism). In other words, Xi−Xj is a regular element
of R (since ρi

(
X− Xj

)
= Xi − Xj). This proves Proposition 4.3.

Corollary 4.4. The polynomial ∏
1≤i<j≤n

(
Xi − Xj

)
is a regular element of R.

Proof of Corollary 4.4. Proposition 4.3 (b) shows that ∏
1≤i<j≤n

(
Xi − Xj

)
is a product

of finitely many regular elements. Hence, ∏
1≤i<j≤n

(
Xi − Xj

)
is itself regular (since

Proposition 2.3 shows that a product of finitely many regular elements must itself
be regular).
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4.3. Simultaneous multiples of Xp − Xq and Xu − Xv

Proposition 4.5. Let H be the set
{
(i, j) ∈ {1, 2, . . . , n}2 | i < j

}
. Let (p, q) and

(u, v) be two distinct elements of H. Then, either Xu − Xv ∈ Rp or Xu − Xv ∈ Rq
(or both).

Proof of Proposition 4.5. We have (p, q) ∈ H; in other words, (p, q) ∈ {1, 2, . . . , n}2

and p < q (by the definition of H). Similarly, (u, v) ∈ {1, 2, . . . , n}2 and u < v.
We now observe that if r is an element of {1, 2, . . . , n} satisfying r /∈ {u, v}, then

Xu − Xv ∈ Rr (9)

10.
But it is impossible that both p and q belong to the set {u, v} 11. Hence, we are

in one of the following two cases:
Case 1: We have p /∈ {u, v}.
Case 2: We have q /∈ {u, v}.
In Case 1, we have p /∈ {u, v} and therefore Xu − Xv ∈ Rp (by (9), applied to

r = p). Hence, Proposition 4.5 holds in Case 1.
In Case 2, we have q /∈ {u, v} and therefore Xu − Xv ∈ Rq (by (9), applied to

r = q). Hence, Proposition 4.5 holds in Case 2.
Thus, Proposition 4.5 holds in both Cases 1 and 2. Hence, Proposition 4.5 holds

always.

We now prove a “coprimality statement” for polynomials of the form Xi − Xj:

Proposition 4.6. Let H be the set
{
(i, j) ∈ {1, 2, . . . , n}2 | i < j

}
. For every

(i, j) ∈ H, define an element a(i,j) of R by a(i,j) = Xi − Xj. Let g and h be
two distinct elements of H. Then, agR ∩ ahR = agahR.

Before we prove this, let us state a lemma (for the sake of convenience):

10Proof of (9): Let r be an element of {1, 2, . . . , n} satisfying r /∈ {u, v}. From r /∈ {u, v}, we
obtain r 6= u and r 6= v. From r 6= u, we obtain u 6= r, so that u ∈ {1, 2, . . . , n} \ {r} =

{1, 2, . . . , r̂, . . . , n}. Hence, Xu ∈ A
[

X1, X2, . . . , X̂r, . . . , Xn

]
= Rr (since Rr was defined as

A
[

X1, X2, . . . , X̂r, . . . , Xn

]
). Similarly, Xv ∈ Rr. Thus, both polynomials Xu and Xv belong to

Rr; hence, so does their difference Xu − Xv. In other words, Xu − Xv ∈ Rr. This proves (9).
11Proof. Assume the contrary. Hence, both p and q belong to the set {u, v}. Since p < q, this shows

that p is the smaller of the two integers u and v, whereas q is the larger of the two integers
u and v. But the smaller of the two integers u and v is u (since u < v). Thus, p = u (since

p is the smaller of the two integers u and v); similarly, q = v. Hence,

 p︸︷︷︸
=u

, q︸︷︷︸
=v

 = (u, v).

This contradicts the fact that (p, q) and (u, v) are distinct. This contradiction shows that our
assumption was wrong, qed.
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Lemma 4.7. Let u, v and r be three elements of {1, 2, . . . , n} such that u 6= v.
Assume that Xu − Xv ∈ Rr.

Set b = Xu − Xv. Also, let p ∈ R be such that ρ−1
r (p) ∈ Rr [X] is a monic

polynomial of degree 1. Then, bR ∩ pR = bpR.

Proof of Lemma 4.7. Recall that ρi : Ri [X] → R is an Ri-algebra isomorphism for
every i ∈ {1, 2, . . . , n}. Applying this to i = r, we see that ρr : Rr [X] → R is an
Rr-algebra isomorphism, thus a ring isomorphism.

We have b = Xu−Xv ∈ Rr ⊆ Rr [X]. Hence, ρr (b) is well-defined. Moreover, b ∈
Rr and thus ρr (b) = b (since ρr is an Rr-algebra homomorphism); thus, ρ−1

r (b) =
b ∈ Rr. Thus, Corollary 3.22 (applied to Rr, R, ρr and 1 instead of A, B, f and n)
shows that bR ∩ pR = bpR. This proves Lemma 4.7.

Proof of Proposition 4.6. Write the elements g and h of H in the forms g = (p, q) and
h = (u, v). Thus, p < q and u < v.

The elements g and h are distinct. In other words, the elements (p, q) and (u, v)
are distinct (since g = (p, q) and h = (u, v)).

From g = (p, q), we obtain ag = a(p,q) = Xp − Xq (by the definition of a(p,q)).
Similarly, ah = Xu − Xv.

Proposition 4.5 shows that we have either Xu − Xv ∈ Rp or Xu − Xv ∈ Rq (or
both). In other words, we are in one of the following two cases:

Case 1: We have Xu − Xv ∈ Rp.
Case 2: We have Xu − Xv ∈ Rq.
Let us first consider Case 1. In this case, we have Xu − Xv ∈ Rp. Hence, ah =

Xu − Xv ∈ Rp.
But the elements p and q of {1, 2, . . . , n} are distinct (since p < q). Proposition

4.3 (a) (applied to i = p and j = q) thus yields that the polynomial ρ−1
p
(
Xp − Xq

)
∈

Rp [X] is monic of degree 1. In other words, the polynomial ρ−1
p
(
ag
)
∈ Rp [X] is

monic of degree 1 (since ag = Xp − Xq). Thus, Lemma 4.7 (applied to p, ah and ag
instead of r, b and p) yields ahR ∩ agR = ahagR. Thus,

agR ∩ ahR = ahR ∩ agR = ahag︸︷︷︸
=agah

R = agahR.

Hence, Proposition 4.6 is proven in Case 1.
Let us now consider Case 2. In this case, we have Xu − Xv ∈ Rq. Hence, ah =

Xu − Xv ∈ Rq.
But the elements q and p of {1, 2, . . . , n} are distinct (since p < q). Proposition

4.3 (a) (applied to i = q and j = p) thus yields that the polynomial ρ−1
q
(
Xq − Xp

)
∈

Rq [X] is monic of degree 1. In other words, the polynomial ρ−1
q
(
−ag

)
∈ Rq [X] is

monic of degree 1 (since − ag︸︷︷︸
=Xp−Xq

= −
(
Xp − Xq

)
= Xq − Xp). Thus, Lemma 4.7

(applied to q, ah and −ag instead of r, b and p) yields ahR ∩
(
−ag

)
R = ah

(
−ag

)
R.
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Now,

agR ∩ ahR = ahR ∩ agR︸︷︷︸
=−agR=(−ag)R

= ahR ∩
(
−ag

)
R = ah

(
−ag

)
R︸ ︷︷ ︸

=−agR=agR

= ahag︸︷︷︸
=agah

R = agahR.

Hence, Proposition 4.6 is proven in Case 2.
We have now proven Proposition 4.6 in each of the two Cases 1 and 2. Thus,

Proposition 4.6 always holds.

5. “lcm-coprimality”

5.1. A general fact about intersections of principal ideals

One way to characterize coprime positive integers is the following: Two positive
integers n and m are coprime if and only if lcm (n, m) = nm. In slightly more
algebraic terms: Two positive integers n and m are coprime if and only if nZ ∩
mZ = nmZ. (This also holds for arbitrary nonzero integers n and m, but fails if n
or m is allowed to be zero.) In analogy to this, we might wonder when two elements
b and c of a commutative ring R satisfy bR ∩ cR = bcR. This is one possible way to
generalize coprimality of positive integers to ring elements12.

Our proof of Theorem 1.3 will use a combination of Proposition 4.6 and the
following general fact:

Proposition 5.1. Let R be a commutative ring. Let G be a finite set. For every
g ∈ G, let ag be a regular element of R. Assume that every two distinct elements

g and h of G satisfy agR ∩ ahR = agahR. Then,
⋂

g∈G

(
agR

)
=

(
∏

g∈G
ag

)
R.

Proof of Proposition 5.1. We have assumed that every two distinct elements g and h
of G satisfy

agR ∩ ahR = agahR. (10)

Now, we shall prove that every subset S of G satisfies

⋂
g∈S

(
agR

)
=

(
∏
g∈S

ag

)
R. (11)

Proof of (11): We will prove (11) by induction on |S|:

12though not the only possible way – for example, another, non-equivalent generalization is to
study elements b and c of R satisfying bR + cR = R
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Induction base: The equality (11) holds in the case when |S| = 0 13.
Induction step: Let N be a positive integer. Assume (as our induction hypothesis)

that (11) holds in the case when |S| = N − 1. We must prove that (11) holds in the
case when |S| = N.

Let S be a subset of G satisfying |S| = N.
We have |S| = N > 0. Hence, there exists a k ∈ S. Pick such a k.
Define an element b ∈ R by b = ∏

g∈S\{k}
ag.

From k ∈ S, we obtain |S \ {k}| = |S|︸︷︷︸
=N

−1 = N − 1. Hence, we can apply (11) to

S \ {k} instead of S (because of the induction hypothesis). We thus obtain

⋂
g∈S\{k}

(
agR

)
=

 ∏
g∈S\{k}

ag


︸ ︷︷ ︸

=b

R = bR. (12)

But k ∈ S. Hence,⋂
g∈S

(
agR

)
= akR ∩

⋂
g∈S\{k}

(
agR

)
︸ ︷︷ ︸

=bR
(by (12))

= akR ∩ bR. (13)

On the other hand, k ∈ S, so that

∏
g∈S

ag = ak ∏
g∈S\{k}

ag︸ ︷︷ ︸
=b

= akb. (14)

Combining ak bR︸︷︷︸
⊆R

⊆ akR with akb︸︷︷︸
=bak

R = b akR︸︷︷︸
⊆R

⊆ bR, we obtain akbR ⊆ akR∩ bR.

On the other hand, let x ∈ akR ∩ bR. Then, x ∈ akR ∩ bR =
⋂

g∈S

(
agR

)
(by (13)).

In other words,
x ∈ agR for every g ∈ S. (15)

But x ∈ akR ∩ bR ⊆ akR. In other words, there exists some z ∈ R such that
x = akz. Consider this z. We have

z ∈ agR for every g ∈ S \ {k} . (16)

13Indeed, in the case when |S| = 0, the set S is empty; thus, the left hand side of (11) is the empty
intersection of subsets of R (and thus equal to R), whereas the right hand side of (11) is 1R
(because the product ∏

g∈S
ag is the empty product and thus equals 1). So (11) becomes R = 1R in

this case; but this holds obviously.
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[Proof of (16): Let g ∈ S \ {k}. We want to show that z ∈ agR.
We have g ∈ S \ {k}. In other words, g ∈ S and g 6= k. From g ∈ S ⊆ G

and k ∈ S ⊆ G, we conclude that g and k are two elements of G. Furthermore,
these two elements are distinct (since g 6= k). Hence, (10) (applied to h = k) yields
agR ∩ akR = agakR.

But (15) yields x ∈ agR. Combining this with x ∈ akR, we obtain x ∈ agR∩ akR =
agakR. In other words, there exists some w ∈ R such that x = agakw. Consider this
w.

We have ak
(
z− agw

)
= akz︸︷︷︸

=x

− akag︸︷︷︸
=agak

w = x− agakw︸ ︷︷ ︸
=x

= x− x = 0. But the element

ak of R is regular (indeed, ah is a regular element of R for each h ∈ G). Hence, from
ak
(
z− agw

)
= 0, we obtain z− agw = 0. Hence, z = ag w︸︷︷︸

∈R

∈ agR. This proves

(16).]
From (16), we obtain z ∈ ⋂

g∈S\{k}

(
agR

)
= bR (by (12)). Hence, x = ak z︸︷︷︸

∈bR

∈ akbR.

Now, forget that we fixed x. We thus have shown that every x ∈ akR∩ bR satisfies
x ∈ akbR. In other words, akR ∩ bR ⊆ akbR. Combining this with akbR ⊆ akR ∩ bR,
we obtain akR ∩ bR = akbR.

Now, (13) becomes

⋂
g∈S

(
agR

)
= akR ∩ bR = akb︸︷︷︸

= ∏
g∈S

ag

(by (14))

R =

(
∏
g∈S

ag

)
R.

Now, forget that we fixed S. We thus have shown that every subset S of G

satisfying |S| = N satisfies
⋂

g∈S

(
agR

)
=

(
∏

g∈S
ag

)
R. In other words, (11) holds in

the case when |S| = N. This completes the induction proof of (11).
Now, Proposition 5.1 follows by applying (11) to S = G.

5.2. Application to the polynomials Xi − Xj

Corollary 5.2. Let A be a commutative ring with unity. Let n ∈ N. Let G be a
subset of the set

{
(i, j) ∈ {1, 2, . . . , n}2 | i < j

}
. Let R be the polynomial ring

A [X1, X2, . . . , Xn]. Then,

⋂
(i,j)∈G

((
Xi − Xj

)
R
)
=

 ∏
(i,j)∈G

(
Xi − Xj

) R.
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Proof of Corollary 5.2. Let H be the set
{
(i, j) ∈ {1, 2, . . . , n}2 | i < j

}
. Thus, G ⊆

H ⊆ {1, 2, . . . , n}2.
For every (i, j) ∈ H, define an element a(i,j) of R by a(i,j) = Xi − Xj. Hence, an

element ag of R is defined for each g ∈ G (since G ⊆ H).
For every g ∈ G, the element ag is a regular element of R 14. Every two distinct

elements g and h of G satisfy agR∩ ahR = agahR 15. Hence, Proposition 5.1 shows
that ⋂

g∈G

(
agR

)
=

(
∏
g∈G

ag

)
R.

Renaming the index g as (i, j) on both sides of this equality, we obtain

⋂
(i,j)∈G

(
a(i,j)R

)
=

 ∏
(i,j)∈G

a(i,j)

 R.

Since a(i,j) = Xi − Xj for every (i, j) ∈ G, this rewrites as

⋂
(i,j)∈G

((
Xi − Xj

)
R
)
=

 ∏
(i,j)∈G

(
Xi − Xj

) R.

This proves Corollary 5.2.

5.3. Proving Theorems 1.3 and 1.2

We can now prove Theorems 1.3 and 1.2:

Proof of Theorem 1.3. Let R be the polynomial ring A [X1, X2, . . . , Xn].
We know that f is divisible by Xi − Xj for every (i, j) ∈ G. In other words,

f ∈
(
Xi − Xj

)
R for every (i, j) ∈ G. In other words, f ∈ ⋂

(i,j)∈G

((
Xi − Xj

)
R
)
.

Now,

f ∈
⋂

(i,j)∈G

((
Xi − Xj

)
R
)
=

 ∏
(i,j)∈G

(
Xi − Xj

) R (by Corollary 5.2) .

14Proof. Let g ∈ G. Then, g ∈ G ⊆
{
(i, j) ∈ {1, 2, . . . , n}2 | i < j

}
. In other words, g = (i, j)

for some (i, j) ∈ {1, 2, . . . , n}2 satisfying i < j. Consider this (i, j). From g = (i, j), we obtain
ag = a(i,j) = Xi − Xj (by the definition of a(i,j)).

Clearly, i and j are elements of {1, 2, . . . , n} (since (i, j) ∈ {1, 2, . . . , n}2) and are distinct (since
i < j). Therefore, Proposition 4.3 (b) shows that the element Xi − Xj of R is regular. In other
words, the element ag of R is regular (since ag = Xi − Xj). Qed.

15Proof. Let g and h be two distinct elements of G. Then, g ∈ G ⊆ H and h ∈ G ⊆ H. Hence, g and
h are two elements of H. Thus, Proposition 4.6 shows that agR ∩ ahR = agahR. Qed.
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In other words, f is divisible by ∏
(i,j)∈G

(
Xi − Xj

)
in the ring R. This proves Theorem

1.3.

Proof of Theorem 1.2. Theorem 1.2 follows from Theorem 1.3 if we set
G =

{
(i, j) ∈ {1, 2, . . . , n}2 | i < j

}
.

6. Analogues for power series

6.1. When is X− a ∈ A [[X]] regular?

Let us now try to extend some of the above results from polynomials to power
series.

Recall that if A is a commutative ring, then A [[X]] denotes the ring of formal
power series in one indeterminate X over A. This ring contains A [X] as a subring.
First, I shall show two facts that can be viewed as partial analogues of Corollary
3.15:

Proposition 6.1. Let A be a commutative ring. Let a be a nilpotent element of A.
Then, the element X− a of A [[X]] is regular.

Proposition 6.2. Let A be a commutative ring. Let a be a regular element of A.
Then, the element X− a of A [[X]] is regular.

Proof of Proposition 6.1. Let x ∈ A [[X]] be such that (X− a) x = 0. We shall prove
that x = 0.

Write the power series x in the form x = ∑
i∈N

ciXi for some sequence (c0, c1, c2, . . .) ∈

AN.
Extend the sequence (c0, c1, c2, . . .) ∈ AN to a sequence (c−1, c0, c1, c2, . . .) ∈

A{−1,0,1,...} by setting c−1 = 0. Then,

∑
i∈N

ci−1Xi = c−1︸︷︷︸
=0

X0 + ∑
i∈N;
i>0

ci−1Xi = 0X0︸︷︷︸
=0

+ ∑
i∈N;
i>0

ci−1Xi = ∑
i∈N;
i>0

ci−1Xi

= ∑
i∈N

ci Xi+1︸︷︷︸
=XXi

(here, we have substituted i for i− 1 in the sum)

= ∑
i∈N

ciXXi = X ∑
i∈N

ciXi

︸ ︷︷ ︸
=x

= Xx. (17)
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On the other hand, (X− a) x = 0. Thus,

0 = (X− a) x = Xx︸︷︷︸
= ∑

i∈N

ci−1Xi

(by (17))

−a x︸︷︷︸
= ∑

i∈N

ciXi

= ∑
i∈N

ci−1Xi − a ∑
i∈N

ciXi

︸ ︷︷ ︸
= ∑

i∈N

aciXi

= ∑
i∈N

ci−1Xi − ∑
i∈N

aciXi.

In other words,
∑

i∈N

ci−1Xi = ∑
i∈N

aciXi.

Comparing coefficients on both sides of this equality, we obtain

ci−1 = aci for every i ∈N. (18)

Now, we can easily see that every i ∈ {−1, 0, 1, . . .} and j ∈N satisfy

ci = ajci+j (19)

16.
But the element a of A is nilpotent. In other words, there exists some k ∈N such

that ak = 0 (by the definition of “nilpotent”). Consider this k. Every i ∈N satisfies

ci = ak︸︷︷︸
=0

ci+k (by (19) (applied to j = k))

= 0. (20)

Now, x = ∑
i∈N

ci︸︷︷︸
=0

(by (20))

Xi = ∑
i∈N

0Xi = 0.

Now, forget that we fixed x. We thus have shown that every x ∈ A [[X]] satisfying
(X− a) x = 0 satisfies x = 0.

16Proof of (19): Fix i ∈ {−1, 0, 1, . . .}. We shall prove (19) by induction over j:
Induction base: We have a0︸︷︷︸

=1

ci+0︸︷︷︸
=ci

= ci. Thus, ci = a0ci+0. In other words, (19) holds for j = 0.

This completes the induction base.
Induction step: Let J ∈N be positive. Assume that (19) holds for j = J− 1. We must now show

that (19) holds for j = J.
We have assumed that (19) holds for j = J − 1. In other words, we have ci = aJ−1ci+J−1. Now,

ci = aJ−1 ci+J−1︸ ︷︷ ︸
=aci+J

(by (18) (applied to i+J
instead of i))

= aJ−1a︸ ︷︷ ︸
=aJ

ci+J = aJci+J .

In other words, (19) holds for j = J. Thus, the induction step is complete. Hence, (19) is proven
by induction.
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But the element X − a of A [[X]] is regular if and only if every x ∈ A [[X]] sat-
isfying (X− a) x = 0 satisfies x = 0 (by the definition of “regular”). Hence, the
element X− a of A [[X]] is regular (since every x ∈ A [[X]] satisfying (X− a) x = 0
satisfies x = 0). This proves Proposition 6.1.

We shall generalize Proposition 6.1 in Subsection 10.2 (and show a second proof
for it).

Proof of Proposition 6.2. The element a of A is regular if and only if every x ∈ A
satisfying ax = 0 satisfies x = 0 (by the definition of “regular”). Hence,

every x ∈ A satisfying ax = 0 satisfies x = 0 (21)

(since the element a of A is regular).
Let x ∈ A [[X]] be such that (X− a) x = 0. We shall prove that x = 0.
Write the power series x in the form x = ∑

i∈N

ciXi for some sequence (c0, c1, c2, . . .) ∈

AN.
Extend the sequence (c0, c1, c2, . . .) ∈ AN to a sequence (c−1, c0, c1, c2, . . .) ∈

A{−1,0,1,...} by setting c−1 = 0. Then, the equality (18) holds (for the same rea-
sons that we explained in the proof of Proposition 6.1). Using this equality and the
regularity of a, we can easily find that

ci = 0 for every i ∈ {−1, 0, 1, . . .} (22)

17.
Now, x = ∑

i∈N

ci︸︷︷︸
=0

(by (22))

Xi = ∑
i∈N

0Xi = 0.

Now, forget that we fixed x. We thus have shown that every x ∈ A [[X]] satisfying
(X− a) x = 0 satisfies x = 0.

But the element X − a of A [[X]] is regular if and only if every x ∈ A [[X]] sat-
isfying (X− a) x = 0 satisfies x = 0 (by the definition of “regular”). Hence, the
element X− a of A [[X]] is regular (since every x ∈ A [[X]] satisfying (X− a) x = 0
satisfies x = 0). This proves Proposition 6.2.

Proposition 6.1 and Proposition 6.2 give two sufficient criteria for a power series
of the form X− a to be a regular element of A [[X]]. These criteria are not necessary

17Proof of (22): We shall prove (22) by induction over i:
Induction base: We have c−1 = 0. In other words, (22) holds for i = −1. This completes the

induction base.
Induction step: Let j ∈ N. Assume that (22) holds for i = j− 1. We must prove that (22) holds

for i = j.
We have assumed that (22) holds for i = j− 1. In other words, we have cj−1 = 0. Now, (18)

(applied to i = j) yields cj−1 = acj. Hence, acj = cj−1 = 0. Thus, cj = 0 (by (21) (applied to cj
instead of x)). In other words, (22) holds for i = j. This completes the induction step. Hence,
the induction proof of (22) is complete.
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(not even in combination); for example, the power series X − 2 ∈ (Z/6Z) [[X]]
(where 2 denotes the residue class of 2 ∈ Z modulo 6) is regular, even though the
element 2 of Z/6Z is neither nilpotent nor regular. More generally, the element
X − a of A [[X]] is regular whenever the ring A is Noetherian18; it is also regular
whenever there exists a k ∈N satisfying ak A = ak+1A. We leave the proofs of these
facts to the reader. Let me observe that some condition on A and a is needed to
guarantee the regularity of X− a; in full generality the claim would not be true, as
the following example shows:

Example 6.3. Let K be a field. Let A be the commutative K-algebra with genera-
tors a, x−1, x0, x1, . . . and relations

x−1 = 0 and xi = axi+1 for all i ≥ −1.

Then, the power series X− a ∈ A [[X]] is not regular.

Proof of Example 6.3 (sketched). Define a power series x ∈ A [[X]] by x = ∑
i∈N

xiXi.

Then, it is easy to see that (X− a) x = 0.
Let us now prove that x0 6= 0. Indeed, let us assume the contrary. Thus, x0 = 0.
Let A be the polynomial algebra over K in the indeterminates a, x−1, x0, x1, x2, . . ..

Then, there is a unique ring homomorphism π : A → A sending a to a and
sending each xi to the corresponding xi. This ring homomorphism π is surjec-
tive, and its kernel is the ideal I of A generated by x−1 and xi − axi+1 for all
i ≥ −1. Since π (x0) = x0 = 0, we see that the polynomial x0 ∈ A lies in this
ideal I. In other words, x0 is an A-linear combination of x−1 and xi − axi+1 for all
i ≥ −1. In other words, there exists some s ∈ {−1, 0, 1, . . .}, some u ∈ A and some
v−1, v0, . . . , vs−1 ∈ A such that

x0 = u · x−1 +
s−1

∑
i=−1

vi · (xi − axi+1) . (23)

Consider these s, u and v−1, v0, . . . , vs−1.
Now, consider the polynomial ring K [T]. The substitution

a 7→ T, xi 7→
{

Ts−i, if i ≤ s;
0, if i > s

defines a K-algebra homomorphism A → K [T]. Let ũ and ṽi denote the images of
u and vi under this substitution. If we apply this substitution to both sides of the
equality (23), then we obtain

Ts = ũ · Ts+1 +
s−1

∑
i=−1

ṽi ·
(

Ts−i − TTs−(i+1)
)

︸ ︷︷ ︸
=0

= ũ · Ts+1.

18Actually, a much stronger statement holds: If A is Noetherian, then a power series f ∈ A [[X]] is
regular in A [[X]] if and only if every b ∈ A satisfying b f = 0 must satisfy b = 0. See [Fields71,
Theorem 5].
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Hence, Ts is divisible by Ts+1 in K [T]. But this is clearly absurd. Hence, we have
obtained a contradiction.

Thus, x0 6= 0 is proven. Since x0 is the constant term of the power series x, this
entails that x 6= 0. Hence, X − a is not regular (because if X − a were regular, then
(X− a) x = 0 would yield x = 0, which would contradict x 6= 0). This completes
the proof of Example 6.3.

(Notice that this proof mostly begs the question how the K-algebra A looks like
– e.g., whether it has an explicit combinatorial basis. It only shows that the element
x0 of A is nonzero; as we saw, this was enough for our purposes.19)

More general criteria for regularity of power series in A [[X]] will be discussed
in Section 10.

6.2. Notations and the isomorphisms ρi

We can now prove an analogue of Corollary 4.4 for power series, whose proof will
be more or less the same as the proof of Corollary 4.4 itself. Let us first build up
some notations.

Rings of formal power series (of the form A [[X1, X2, . . . , Xn]]) can be obtained
recursively by adjoining one variable after the other (similarly to polynomial rings
A [X1, X2, . . . , Xn]); indeed, for each n ∈ N and each i ∈ {1, 2, . . . , n}, there is a
canonical ring isomorphism

A [[X1, X2, . . . , Xn]] ∼=
(

A
[[

X1, X2, . . . , X̂i, . . . , Xn

]])
[[Xi]] (24)

(where the “X̂i” again means that the element Xi is removed from the list).20 This
isomorphism is rather useful; let me introduce a notation for it:

19An explicit combinatorial basis can nevertheless be found. Namely,(
1, a, a2, a3, . . . , x0, x1, x2, . . .

)
is a basis of the K-vector space A. Indeed, to prove its linear independence, argue using sub-
stitutions such as the one above (for varying s). In order to prove that it spans A, argue that
any product of two (or more) xi’s is 0 (because xi xj︸︷︷︸

=ai+1xj+i+1

= ai+1xi︸ ︷︷ ︸
=x−1=0

xj+i+1 = 0), and that any

product of the form aixj can be rewritten as

{
xj−i, if j ≥ i;

0, if j < i
.

20Let me make some comments about this isomorphism:
Rings of formal power series are topological rings; the topology ensures that “reasonable”

infinite sums such as ∑
i∈N

Xi or ∑
(i,j)∈N2

XiY j converge. This topology is defined as follows:

Let B be a topological ring. Then, for any m ∈ N and any m indeterminates Y1, Y2, . . . , Ym,
we endow the ring B [[Y1, Y2, . . . , Ym]] with the following topology: The B-module BNm

is canon-
ically equipped with a product topology (since B itself has a topology). Use the B-module
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Definition 6.4. Let A be a commutative ring. Let n ∈ N. Let R denote the ring
A [[X1, X2, . . . , Xn]] (a ring of formal power series in n indeterminates). For each
i ∈ {1, 2, . . . , n}, we let Ri denote the ring A

[[
X1, X2, . . . , X̂i, . . . , Xn

]]
(a ring of

formal power series in n− 1 indeterminates).
For each i ∈ {1, 2, . . . , n}, we regard Ri as an A-subalgebra of R. For

each i ∈ {1, 2, . . . , n}, we let ρi : Ri [[X]] → R be the continuous Ri-algebra
homomorphism which sends every p ∈ Ri [[X]] to p (Xi). In other words,
ρi :

(
A
[[

X1, X2, . . . , X̂i, . . . , Xn

]])
[[X]] → A [[X1, X2, . . . , Xn]] is the continuous

A-algebra homomorphism which satisfies(
ρi
(
Xj
)
= Xj for every j ∈

{
1, 2, . . . , î, . . . , n

})
(25)

an
ρi (X) = Xi. (26)

It is well-known that this ρi is actually an Ri-algebra isomorphism. Indeed, this ρi
is the isomorphism responsible for (24) (at least if we rename the indeterminate
X in Ri [[X]] as Xi). Since the map ρi is a Ri-algebra isomorphism, its inverse ρ−1

i
is well-defined and also a Ri-algebra isomorphism.

These notations A, n, R, Ri and ρi shall be in place for the rest of Section 6.

isomorphism

B [[Y1, Y2, . . . , Ym]]→ BNm
,

f 7→
(

the coefficient of Yk1
1 Yk2

2 · · ·Y
km
m in f

)
(k1,k2,...,km)∈Nm

to transport the product topology from BNm
to B [[Y1, Y2, . . . , Ym]]. The resulting topology on

B [[Y1, Y2, . . . , Ym]] makes the B-algebra B [[Y1, Y2, . . . , Ym]] into a topological B-algebra; this is
the topology we want. Notice that it depends on the topology on B. Explicitly, it is char-
acterized by the following property: A net ( fs)s∈S ∈ (B [[Y1, Y2, . . . , Ym]])

S of power series in
B [[Y1, Y2, . . . , Ym]] converges to a power series f ∈ B [[Y1, Y2, . . . , Ym]] if and only if for each

(k1, k2, . . . , km) ∈ Nm, the net
(

the coefficient of Yk1
1 Yk2

2 · · ·Y
km
m in fs

)
s∈S
∈ BS converges to(

the coefficient of Yk1
1 Yk2

2 · · ·Y
km
m in f

)
in B.

If B is just a ring (not a topological ring), then the preceding definition still applies, provided
that we regard B as a topological ring by equipping it with the discrete topology.

Thus, the commutative ring A becomes a topological ring (using the discrete topology), and
therefore both sides of the isomorphism (24) become topological rings. The isomorphism (24)
becomes an isomorphism of topological rings.

Let me once again reiterate that the topology on B [[Y1, Y2, . . . , Ym]] is constructed using the

topology on B. In particular, the topology on
(

A
[[

X1, X2, . . . , X̂i, . . . , Xn

]])
[[Xi]] is constructed

using the topology on A
[[

X1, X2, . . . , X̂i, . . . , Xn

]]
, which is not (in general) the discrete topol-

ogy!
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6.3. Regularity of Xi and Xi − Xj

Proposition 6.5. Let i ∈ {1, 2, . . . , n}. Then, the element Xi of R is regular.

Proof of Proposition 6.5. The map ρi : Ri [[X]] → R is an Ri-algebra isomorphism,
thus a ring isomorphism.

The element 0 of Ri is nilpotent (since 01 = 0). Hence, Proposition 6.1 (applied
to Ri and 0 instead of A and a) yields that the element X − 0 of Ri [[X]] is regular.
In other words, the element X of Ri [[X]] is regular (since X − 0 = X). Hence,
Proposition 2.4 (applied to Ri [[X]], R, ρi and X instead of A, B, f and a) shows
that ρi (X) is a regular element of R (since ρi : Ri [[X]]→ R is a ring isomorphism).
In other words, Xi is a regular element of R (since ρi (X) = Xi). This proves
Proposition 6.5.

Proposition 6.6. Let i and j be two distinct elements of {1, 2, . . . , n}. The element
Xi − Xj of R is regular.

Proof of Proposition 6.6. The definition of Ri yields Ri = A
[[

X1, X2, . . . , X̂i, . . . , Xn

]]
.

Recall that Ri is an A-subalgebra of R, thus a subring of R.
Combining j ∈ {1, 2, . . . , n} with j 6= i (since i and j are distinct), we obtain j ∈
{1, 2, . . . , n} \ {i} =

{
1, 2, . . . , î, . . . , n

}
. Hence, Xj ∈ A

[[
X1, X2, . . . , X̂i, . . . , Xn

]]
=

Ri. So we have proven that Xj is an element of Ri.
Now, ρi is an Ri-algebra homomorphism. Hence,

ρi
(
X− Xj

)
= ρi (X)︸ ︷︷ ︸

=Xi
(by (26))

− ρi
(
Xj
)︸ ︷︷ ︸

=Xj
(by (25))

= Xi − Xj.

Proposition 6.5 (applied to j instead of i) shows that the element Xj of R is regular.
Hence, Proposition 2.5 (applied to Ri, R and Xj instead of A, B and a) shows that Xj
is a regular element of Ri (since Ri is a subring of R, and since Xj is an element of
Ri). Hence, Proposition 6.2 (applied to Ri and Xj instead of A and a) yields that the
element X− Xj of Ri [[X]] is regular. Hence, Proposition 2.4 (applied to Ri [[X]], R,
ρi and X− Xj instead of A, B, f and a) shows that ρi

(
X− Xj

)
is a regular element

of R (since ρi : Ri [[X]] → R is a ring isomorphism). In other words, Xi − Xj is a
regular element of R (since ρi

(
X− Xj

)
= Xi−Xj). This proves Proposition 6.6.

We can now state an analogue of Corollary 4.4 (actually, a generalization):

Corollary 6.7. The polynomial ∏
1≤i<j≤n

(
Xi − Xj

)
is a regular element of R.

Proof of Corollary 6.7. Analogous to the proof of Corollary 4.4 (but using Proposi-
tion 6.6 instead of Proposition 4.3 (b)).
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6.4. Analogues of other properties of polynomials

Analogues of Theorem 1.3, Theorem 1.2 and Corollary 5.2 for power series can also
be stated:

Theorem 6.8. Let G be a subset of the set
{
(i, j) ∈ {1, 2, . . . , n}2 | i < j

}
.

Let f ∈ R be a formal power series in the n indeterminates X1, X2, . . . , Xn over
A. Assume that f is divisible by Xi − Xj for every (i, j) ∈ G. Then, f is divisible
by ∏

(i,j)∈G

(
Xi − Xj

)
.

Theorem 6.9. Let f ∈ R be a formal power series in the n indeterminates
X1, X2, . . . , Xn over A. Assume that f is divisible by Xi − Xj for every (i, j) ∈
{1, 2, . . . , n}2 satisfying i < j. Then, f is divisible by ∏

1≤i<j≤n

(
Xi − Xj

)
.

(Here, the symbol “ ∏
1≤i<j≤n

” is to be understood as in Theorem 1.2.)

Corollary 6.10. Let G be a subset of the set
{
(i, j) ∈ {1, 2, . . . , n}2 | i < j

}
. Then,

⋂
(i,j)∈G

((
Xi − Xj

)
R
)
=

 ∏
(i,j)∈G

(
Xi − Xj

) R.

Theorem 6.8, Theorem 6.9 and Corollary 6.10 are analogues of Theorem 1.3, The-
orem 1.2 and Corollary 5.2, respectively. I am not sure whether they can be proven
in a similar manner to the proofs given above. However, they can be derived from
their polynomial counterparts using a fairly straightforward homogeneity argu-
ment (indeed, the power series Xi − Xj are actually homogeneous polynomials,
and therefore so are their products; hence, the divisibility of a power series f by a
product of such power series can be decided by separately studying each homoge-
neous component of f ). We shall give these proofs in Subsection 6.5.

Let us next discuss some properties of the polynomial ring A [X1, X2, . . . , Xn]
that do not directly carry over to the ring R = A [[X1, X2, . . . , Xn]] of formal power
series.

Question 6.11. What conditions would make an analogue of Corollary 3.21 for
power series true? If A is a ring, and a and b are two elements of A, then what
should be required on A, a and b in order to guarantee that

bA [[X]] ∩ (X− a) A [[X]] = b (X− a) A [[X]] (27)

? It can be shown that requiring a to be nilpotent suffices. However, requiring
that a be regular does not suffice, as Example 6.12 below shows.
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Example 6.12. Let K be a field. Let A be the commutative K-algebra with gener-
ators

a, x−1, x0, x1, . . .︸ ︷︷ ︸
countably many

, b, z−1, z0, z1, . . .︸ ︷︷ ︸
countably many

(28)

and relations

x−1 = 0 and xi − axi+1 = bzi for all i ≥ −1.

Then, the element a ∈ A is regular, but we have

bA [[X]] ∩ (X− a) A [[X]] 6= b (X− a) A [[X]] . (29)

Proof of Example 6.12 (sketched). 1st step: Let A be the polynomial algebra over K in
the indeterminates

a, x−1, x0, x1, . . .︸ ︷︷ ︸
countably many

, b, z−1, z0, z1, . . .︸ ︷︷ ︸
countably many

. (30)

Then, there is a unique ring homomorphism π : A → A sending each of the
indeterminates listed in (30) to the corresponding generator in (28). This ring ho-
momorphism π is surjective, and its kernel is the ideal I of A generated by x−1 and
xi − axi+1 − bzi for all i ≥ −1.

2nd step: We shall now prove that the element a ∈ A is regular.
Indeed, let p ∈ A be such that ap = 0. We must prove that p = 0.
Since π is surjective, we can write p in the form p = π (p) for some p ∈ A.

Consider this p.
From a = π (a) and p = π (p), we obtain ap = π (a)π (p) = π (ap), so that

π (ap) = ap = 0 and therefore ap ∈ I. In other words, ap is an A-linear combina-
tion of x−1 and xi − axi+1 − bzi for all i ≥ −1. In other words, there exists some
s ∈N, some u ∈ A and some v−1, v0, . . . , vs−1 ∈ A such that

ap = u · x−1 +
s−1

∑
i=−1

vi · (xi − axi+1 − bzi) . (31)

Consider these s, u and v−1, v0, . . . , vs−1. We WLOG assume that s is large enough
that only the indeterminates

a, x−1, x0, x1, . . . , xs, b, z−1, z0, z1, . . . , zs (32)

appear in the polynomials p, u,v−1, v0, . . . , vs−1 (since we can always increase s).
Let As be the polynomial algebra over K in the indeterminates listed in (32).

Clearly, As is a subalgebra of A. Furthermore, all of the polynomials p, u,v−1, v0, . . . , vs−1
as well as a, x−1 and the differences xi − axi+1 − bzi for all i ∈ {−1, 0, 1, . . . , s− 1}
belong to As. Hence, we can regard (31) as an equality inside As.
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Let Bs be the polynomial algebra over K in the indeterminates

a, x̃s, b, z−1, z0, z1, . . . , zs. (33)

(You are reading right: The indeterminate x̃s is not xs, although it is closely related.)
Inside Bs, define new elements x̃s−1, x̃s−2, . . . , x̃−1 recursively by setting

x̃s−i = ax̃s−(i−1) + bzs−i for each i ∈ {1, 2, . . . , s + 1} . (34)

Then, it is easy to prove (by induction over i) that

x̃s−i = aix̃s +
i

∑
k=1

ai−kbzs−k for each i ∈ {0, 1, . . . , s + 1} .

Applying this to i = s + 1, we obtain

x̃−1 = as+1x̃s +
s+1

∑
k=1

as+1−kbzs−k. (35)

For each i ∈ {−1, 0, . . . , s− 1}, we have

x̃i = ax̃i+1 + bzi (36)

(by (34), applied to s− i instead of i).
We can regard x̃−1 ∈ Bs as a polynomial in the indeterminate a over the unique

factorization domain K [x̃s, b, z−1, z0, z1, . . . , zs]. Then, (35) shows that this poly-
nomial x̃−1 has leading coefficient x̃s, and that the prime b of the unique factoriza-
tion domain K [x̃s, b, z−1, z0, z1, . . . , zs] divides all coefficients of x̃−1 except for its
leading coefficient (which is x̃s), and that b2 does not divide the constant term of
x̃−1 (because the constant term of x̃−1 is bz−1). Therefore, Eisenstein’s Irreducibil-
ity Criterion (see, e.g., [Knapp2016, Corollary 8.22]) shows that this polynomial
x̃−1 is irreducible over the fraction field of K [x̃s, b, z−1, z0, z1, . . . , zs]. Moreover,
the coefficients of this polynomial x̃−1 have no common divisor except for units21;
therefore, x̃−1 is irreducible over the ring K [x̃s, b, z−1, z0, z1, . . . , zs] as well. In
other words, x̃−1 is a prime element of the unique factorization domain Bs.

The substitution

a 7→ a, xi 7→ x̃i, b 7→ b, zi 7→ zi

defines a K-algebra homomorphism α : As → Bs. Let p̃, ũ and ṽi denote the images
of p, u and vi under this substitution. If we apply this substitution to both sides of
the equality (31), then we obtain

ap̃ = ũ · x̃−1 +
s−1

∑
i=−1

ṽi · (x̃i − ax̃i+1 − bzi)︸ ︷︷ ︸
=0

(by (36))

= ũ · x̃−1.

21Indeed, this is clear from observing that the leading coefficient is x̃s, whereas the constant term
is bz−1.
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Hence, ap̃ is divisible by x̃−1 in Bs. Since x̃−1 is a prime element of the unique
factorization domain Bs, we thus conclude that either a or p̃ is divisible by x̃−1
in Bs. But since a is not divisible by x̃−1 in Bs (indeed, the constant term of x̃−1,
when regarded as a polynomial in a, is bz−1, which has no common divisors with
a except for units), this shows that p̃ is divisible by x̃−1 in Bs. In other words,
p̃ = x̃−1q̃ for some q̃ ∈ Bs. Consider this q̃.

Let Js be the ideal of As generated by the polynomials xi − axi+1 − bzi with
i ∈ {−1, 0, 1, . . . , s− 1}. The homomorphism α : As → Bs sends the generators of
Js to 0; therefore, it factors through As/Js, yielding a K-algebra homomorphism
α′ : As/Js → Bs. This homomorphism α′ is invertible22, and therefore injective. In
other words, Ker α = Js. Also, α is surjective (since α′ is invertible), and thus there
exists some q ∈ As such that q̃ = α (q). Consider this q.

Now, α (p) = p̃ = x̃−1︸︷︷︸
=α(x−1)

q̃︸︷︷︸
=α(q)

= α (x−1) α (q) = α (x−1q), so that p− x−1q ∈

Ker α = Js.
But the homomorphism π sends Js to 0. Thus, from p − x−1q ∈ Js, we obtain

π (p− x−1q) = 0. In other words, π (p) = π (x−1q) = π (x−1)︸ ︷︷ ︸
=0

π (q) = 0. Thus,

p = π (p) = 0. This completes our 2nd step.
3rd step: It remains to prove (29).
Define a power series x ∈ A [[X]] by x = ∑

i∈N

xiXi. Then, it is easy to see that

(X− a) x = ∑
i∈N

(xi−1 − axi)︸ ︷︷ ︸
=bzi−1

(by one of the
defining relations of A)

Xi = ∑
i∈N

bzi−1Xi = b ∑
i∈N

zi−1Xi ∈ bA [[X]] .

Combining this with (X− a) x ∈ (X− a) A [[X]] (which is obvious), we obtain

(X− a) x ∈ bA [[X]] ∩ (X− a) A [[X]] .

If we now can prove that

(X− a) x /∈ b (X− a) A [[X]] , (37)

22Proof. The substitution

a 7→ a, x̃s 7→ xs, b 7→ b, zi 7→ zi

defines a K-algebra homomorphism β : Bs → As. Composing this K-algebra homomorphism
β : Bs → As with the canonical projection As → As/Js produces a K-algebra homomorphism
β′ : Bs → As/Js. Using (34), we can show (by induction over i) that this homomorphism β′ sends
x̃s−i to (the remainder class of) xs−i for each i ∈ {0, 1, . . . , s + 1}. In other words, β sends x̃i to (the
remainder class of) xi for each i ∈ {−1, 0, 1, . . . , s− 1}. Now, the two K-algebra homomorphisms
α′ ◦ β′ and β′ ◦ α′ both preserve the generators listed in (33) and (32), respectively (or, rather, their
remainder classes), and therefore are the identity maps. In other words, the homomorphisms α′

and β′ are mutually inverse. Hence, α′ is invertible. Qed.
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then (29) will follow, and thus we will be done. Hence, it remains to prove (37).
4rd step: Let us prove (37). Indeed, assume the contrary. Thus,

(X− a) x ∈ b (X− a) A [[X]] .

In other words,
(X− a) x = b (X− a) y (38)

for some y ∈ A [[X]]. Consider this y.
Let y0 be the constant term of the power series y. Recall that x0 is the constant

term of the power series x. Comparing the constant terms on both sides of (38), we
thus obtain −ax0 = −bay0. Thus, ax0 = bay0. Since the element a of A is regular,
we can cancel a from this equality, and therefore obtain x0 = by0.

Now, let A′, a′ and x′i be what was denoted by A, a and xi in Example 6.3. Then,
x′0 6= 0. (Indeed, this is exactly the statement “x0 6= 0” that we proved in our proof
of Example 6.3.)

Let J be the ideal of A generated by b, z−1, z0, z1, . . .︸ ︷︷ ︸
countably many

. Then, there is a canonical

isomorphism A/J → A′ sending the projections of a, x−1, x0, x1, . . .︸ ︷︷ ︸
countably many

onto A/J to

the generators a′, x′−1, x′0, x′1, . . .︸ ︷︷ ︸
countably many

of A′ (indeed, just compare the definitions of A

and A′, and observe that the former becomes the latter if b, z−1, z0, z1, . . .︸ ︷︷ ︸
countably many

are set to

0).
The canonical projection A → A/J sends x0 to x′0 and sends b to 0. Hence,

projecting both sides of the equality x0 = by0 onto A/J, we obtain x′0 = 0y′0,
where y′0 is the image of y0. Therefore, x′0 = 0y′0 = 0, contradicting x′0 6= 0. This
contradiction completes our proof of (37), and this in turn finishes our proof of
Example 6.12.

In Section 10, we shall see some sufficient criteria for analogues of Corollary 3.21
to hold in A [[X]].

6.5. Appendix: The graded component trick

In this subsection, we shall prove Theorem 6.8, Theorem 6.9 and Corollary 6.10.
Their proofs will all rely on the notion of homogeneous components. Let us recall
how this notion is defined and introduce a notation for it:

Definition 6.13. Let f ∈ R be a formal power series. Let d ∈ Z. Then, fdeg=d shall
mean the d-th homogeneous component of f ; this is defined as follows: Write the
formal power series f in the form f = ∑

(i1,i2,...,in)∈Nn
a(i1,i2,...,in)X

i1
1 Xi2

2 · · ·X
in
n , where
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a(i1,i2,...,in) ∈ A are its coefficients. Then, the d-th homogeneous component of f
is defined to be the finite sum

∑
(i1,i2,...,in)∈Nn;
i1+i2+···+in=d

a(i1,i2,...,in)X
i1
1 Xi2

2 · · ·X
in
n .

Thus,
fdeg=d = ∑

(i1,i2,...,in)∈Nn;
i1+i2+···+in=d

a(i1,i2,...,in)X
i1
1 Xi2

2 · · ·X
in
n . (39)

Hence,
fdeg=d ∈ A [X1, X2, . . . , Xn] (40)

(since the right hand side of (39) is a finite sum of monomials), and

fdeg=d is a homogeneous polynomial of degree d (41)

(because all the monomials Xi1
1 Xi2

2 · · ·X
in
n appearing on the right hand side of

(39) are of degree d).

If f ∈ R and if d is a negative integer, then fdeg=d = 0 (because the sum on the
right hand side of (39) is empty in this case). Furthermore, it is clear that every
formal power series f ∈ R satisfies

f = ∑
d∈N

fdeg=d = ∑
d∈Z

fdeg=d. (42)

Note that the sums ∑
d∈Z

fdeg=d and ∑
d∈N

fdeg=d in this equality differ only in the

presence (or absence) of the addends fdeg=d for negative integers d; but all these
addends are 0. Thus, the difference is insubstantial.

The polynomial ring A [X1, X2, . . . , Xn] is a graded ring (since every polynomial
f ∈ A [X1, X2, . . . , Xn] is a finite sum of homogeneous polynomials), unlike the ring
R = A [[X1, X2, . . . , Xn]] of formal power series. However, R, too, has the following
property:

Lemma 6.14. Let (pd)d∈Z ∈ RZ be a family of formal power series. Assume that
for each d ∈ Z,

the power series pd is a homogeneous polynomial of degree d. (43)

Then:
(a) The infinite sum ∑

d∈Z

pd is well-defined (i.e., it converges with respect to the

topology on R).
(b) We have (

∑
d∈Z

pd

)
deg=e

= pe for all e ∈ Z.
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Using Lemma 6.14, we can show another basic property of homogeneous com-
ponents:

Lemma 6.15. Let c ∈ Z. Let p ∈ A [X1, X2, . . . , Xn] be a homogeneous polynomial
of degree c. Let g ∈ R be any formal power series. Then,

(pg)deg=e = p · gdeg=e−c for all e ∈ Z.

Proof of Lemma 6.15. Applying (42) to f = g, we obtain

g = ∑
d∈Z

gdeg=d = ∑
d∈Z

gdeg=d−c

(here, we have substituted d− c for d in the sum). Hence,

p g︸︷︷︸
= ∑

d∈Z

gdeg=d−c

= p · ∑
d∈Z

gdeg=d−c = ∑
d∈Z

p · gdeg=d−c. (44)

Now, if d ∈ Z is arbitrary, then p · gdeg=d−c is a homogeneous polynomial of
degree d 23.

Hence, Lemma 6.14 (a) (applied to (pd)d∈Z =
(

p · gdeg=d−c
)

d∈Z
) yields that the

infinite sum ∑
d∈Z

p · gdeg=d−c is well-defined. Moreover, Lemma 6.14 (b) (applied to

(pd)d∈Z =
(

p · gdeg=d−c
)

d∈Z
) yields that(

∑
d∈Z

p · gdeg=d−c

)
deg=e

= p · gdeg=e−c for all e ∈ Z.

But (44) yields pg = ∑
d∈Z

p · gdeg=d−c. Hence,

(pg)deg=e =

(
∑

d∈Z

p · gdeg=d−c

)
deg=e

= p · gdeg=e−c for all e ∈ Z.

This proves Lemma 6.15.

23Proof. Let d ∈ Z be arbitrary. Then, (40) (applied to g and d− c instead of f and d) shows that
gdeg=d−c ∈ A [X1, X2, . . . , Xn]. Also, (41) (applied to g and d− c instead of f and d) shows that
gdeg=d−c is a homogeneous polynomial of degree d− c. On the other hand, p is a homogeneous
polynomial in A [X1, X2, . . . , Xn] of degree c (since p ∈ A [X1, X2, . . . , Xn]).

But A [X1, X2, . . . , Xn] is a graded ring. Hence, the product of two homogeneous elements
of A [X1, X2, . . . , Xn] is again homogeneous, and its degree is the sum of the degrees of the
two factors. Applying this to p and gdeg=d−c, we conclude that the product p · gdeg=d−c
is a homogeneous polynomial of degree c + (d− c) (since p is a homogeneous polyno-
mial in A [X1, X2, . . . , Xn] of degree c, and since gdeg=d−c is a homogeneous polynomial in
A [X1, X2, . . . , Xn] of degree d− c). In other words, p · gdeg=d−c is a homogeneous polynomial of
degree d (since c + (d− c) = d). Qed.
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Using Lemma 6.15, we can now prove the following fact, which helps reduce
divisibilities in R to divisibilities of polynomials:

Lemma 6.16. Let p ∈ A [X1, X2, . . . , Xn] be a homogeneous polynomial. Let f ∈
R be any formal power series. Assume that

p | fdeg=e (in the ring R) for each e ∈ Z. (45)

Then, p | f in the ring R.

Proof of Lemma 6.16. The polynomial p is homogeneous. In other words, there ex-
ists a c ∈ Z such that p is homogeneous of degree c. Consider this c.

Let e ∈ Z. Then, (45) shows that p | fdeg=e (in the ring R). In other words, there
exists an element ge ∈ R such that fdeg=e = pge. Consider this ge.

At this point it would be tempting to finish the proof by saying that

f = ∑
e∈Z

fdeg=e︸ ︷︷ ︸
=pge

= ∑
e∈Z

pge = p ∑
e∈Z

ge.

However, this is not entirely correct, since the sum ∑
e∈Z

ge might not be well-defined

(it is an infinite sum, and nothing guarantees that it converges with respect to the
topology on R). Thus, we need to be somewhat more careful.

We first observe an obvious fact: If u ∈ A [X1, X2, . . . , Xn] is a homogeneous
polynomial of degree e, then

udeg=e = u (46)

(since udeg=e is the e-th homogeneous component of u, but u is already homoge-
neous of degree e).

Applying (40) to d = e, we see that fdeg=e ∈ A [X1, X2, . . . , Xn]. Applying (41) to
d = e, we see that fdeg=e is a homogeneous polynomial of degree e. Hence, (46)
(applied to u = fdeg=e) yields

(
fdeg=e

)
deg=e = fdeg=e. Hence,

fdeg=e =

 fdeg=e︸ ︷︷ ︸
=pge


deg=e

= (pge)deg=e = p · (ge)deg=e−c (47)

(by Lemma 6.15, applied to ge instead of g). Note that (ge)deg=e−c is a homogeneous
polynomial of degree e− c (by (41), applied to ge and e− c instead of f and d).

Now, forget that we fixed e. Thus, for each e ∈ Z, we have constructed a ge ∈ R
such that (47) holds, and such that

(ge)deg=e−c is a homogeneous polynomial of degree e− c. (48)
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Now, for each d ∈ Z, the power series (gd+c)deg=d is a homogeneous polynomial

of degree d 24. Hence, Lemma 6.14 (a) (applied to (pd)d∈Z =
(
(gd+c)deg=d

)
d∈Z

)

shows that the infinite sum ∑
d∈Z

(gd+c)deg=d is well-defined. Hence,

p · ∑
d∈Z

(gd+c)deg=d = ∑
d∈Z

p · (gd+c)deg=d = ∑
e∈Z

p ·
(

g(e−c)+c

)
deg=e−c︸ ︷︷ ︸

=(ge)deg=e−c
(since (e−c)+c=e)

(here, we have substituted e− c for d in the sum)

= ∑
e∈Z

p · (ge)deg=e−c︸ ︷︷ ︸
= fdeg=e
(by (47))

= ∑
e∈Z

fdeg=e = ∑
d∈Z

fdeg=d

(here, we have renamed the summation index e as d)
= f (by (42)) .

Hence, f = p · ∑
d∈Z

(gd+c)deg=d. Thus, p | f in the ring R. This proves Lemma

6.16.

We can now prove Theorem 6.8:

Proof of Theorem 6.8. We have assumed that

f is divisible by Xi − Xj for every (i, j) ∈ G. (49)

The product ∏
(i,j)∈G

(
Xi − Xj

)
is clearly a homogeneous polynomial of degree |G|.

Now, let e ∈ Z. Then, (40) (applied to d = e) shows that fdeg=e ∈ A [X1, X2, . . . , Xn].
Let (i, j) ∈ G. Then, f is divisible by Xi − Xj (by (49)). In other words, there

exists a formal power series g ∈ R such that f =
(
Xi − Xj

)
· g. Consider this g.

Note that (40) (applied to g and e − 1 instead of f and d) shows that gdeg=e−1 ∈
A [X1, X2, . . . , Xn].

Clearly, Xi − Xj is a homogeneous polynomial of degree 1, and thus belongs to
A [X1, X2, . . . , Xn]. Hence, Lemma 6.15 (applied to c = 1 and p = Xi − Xj) yields((

Xi − Xj
)
· g
)

deg=e =
(
Xi − Xj

)
· gdeg=e−1.

In view of f =
(
Xi − Xj

)
· g, this rewrites as

fdeg=e =
(
Xi − Xj

)
· gdeg=e−1.

24Proof. Let d ∈ Z. Then, (48) (applied to e = d + c) shows that (gd+c)deg=(d+c)−c is a homogeneous
polynomial of degree (d + c)− c. In other words, (gd+c)deg=d is a homogeneous polynomial of
degree d (since (d + c)− c = d). Qed.
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Hence, fdeg=e is divisible by Xi − Xj in the ring A [X1, X2, . . . , Xn] (since gdeg=e−1 ∈
A [X1, X2, . . . , Xn]).

Now, forget that we fixed (i, j). Thus, we have shown that fdeg=e is divisible
by Xi − Xj in the ring A [X1, X2, . . . , Xn] for every (i, j) ∈ G. Hence, Theorem 1.3
(applied to fdeg=e instead of f ) yields that fdeg=e is divisible by ∏

(i,j)∈G

(
Xi − Xj

)
in the ring A [X1, X2, . . . , Xn]. In other words, ∏

(i,j)∈G

(
Xi − Xj

)
| fdeg=e in the

ring A [X1, X2, . . . , Xn]. Therefore, ∏
(i,j)∈G

(
Xi − Xj

)
| fdeg=e in the ring R (since

A [X1, X2, . . . , Xn] is a subring of R).
Now, forget that we fixed e. We thus have shown that ∏

(i,j)∈G

(
Xi − Xj

)
| fdeg=e

(in the ring R) for each e ∈ Z. Hence, Lemma 6.16 (applied to p = ∏
(i,j)∈G

(
Xi − Xj

)
)

shows that ∏
(i,j)∈G

(
Xi − Xj

)
| f in the ring R (since ∏

(i,j)∈G

(
Xi − Xj

)
is a homoge-

neous polynomial). In other words, f is divisible by ∏
(i,j)∈G

(
Xi − Xj

)
. This proves

Theorem 6.8.

Proof of Theorem 6.9. Theorem 6.9 follows from Theorem 6.8 if we set
G =

{
(i, j) ∈ {1, 2, . . . , n}2 | i < j

}
.

Proof of Corollary 6.10. It is easy to see that ∏
(i,j)∈G

(
Xi − Xj

) R ⊆
⋂

(i,j)∈G

((
Xi − Xj

)
R
)

(since every element of

(
∏

(i,j)∈G

(
Xi − Xj

))
R is a multiple of the product ∏

(i,j)∈G

(
Xi − Xj

)
,

and therefore a multiple of each factor Xi − Xj of this product). But Theorem 6.8
says that ⋂

(i,j)∈G

((
Xi − Xj

)
R
)
⊆

 ∏
(i,j)∈G

(
Xi − Xj

) R

(since
⋂

(i,j)∈G

((
Xi − Xj

)
R
)

is the set of all f ∈ R that are divisible by all Xi−Xj with

(i, j) ∈ G, whereas

(
∏

(i,j)∈G

(
Xi − Xj

))
R is the set of all f ∈ R that are divisible by

∏
(i,j)∈G

(
Xi − Xj

)
). Combining these two relations, we obtain

⋂
(i,j)∈G

((
Xi − Xj

)
R
)
=

 ∏
(i,j)∈G

(
Xi − Xj

) R.
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This proves Corollary 6.10.

7. lcm-coprimality meets regularity

7.1. Connecting lcm-coprimality to regularity in A/pA

Let us take one more look at “lcm-coprimality” – i.e., relations of the form bR ∩
cR = bcR for two elements b and c of a commutative ring R (as they appear,
for example, in Proposition 4.6). Let us first connect such relations with regular
elements:

Proposition 7.1. Let A be a commutative ring. Let p and d be two elements of
A. For each a ∈ A, let a denote the residue class of a modulo the ideal pA; this
is an element of the quotient ring A/pA.

(a) If the element d of A/pA is regular, then dA ∩ pA = dpA.
(b) Assume that the element d of A is regular. If dA ∩ pA = dpA, then the

element d of A/pA is regular.

Proof of Proposition 7.1. (a) Assume that the element d of A/pA is regular. We must
show that dA ∩ pA = dpA. We have

dpA = dpA ∩ dp︸︷︷︸
=pd

A = d pA︸︷︷︸
⊆A

∩p dA︸︷︷︸
⊆A

⊆ dA ∩ pA. (50)

The element d of A/pA is regular if and only if every x ∈ A/pA satisfying
dx = 0 satisfies x = 0 (by the definition of “regular”). Hence,

every x ∈ A/pA satisfying dx = 0 satisfies x = 0 (51)

(since the element d of A/pA is regular).
Let y ∈ dA ∩ pA. Then, y ∈ dA ∩ pA ⊆ pA. Thus, y = 0 (since y is the residue

class of y modulo the ideal pA).
We have y ∈ dA ∩ pA ⊆ dA. In other words, there exists some z ∈ A such that

y = dz. Consider this z. We have y = dz and thus y = dz = d · z. Comparing
this with y = 0, we obtain d · z = 0. Thus, (51) (applied to x = z) yields z = 0. In
other words, z ∈ pA (since z is the residue class of z modulo the ideal pA). Now,
y = d z︸︷︷︸

∈pA

∈ dpA.

Now, forget that we fixed y. We thus have shown that y ∈ dpA for every y ∈
dA ∩ pA. In other words, dA ∩ pA ⊆ dpA. Combining this with (50), we obtain
dA ∩ pA = dpA. This proves Proposition 7.1 (a).

(b) The element d of A is regular if and only if every x ∈ A satisfying dx = 0
satisfies x = 0 (by the definition of “regular”). Hence,

every x ∈ A satisfying dx = 0 satisfies x = 0 (52)
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(since the element d of A is regular).
Assume that dA∩ pA = dpA. Let x ∈ A/pA be such that dx = 0. We shall show

that x = 0.
We have x ∈ A/pA. In other words, x = y for some y ∈ A. Consider this y.

We have x = y and thus d x︸︷︷︸
=y

= d · y = dy. Thus, dy = dx = 0. In other words,

dy ∈ pA (since dy is the residue class of dy modulo the ideal pA). Combining
d y︸︷︷︸
∈A

∈ dA with dy ∈ pA, we obtain dy ∈ dA ∩ pA = dpA. In other words, there

exists some z ∈ A such that dy = dpz. Consider this z. We have d (y− pz) =
dy− dpz = 0 (since dy = dpz). Hence, (52) (applied to y− pz instead of x) yields
y− pz = 0. Thus, y = p z︸︷︷︸

∈A

∈ pA, so that y = 0 (since y is the residue class of y

modulo the ideal pA). Hence, x = y = 0.
Now, forget that we fixed x. We thus have shown that

every x ∈ A/pA satisfying dx = 0 satisfies x = 0. (53)

But the element d of A/pA is regular if and only if every x ∈ A/pA satisfying
dx = 0 satisfies x = 0 (by the definition of “regular”). Hence, the element d of
A/pA is regular (since every x ∈ A/pA satisfying dx = 0 satisfies x = 0). This
proves Proposition 7.1 (b).

Using Proposition 7.1, we can show the following counterpart to Proposition 4.6:

Proposition 7.2. Let R be a commutative ring. Let G be a finite set. For every
g ∈ G, let ag be a regular element of R. Let p ∈ R. Assume that every g ∈ G
satisfies pR ∩ agR = pagR. Let b = ∏

g∈G
ag. Then, pR ∩ bR = pbR.

Proof of Proposition 7.2. For each a ∈ R, let a denote the residue class of a modulo
the ideal pR; this is an element of the quotient ring R/pR. Notice that

∏
g∈G

ag = ∏
g∈G

ag = b

(since ∏
g∈G

ag = b).

We have assumed that every g ∈ G satisfies

pR ∩ agR = pagR. (54)

Now, let g ∈ G. Then, ag is a regular element of R. Also,

agR ∩ pR = pR ∩ agR = pag︸︷︷︸
=ag p

R (by (54))

= ag pR.
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Hence, Proposition 7.1 (b) (applied to A = R and d = ag) yields that the element
ag of R/pR is regular.

Now, forget that we fixed g. We thus have proven that the element ag of R/pR
is regular for each g ∈ G. Thus, Proposition 2.3 (applied to R/pR and ag instead
of A and ag) yields that the element ∏

g∈G
ag of R/pR is regular. In other words, the

element b of R/pR is regular (since ∏
g∈G

ag = b). Hence, Proposition 7.1 (a) (applied

to A = R and d = b) yields that bR ∩ pR = bp︸︷︷︸
=pb

R = pbR. Thus, pR ∩ bR =

bR ∩ pR = pbR. This proves Proposition 7.2.

7.2. A second proof of Proposition 5.1

Proposition 7.2 leads to an alternative proof of Proposition 5.1 (or, more precisely,
allows us to simplify our proof above):

Second proof of Proposition 5.1. We proceed precisely as in the above proof of Propo-
sition 5.1, until we prove (14) (in the induction step). From there, Proposition 7.2
allows us to take the following shortcut:

The element ag is a regular element of R for every g ∈ S \ {k}. Moreover, every
g ∈ S \ {k} satisfies akR ∩ agR = akagR (by (10), applied to k and g instead of g
and h). Hence, Proposition 7.2 (applied to S \ {k} and ak instead of G and p) yields
akR ∩ bR = akbR. Hence, (13) becomes

⋂
g∈S

(
agR

)
= akR ∩ bR = akb︸︷︷︸

= ∏
g∈S

ag

(by (14))

R =

(
∏
g∈S

ag

)
R.

Once again, this completes the induction step, and thus Proposition 5.1 is proven
again.

Remark 7.3. Proposition 5.1 cannot be generalized by lifting the condition that
the ag be regular. Here is a counterexample:

Let K be a field. Let R be the commutative K-algebra given by generators
x, y, z and relations yz = zx = xy. Notice that R is a quotient of the polynomial
ring K [x, y, z] by the homogeneous ideal generated by yz− zx and zx− xy; thus,
computations inside R can easily be done on a computer. (A Gröbner basis of
said ideal with respect to the lexicographic order is

(
xy− yz, xz− yz, y2z− yz2).

A basis of the K-vector space R is the family
(
xi)

i≥0 ∪
(
yzi)

i≥0 ∪
(
zi)

i≥1.)
Let G = {1, 2, 3}, and set a1 = x, a2 = y and a3 = z. (Of course, none of

the three elements a1, a2, a3 of R is regular.) It is easy to see that every two
distinct elements g and h of G satisfy agR ∩ ahR = agahR. However, it is not true
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that
⋂

g∈G

(
agR

)
=

(
∏

g∈G
ag

)
R (since the element yz = zx = xy of R belongs to

⋂
g∈G

(
agR

)
but not to

(
∏

g∈G
ag

)
R).

Proposition 7.2 also fails if we lift the condition that the ag be regular. A
counterexample can be obtained from the same setting, using G = {1, 2} and
p = a3 this time.

8. Some words on substitutions

We are next going to restate Theorem 1.2 in a different way (one which is often
easier to apply in practical use cases):

Corollary 8.1. Let A be a commutative ring. Let n ∈ N. Let f ∈
A [X1, X2, . . . , Xn] be a polynomial in the n indeterminates X1, X2, . . . , Xn over
A. Assume that f satisfies the following property:

Property 1: For every (i, j) ∈ {1, 2, . . . , n}2 satisfying i < j, the result
of substituting Xj for Xi in f is 0.

Then, f is divisible by ∏
1≤i<j≤n

(
Xi − Xj

)
.

In order to derive this corollary from Theorem 1.2, we shall need the following
lemma:

Lemma 8.2. Let A be a commutative ring. Let n ∈ N. Let f ∈ A [X1, X2, . . . , Xn]
be a polynomial in the n indeterminates X1, X2, . . . , Xn over A. Let (i, j) ∈
{1, 2, . . . , n}2 be such that i < j.

Assume that the result of substituting Xj for Xi in f is 0. Then, f is divisible
by Xi − Xj.

Proof of Lemma 8.2. Let us use the notations R, Ri and ρi introduced in Definition
4.2. Thus, f ∈ A [X1, X2, . . . , Xn] = R.

Let κ be the map from A [X1, X2, . . . , Xn] to A [X1, X2, . . . , Xn] which sends each
p ∈ A [X1, X2, . . . , Xn] to the result of substituting Xj for Xi in p. This map κ is an
A-algebra homomorphism (in fact, it is an evaluation homomorphism); it satisfies

κ (Xu) =

{
Xu, if u 6= i;
Xj, if u = i

for each u ∈ {1, 2, . . . , n} . (55)

The map κ is an A-algebra homomorphism from A [X1, X2, . . . , Xn] to A [X1, X2, . . . , Xn].
Since R = A [X1, X2, . . . , Xn], this rewrites as follows: The map κ is an A-algebra
homomorphism from R to R.
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Let u be the element Xi − Xj of R. Clearly, uR is an ideal of R; thus, R/uR is
a quotient ring of R. Let π be the canonical projection R → R/uR. Then, π is
an A-algebra homomorphism satisfying Ker π = uR. Thus, π ◦ κ : R → R/uR
is an A-algebra homomorphism (since it is the composition of the two A-algebra
homomorphisms π : R→ R/uR and κ : R→ R).

We have (π ◦ κ) (Xu) = π (Xu) for each u ∈ {1, 2, . . . , n} 25. In other words, the
two A-algebra homomorphisms π ◦ κ and π are equal to each other on each of the
elements X1, X2, . . . , Xn.

But R = A [X1, X2, . . . , Xn]. Hence, the elements X1, X2, . . . , Xn generate the
A-algebra R. Therefore, if two A-algebra homomorphisms φ : R → S and ψ :
R → S (where S is any A-algebra) are equal to each other on each of the elements
X1, X2, . . . , Xn, then these two A-algebra homomorphisms φ and ψ must be iden-
tical. Applying this to S = R/uR, φ = π ◦ κ and ψ = π, we conclude that the

25Proof. Let u ∈ {1, 2, . . . , n}. We must prove that (π ◦ κ) (Xu) = π (Xu).
We are in one of the following two cases:
Case 1: We have u = i.
Case 2: We have u 6= i.
Let us first consider Case 1. In this case, we have u = i. Now, (55) yields κ (Xu) ={
Xu, if u 6= i;
Xj, if u = i

= Xj (since u = i). Now,

(π ◦ κ) (Xu) = π

κ (Xu)︸ ︷︷ ︸
=Xj

 = π
(
Xj
)

.

Hence,

π

 Xu︸︷︷︸
=Xi

(since u=i)

− (π ◦ κ) (Xu)︸ ︷︷ ︸
=π(Xj)

= π (Xi)− π
(
Xj
)

= π
(
Xi − Xj

)
(since π is an A-algebra homomorphism)

= 0

(since Xi − Xj = u ∈ uR = Ker π). Thus, (π ◦ κ) (Xu) = π (Xu). Hence, (π ◦ κ) (Xu) = π (Xu) is
proven in Case 1.

Let us now consider Case 2. In this case, we have u 6= i. The equality (55) yields κ (Xu) ={
Xu, if u 6= i;
Xj, if u = i

= Xu (since u 6= i). Now,

(π ◦ κ) (Xu) = π

κ (Xu)︸ ︷︷ ︸
=Xu

 = π (Xu) .

Hence, (π ◦ κ) (Xu) = π (Xu) is proven in Case 2.
We thus have proven (π ◦ κ) (Xu) = π (Xu) in both Cases 1 and 2. Since these two Cases cover

all possibilities, this shows that (π ◦ κ) (Xu) = π (Xu) always holds.
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two A-algebra homomorphisms π ◦ κ and π must be identical (since π ◦ κ and π
are equal to each other on each of the elements X1, X2, . . . , Xn). In other words,
π ◦ κ = π.

Now, the definition of κ shows that κ ( f ) is the result of substituting Xj for Xi
in f . In other words, κ ( f ) is 0 (since the result of substituting Xj for Xi in f is

0). Thus, κ ( f ) = 0. Hence, (π ◦ κ) ( f ) = π

κ ( f )︸︷︷︸
=0

 = π (0) = 0 (since π is an

A-algebra homomorphism). Since π ◦ κ = π, this rewrites as π ( f ) = 0. In other
words, f ∈ Ker π = uR. In other words, f is divisible by u. In other words, f is
divisible by Xi − Xj (since u = Xi − Xj). This proves Lemma 8.2.

Proof of Corollary 8.1. The polynomial f is divisible by Xi − Xj for every (i, j) ∈
{1, 2, . . . , n}2 satisfying i < j 26. Hence, Theorem 1.2 shows that f is divisible by

∏
1≤i<j≤n

(
Xi − Xj

)
. This proves Corollary 8.1.

9. A consequence on symmetric polynomials

9.1. Dividing by regular elements

From Corollary 8.1, we can furthermore derive a fact about symmetric polynomials.
Let us first prepare by showing two trivial facts and making some definitions:

Lemma 9.1. Let A be a commutative ring. Let b be a regular element of A. Let
z1 and z2 be two elements of A such that bz1 = bz2. Then, z1 = z2.

Proof of Lemma 9.1. We have b (z1 − z2) = bz1 − bz2 = 0 (since bz1 = bz2). Since b
is regular, this results in z1 − z2 = 0. In other words, z1 = z2. This proves Lemma
9.1.

Proposition 9.2. Let A be a commutative ring. Let b be a regular element of A.
Let c ∈ A. If c ∈ bA, then there exists a unique element x ∈ A satisfying c = bx.

Proof of Proposition 9.2. Assume that c ∈ bA.
If z1 and z2 are two elements x ∈ A satisfying c = bx, then z1 = z2

27. In
other words, there exists at most one element x ∈ A satisfying c = bx. On the
other hand, there exists some element x ∈ A satisfying c = bx (because c ∈ bA).
Combining the preceding two sentences, we conclude that there exists a unique
element x ∈ A satisfying c = bx. This proves Proposition 9.2.
26Proof. Fix any (i, j) ∈ {1, 2, . . . , n}2 satisfying i < j. We must prove that f is divisible by Xi − Xj.

Property 1 (in the statement of Corollary 8.1) shows that the result of substituting Xj for Xi in
f is 0. Thus, Lemma 8.2 shows that f is divisible by Xi − Xj. Qed.

27Proof. Let z1 and z2 be two elements x ∈ A satisfying c = bx. Thus, z1 and z2 are two elements of
A satisfying c = bz1 and c = bz2. Now, bz1 = c = bz2. Hence, Lemma 9.1 shows that z1 = z2.
Qed.
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Definition 9.3. Let A be a commutative ring. Let b be a regular element of A.
Let c ∈ A. If c ∈ bA, then there exists a unique element x ∈ A satisfying
c = bx (according to Proposition 9.2). This element x is denoted by

c
b

or by c/b.
This notation generalizes the standard notation for quotients of (e.g.) rational
numbers; it also satisfies analogous rules (for example, if b ∈ A and b′ ∈ A are

any two regular elements, and if c ∈ bA and c′ ∈ b′A, then
c
b
+

c′

b′
=

cb′ + bc′

bb′

and
c
b
· c′

b′
=

cc′

bb′
).

9.2. Symmetric polynomials

Definition 9.4. Let n ∈ N. Then, Sn denotes the group of permutations of the
set {1, 2, . . . , n}. This group is called the n-th symmetric group.

The sign of a permutation σ ∈ Sn shall be denoted by (−1)σ.

Definition 9.5. Let A be a commutative ring. Let n ∈ N. Let g ∈
A [X1, X2, . . . , Xn] be a polynomial in the n indeterminates X1, X2, . . . , Xn over
A. The polynomial g is said to be symmetric if and only if each σ ∈ Sn satisfies

g
(

Xσ(1), Xσ(2), . . . , Xσ(n)

)
= g (X1, X2, . . . , Xn) .

(Of course, we have g (X1, X2, . . . , Xn) = g.)

For example, if n = 3, then the polynomials X1 +X2 +X3− 7 and (X1 + 5) (X2 + 5)+
(X1 + 5) (X3 + 5) + (X2 + 5) (X3 + 5) are symmetric, but the polynomial X1 + X3
is not (unless the ring A is trivial).

9.3. Symmetric polynomials from dividing by ∏
1≤i<j≤n

(
Xi − Xj

)
Now, we claim the following:

Proposition 9.6. Let A be a commutative ring. Let n ∈ N. Let f ∈
A [X1, X2, . . . , Xn] be a polynomial in the n indeterminates X1, X2, . . . , Xn over
A. Assume that f satisfies the following two properties:

Property 1: For every (i, j) ∈ {1, 2, . . . , n}2 satisfying i < j, the result
of substituting Xj for Xi in f is 0.

Property 2: Each σ ∈ Sn satisfies

f
(

Xσ(1), Xσ(2), . . . , Xσ(n)

)
= (−1)σ f (X1, X2, . . . , Xn) . (56)
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Then, f is divisible by ∏
1≤i<j≤n

(
Xi − Xj

)
, and the quotient

f
∏

1≤i<j≤n

(
Xi − Xj

) ∈
A [X1, X2, . . . , Xn] is a symmetric polynomial.

Note that Proposition 9.6 is essentially the “(iii) =⇒ (ii)” part of [LLPT95, Chap-
ter SYM, Lemma (6.1)].28

For the proof of Proposition 9.6, we shall use the following well-known fact:

Proposition 9.7. Let n ∈ N. Let σ ∈ Sn. Let R be a commutative ring. If
x1, x2, . . . , xn are n elements of R, then

∏
1≤i<j≤n

(
xσ(i) − xσ(j)

)
= (−1)σ · ∏

1≤i<j≤n

(
xi − xj

)
.

Proof of Proposition 9.7. In the case when R = C (so that x1, x2, . . . , xn are n complex
numbers), the statement of Proposition 9.7 is precisely the claim of [Grinbe15, Ex-
ercise 5.13 (a)]. The proof given in [Grinbe15, solution to Exercise 5.13 (a)] works
just as well in the general case.

Proof of Proposition 9.6. Let R be the commutative ring A [X1, X2, . . . , Xn]. Thus,
X1, X2, . . . , Xn are n elements of R. Hence, for each σ ∈ Sn, we have

∏
1≤i<j≤n

(
Xσ(i) − Xσ(j)

)
= (−1)σ · ∏

1≤i<j≤n

(
Xi − Xj

)
(57)

(by Proposition 9.7 (applied to xi = Xi)).
Corollary 8.1 shows that f is divisible by ∏

1≤i<j≤n

(
Xi − Xj

)
. In other words,

f ∈
(

∏
1≤i<j≤n

(
Xi − Xj

))
R. Furthermore, the polynomial ∏

1≤i<j≤n

(
Xi − Xj

)
is a

regular element of R (by Corollary 4.4). Hence, the quotient
f

∏
1≤i<j≤n

(
Xi − Xj

) ∈
A [X1, X2, . . . , Xn] is well-defined.

Denote this quotient
f

∏
1≤i<j≤n

(
Xi − Xj

) ∈ A [X1, X2, . . . , Xn] by g. Thus,

g · ∏
1≤i<j≤n

(
Xi − Xj

)
= f . (58)

28“Essentially” because in [LLPT95, Chapter SYM, Lemma (6.1)], the result of substituting Xj for
Xi in f is considered not for i < j but for i > j. But this makes little difference (it merely boils
down to renaming the indeterminates).
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Now, fix any permutation σ ∈ Sn. The element (−1)σ satisfies (−1)σ · (−1)σ =(
(−1)σ)2

= 1 (since (−1)σ ∈ {1,−1}). In particular, (−1)σ is invertible (as an
element of R).

Substituting Xσ(1), Xσ(2), . . . , Xσ(n) for X1, X2, . . . , Xn on both sides of the equality
(58), we obtain

g
(

Xσ(1), Xσ(2), . . . , Xσ(n)

)
· ∏

1≤i<j≤n

(
Xσ(i) − Xσ(j)

)
= f

(
Xσ(1), Xσ(2), . . . , Xσ(n)

)
.

Hence,

f
(

Xσ(1), Xσ(2), . . . , Xσ(n)

)
= g

(
Xσ(1), Xσ(2), . . . , Xσ(n)

)
· ∏

1≤i<j≤n

(
Xσ(i) − Xσ(j)

)
︸ ︷︷ ︸

=(−1)σ· ∏
1≤i<j≤n

(Xi−Xj)

(by (57))

= g
(

Xσ(1), Xσ(2), . . . , Xσ(n)

)
· (−1)σ · ∏

1≤i<j≤n

(
Xi − Xj

)
= (−1)σ ·

(
∏

1≤i<j≤n

(
Xi − Xj

))
· g
(

Xσ(1), Xσ(2), . . . , Xσ(n)

)
.

Comparing this with (56), we obtain

(−1)σ ·
(

∏
1≤i<j≤n

(
Xi − Xj

))
· g
(

Xσ(1), Xσ(2), . . . , Xσ(n)

)
= (−1)σ f (X1, X2, . . . , Xn) .

We can cancel the factor (−1)σ from both sides of this equality (since (−1)σ is
invertible as an element of R). As a result, we obtain(

∏
1≤i<j≤n

(
Xi − Xj

))
· g
(

Xσ(1), Xσ(2), . . . , Xσ(n)

)
= f (X1, X2, . . . , Xn) = f = g · ∏

1≤i<j≤n

(
Xi − Xj

)
=

(
∏

1≤i<j≤n

(
Xi − Xj

))
· g.

Hence, Lemma 9.1 (applied to R, ∏
1≤i<j≤n

(
Xi − Xj

)
, g
(

Xσ(1), Xσ(2), . . . , Xσ(n)

)
and

g instead of A, b, z1 and z2) shows that g
(

Xσ(1), Xσ(2), . . . , Xσ(n)

)
= g (since

∏
1≤i<j≤n

(
Xi − Xj

)
is a regular element of R). Hence, g

(
Xσ(1), Xσ(2), . . . , Xσ(n)

)
=

g = g (X1, X2, . . . , Xn).
Now, forget that we fixed σ. We thus have shown that each σ ∈ Sn satisfies

g
(

Xσ(1), Xσ(2), . . . , Xσ(n)

)
= g (X1, X2, . . . , Xn). In other words, the polynomial
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g is symmetric. In other words, the polynomial
f

∏
1≤i<j≤n

(
Xi − Xj

) is symmetric

(since g =
f

∏
1≤i<j≤n

(
Xi − Xj

) ). In other words, the quotient
f

∏
1≤i<j≤n

(
Xi − Xj

) ∈
A [X1, X2, . . . , Xn] is a symmetric polynomial. This completes the proof of Proposi-
tion 9.6.

9.4. Schur and factorial Schur polynomials

As an application of Proposition 9.6, let us construct the Schur polynomials (as
quotients of determinants) and the factorial Schur polynomials. We begin with a
standard piece of notation:

Definition 9.8. Let A be a commutative ring. Let n ∈ N and m ∈ N. Let
ai,j be an element of A for each i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}. Then,(
ai,j
)

1≤i≤n, 1≤j≤m shall denote the n×m-matrix over A whose (i, j)-th entry is ai,j

for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}.

For example, the matrix
(

2 3 4
3 4 5

)
can be rewritten as (i + j)1≤i≤2, 1≤j≤3 using

this notation.
Now, we can define the Schur polynomials:

Corollary 9.9. Let A be a commutative ring. Let n ∈ N. Consider the polyno-
mial ring A [X1, X2, . . . , Xn] in the n indeterminates X1, X2, . . . , Xn over A. Let
a1, a2, . . . , an be n nonnegative integers.

Let F be the n × n-matrix
(
(Xi)

aj
)

1≤i≤n, 1≤j≤n over A [X1, X2, . . . , Xn]. Then,
the polynomial det F is divisible by ∏

1≤i<j≤n

(
Xi − Xj

)
, and the quotient

det F
∏

1≤i<j≤n

(
Xi − Xj

) ∈ A [X1, X2, . . . , Xn] is a symmetric polynomial.

We shall prove Corollary 9.9 later. When the integers a1, a2, . . . , an in Corollary

9.9 satisfy a1 > a2 > · · · > an, the quotient
det F

∏
1≤i<j≤n

(
Xi − Xj

) is known as a Schur

polynomial (see, e.g., [GriRei18, Corollary 2.6.6] or [Macdon95, Chapter I, (3.1)]).

Example 9.10. For this example, set n = 3 and a1 = 4 and a2 = 2 and a3 = 0 in
Corollary 9.9. Then, the matrix F is

F =

 X4
1 X2

1 X0
1

X4
2 X2

2 X0
2

X4
3 X2

3 X0
3

 =

 X4
1 X2

1 1
X4

2 X2
2 1

X4
3 X2

3 1

 ,
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and its determinant is

det F = det

 X4
1 X2

1 1
X4

2 X2
2 1

X4
3 X2

3 1

 = X4
1X2

2 − X4
1X2

3 − X2
1X4

2 + X2
1X4

3 + X4
2X2

3 − X2
2X4

3

= (X1 − X2) (X1 − X3) (X2 − X3) (X1 + X2) (X1 + X3) (X2 + X3) .

Thus, det F is clearly divisible by (X1 − X2) (X1 − X3) (X2 − X3) =
∏

1≤i<j≤n

(
Xi − Xj

)
, and moreover the quotient

det F
∏

1≤i<j≤n

(
Xi − Xj

) = (X1 + X2) (X1 + X3) (X2 + X3)

is a symmetric polynomial. (This is a somewhat unusual example, since F is
a Vandermonde determinant in this case: for general choices of a1, a2, a3, you

should not expect the quotient
det F

∏
1≤i<j≤n

(
Xi − Xj

) to have a nice factorization.)

To construct the factorial Schur polynomials, we need another notation:

Definition 9.11. Let A be a commutative ring. Let a ∈ A and k ∈ N. Then, ak

shall denote the element a (a− 1) (a− 2) · · · (a− k + 1) =
k−1
∏
i=0

(a− i) of A. (This

element is called the k-th lower factorial or the k-th falling factorial of a.)

For example, if A is any commutative ring and a ∈ A, then

a0 = 1, a1 = a, a2 = a (a− 1) , a3 = a (a− 1) (a− 2) .

Corollary 9.12. Let A be a commutative ring. Let n ∈ N. Consider the poly-
nomial ring A [X1, X2, . . . , Xn] in the n indeterminates X1, X2, . . . , Xn over A. Let
a1, a2, . . . , an be n nonnegative integers.

Let F be the n × n-matrix
(
(Xi)

aj
)

1≤i≤n, 1≤j≤n
over A [X1, X2, . . . , Xn]. Then,

the polynomial det F is divisible by ∏
1≤i<j≤n

(
Xi − Xj

)
, and the quotient

det F
∏

1≤i<j≤n

(
Xi − Xj

) ∈ A [X1, X2, . . . , Xn] is a symmetric polynomial.
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Example 9.13. For this example, set n = 3 and a1 = 3 and a2 = 2 and a3 = 0 in
Corollary 9.12. Then, the matrix F is

F =


X3

1 X2
1 X0

1

X3
2 X2

2 X0
2

X3
3 X2

3 X0
3

 =

 X1 (X1 − 1) (X1 − 2) X1 (X1 − 1) 1
X2 (X2 − 1) (X2 − 2) X2 (X2 − 1) 1
X3 (X3 − 1) (X3 − 2) X3 (X3 − 1) 1

 ,

and its determinant is

det F = det

 X1 (X1 − 1) (X1 − 2) X1 (X1 − 1) 1
X2 (X2 − 1) (X2 − 2) X2 (X2 − 1) 1
X3 (X3 − 1) (X3 − 2) X3 (X3 − 1) 1


= (X1 − X2) (X1 − X3) (X2 − X3)

(X1X2 + X1X3 + X2X3 − X1 − X2 − X3 + 1) .

This, again, is a polynomial that is divisible by (X1 − X2) (X1 − X3) (X2 − X3) =
∏

1≤i<j≤n

(
Xi − Xj

)
, and the quotient (X1X2 + X1X3 + X2X3− X1− X2− X3 + 1) is

again symmetric.

When the integers a1, a2, . . . , an in Corollary 9.12 satisfy a1 > a2 > · · · > an,

the quotient
det F

∏
1≤i<j≤n

(
Xi − Xj

) is known as a factorial Schur polynomial (see, e.g.,

[CheLou93, Theorem 3.2]29; for a more general result, see [BuMcNa14, Theorem
2]).

Instead of proving Corollary 9.9 and Corollary 9.12 separately, let us show a fact
that generalizes them both:

Corollary 9.14. Let A be a commutative ring. Let n ∈ N. Consider the poly-
nomial ring A [X1, X2, . . . , Xn] in the n indeterminates X1, X2, . . . , Xn over A. Let
P1, P2, . . . , Pn be n polynomials in a single variable T over the ring A.

Let F be the n × n-matrix
(

Pj (Xi)
)

1≤i≤n, 1≤j≤n over A [X1, X2, . . . , Xn]. Then,

the polynomial det F is divisible by ∏
1≤i<j≤n

(
Xi − Xj

)
, and the quotient

det F
∏

1≤i<j≤n

(
Xi − Xj

) ∈ A [X1, X2, . . . , Xn] is a symmetric polynomial.

Proof of Corollary 9.14. Define a polynomial f ∈ A [X1, X2, . . . , Xn] by f = det F.
(This is clearly well-defined, since the entries of the n × n-matrix F belong to
A [X1, X2, . . . , Xn].) Note that

F =
(

Pj (Xi)
)

1≤i≤n, 1≤j≤n = (Pv (Xu))1≤u≤n, 1≤v≤n

29Note that the lower factorial ak is denoted by (a)k in [CheLou93].
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(here, we have renamed the index (i, j) as (u, v)).
We claim that the polynomial f satisfies the following two properties:

Property 1: For every (i, j) ∈ {1, 2, . . . , n}2 satisfying i < j, the result of
substituting Xj for Xi in f is 0.

Property 2: Each σ ∈ Sn satisfies

f
(

Xσ(1), Xσ(2), . . . , Xσ(n)

)
= (−1)σ f (X1, X2, . . . , Xn) .

[Proof of Property 1: Fix (i, j) ∈ {1, 2, . . . , n}2 satisfying i < j.
The matrix F satisfies F = (Pv (Xu))1≤u≤n, 1≤v≤n.
Hence, the i-th row of F is (P1 (Xi) , P2 (Xi) , . . . , Pn (Xi)), whereas the j-th row of

F is
(

P1
(
Xj
)

, P2
(
Xj
)

, . . . , Pn
(
Xj
))

. If we substitute Xj for Xi, then these two rows
become equal (because Xi and Xj become equal upon this substitution). In other
words, we have(

the result of substituting Xj for Xi in the i-th row of F
)

=
(
the result of substituting Xj for Xi in the j-th row of F

)
.

Let F′ be the matrix obtained by substituting Xj for Xi in the matrix F. Thus,(
the i-th row of F′

)
=
(
the result of substituting Xj for Xi in the i-th row of F

)
=
(
the result of substituting Xj for Xi in the j-th row of F

)
and (

the j-th row of F′
)

=
(
the result of substituting Xj for Xi in the j-th row of F

)
(since the matrix F′ is obtained by substituting Xj for Xi in the matrix F). Compar-
ing these two equalities, we conclude that (the i-th row of F′) = (the j-th row of F′).
Hence, the matrix F′ has two equal rows (since i < j). Therefore, the determinant
of F′ is 0. In other words, det (F′) = 0.

But recall that f = det F. Hence,(
the result of substituting Xj for Xi in f

)
=
(
the result of substituting Xj for Xi in det F

)
= det

(
the matrix obtained by substituting Xj for Xi in the matrix F

)︸ ︷︷ ︸
=F′

(because this is how F′ was defined)(
because when a substitution is applied to all entries of the matrix,

the determinant of the matrix undergoes the same substitution

)
= det

(
F′
)
= 0.
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In other words, the result of substituting Xj for Xi in f is 0. This proves Property
1.]

[Proof of Property 2: Let σ ∈ Sn.
It is well-known that if we permute the rows of an n× n-matrix according to the

permutation σ, then the determinant of this matrix is multiplied by (−1)σ. In other
words, any n× n-matrix

(
bi,j
)

1≤i≤n, 1≤j≤n satisfies

det
((

bσ(i),j

)
1≤i≤n, 1≤j≤n

)
= (−1)σ det

((
bi,j
)

1≤i≤n, 1≤j≤n

)
30. Applying this to

(
bi,j
)

1≤i≤n, 1≤j≤n =
(

Pj (Xi)
)

1≤i≤n, 1≤j≤n, we conclude that

det
((

Pj

(
Xσ(i)

))
1≤i≤n, 1≤j≤n

)
= (−1)σ det

((
Pj (Xi)

)
1≤i≤n, 1≤j≤n

)
.

But f = det F = det
((

Pj (Xi)
)

1≤i≤n, 1≤j≤n

)
(since F =

(
Pj (Xi)

)
1≤i≤n, 1≤j≤n).

Substituting Xσ(1), Xσ(2), . . . , Xσ(n) for X1, X2, . . . , Xn in this equality, we obtain

f
(

Xσ(1), Xσ(2), . . . , Xσ(n)

)
= det

((
Pj

(
Xσ(i)

))
1≤i≤n, 1≤j≤n

)
= (−1)σ det

((
Pj (Xi)

)
1≤i≤n, 1≤j≤n

)
︸ ︷︷ ︸

= f= f (X1,X2,...,Xn)

= (−1)σ f (X1, X2, . . . , Xn) .

This proves Property 2.]
We have now proven that f satisfies both Properties 1 and 2. Hence, Propo-

sition 9.6 shows that f is divisible by ∏
1≤i<j≤n

(
Xi − Xj

)
, and that the quotient

f
∏

1≤i<j≤n

(
Xi − Xj

) ∈ A [X1, X2, . . . , Xn] is a symmetric polynomial. In view of

f = det F, this rewrites as follows: det F is divisible by ∏
1≤i<j≤n

(
Xi − Xj

)
, and the

quotient
det F

∏
1≤i<j≤n

(
Xi − Xj

) ∈ A [X1, X2, . . . , Xn] is a symmetric polynomial. This

proves Corollary 9.14.

Proof of Corollary 9.9. Consider the polynomial ring A [T] in a single variable T over
the ring A. For each j ∈ {1, 2, . . . , n}, define a polynomial Pj ∈ A [T] by Pj =

30See, for example, [Grinbe15, Lemma 6.17 (a)] (applied to
(
bi,j
)

1≤i≤n, 1≤j≤n, σ and(
bσ(i),j

)
1≤i≤n, 1≤j≤n

instead of B, κ and Bκ) for a proof of this fact.
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Taj . Thus, P1, P2, . . . , Pn are n polynomials in a single variable T over the ring A.
Moreover, for each i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , n}, we have

Pj (Xi) = (Xi)
aj

(
since Pj = Taj

)
.

Thus, we have
(

Pj (Xi)
)

1≤i≤n, 1≤j≤n =
(
(Xi)

aj
)

1≤i≤n, 1≤j≤n. But

F =
(
(Xi)

aj
)

1≤i≤n, 1≤j≤n (by the definition of F). Comparing these two equalities,
we obtain F =

(
Pj (Xi)

)
1≤i≤n, 1≤j≤n. Thus, F is the n×n-matrix

(
Pj (Xi)

)
1≤i≤n, 1≤j≤n

over A [X1, X2, . . . , Xn]. Hence, Corollary 9.14 shows that the polynomial det F is di-

visible by ∏
1≤i<j≤n

(
Xi − Xj

)
, and that the quotient

det F
∏

1≤i<j≤n

(
Xi − Xj

) ∈ A [X1, X2, . . . , Xn]

is a symmetric polynomial. This proves Corollary 9.9.

Proof of Corollary 9.12. Consider the polynomial ring A [T] in a single variable T
over the ring A. For each j ∈ {1, 2, . . . , n}, define a polynomial Pj ∈ A [T] by
Pj = Taj . Thus, P1, P2, . . . , Pn are n polynomials in a single variable T over the ring
A. Moreover, for each i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , n}, we have

Pj (Xi) = Xi (Xi − 1) (Xi − 2) · · ·
(
Xi − aj + 1

)(
since Pj = Taj = T (T − 1) (T − 2) · · ·

(
T − aj + 1

)
(by the definition of Taj)

)

= (Xi)
aj

(
since (Xi)

aj = Xi (Xi − 1) (Xi − 2) · · ·
(
Xi − aj + 1

)
(by the definition of (Xi)

aj )

)
.

Thus, we have
(

Pj (Xi)
)

1≤i≤n, 1≤j≤n =
(
(Xi)

aj
)

1≤i≤n, 1≤j≤n
. But

F =
(
(Xi)

aj
)

1≤i≤n, 1≤j≤n
(by the definition of F). Comparing these two equalities,

we obtain F =
(

Pj (Xi)
)

1≤i≤n, 1≤j≤n. Thus, F is the n×n-matrix
(

Pj (Xi)
)

1≤i≤n, 1≤j≤n
over A [X1, X2, . . . , Xn]. Hence, Corollary 9.14 shows that the polynomial det F is di-

visible by ∏
1≤i<j≤n

(
Xi − Xj

)
, and that the quotient

det F
∏

1≤i<j≤n

(
Xi − Xj

) ∈ A [X1, X2, . . . , Xn]

is a symmetric polynomial. This proves Corollary 9.12.

10. More about power series

In this Section, we return to the study of the ring A [[X]] of formal power series.

10.1. Regular and nilpotent elements in general

We begin with proving some general properties of nilpotency and regularity in
commutative rings. We begin with fairly obvious ones:
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Corollary 10.1. Let A be a commutative ring. Let r be a regular element of A.
Let n ∈N. Then, the element rn of A is regular.

Proof of Corollary 10.1. Apply Proposition 2.3 to G = {1, 2, . . . , n} and ag = r.

Proposition 10.2. Let A be a commutative ring. Let a ∈ A and b ∈ A be two
elements of A such that the element ab of A is regular. Then, a ∈ A is regular.

Proof of Proposition 10.2. Every x ∈ A satisfying ax = 0 satisfies (ab) x = b ax︸︷︷︸
=0

= 0,

thus x = 0 (since ab is regular). In other words, a is regular. This proves Proposition
10.2.

Next, let us recall a basic identity: If A is a commutative ring, and if a and b are
any elements of A, and if m ∈N, then

(a− b)
m−1

∑
i=0

aibm−1−i = am − bm. (59)

Now, we shall prove a surprisingly general property of regularity:

Proposition 10.3. Let A be a commutative ring. Let r be a regular element of A.
Let a be a nilpotent element of A. Then, the element r− a of A is regular.

Proof of Proposition 10.3. The element a of A is nilpotent. In other words, there exists
some m ∈N such that am = 0 (by the definition of “nilpotent”). Consider this m.

Corollary 10.1 (applied to n = m) shows that the element rm of A is regular.
But (59) (applied to r and a instead of a and b) yields

(r− a)
m−1

∑
i=0

ribm−1−i = rm − am︸︷︷︸
=0

= rm.

Hence, the element (r− a)
m−1
∑

i=0
ribm−1−i is regular (since the element rm is regular).

Thus, Proposition 10.2 (applied to r− a and
m−1
∑

i=0
ribm−1−i instead of a and b) shows

that r− a ∈ A is regular. This proves Proposition 10.3.

10.2. More regular power series

Let us now resume studying formal power series in A [[X]]. We begin with an
essentially trivial fact:
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Proposition 10.4. Let A be a commutative ring. Then:
(a) The element X of A [[X]] is regular.
(b) Let n ∈N. Then, the element Xn of A [[X]] is regular.

Proof of Proposition 10.4. (a) The quickest way to prove this is by applying Proposi-
tion 6.1 to a = 0 (since 0 is nilpotent). Alternatively, you can prove this directly: If
x ∈ A [[X]] is such that Xx = 0, then it is easily seen that x = 0 (since the coeffi-
cients of Xx are precisely the coefficients of x, just shifted by one degree); in other
words, X is regular. Either way, Proposition 10.4 (a) is proven.

(b) Proposition 10.4 (a) shows that the element X of A [[X]] is regular. Hence,
Corollary 10.1 (applied to A [[X]] and X instead of A and r) yields that the element
Xn of A [[X]] is regular. This proves Proposition 10.4 (b).

We can now apply Proposition 10.3 to rings of power series:

Corollary 10.5. Let A be a commutative ring. Let n ∈ N. Let p ∈ A [[X]] be a
formal power series such that Xn − p is nilpotent. Then, p ∈ A [[X]] is regular.

Proof of Corollary 10.5. Proposition 10.4 (b) yields that the element Xn of A [[X]] is
regular. Meanwhile, the element Xn − p of A [[X]] is nilpotent (by assumption).
Hence, Proposition 10.3 (applied to A [[X]], Xn and Xn − p instead of A, r and a)
yields that the element Xn − (Xn − p) of A [[X]] is regular. In other words, the
element p of A [[X]] is regular (since Xn − (Xn − p) = p). This proves Corollary
10.5.

We can now re-prove Proposition 6.1:

Second proof of Proposition 6.1. Recall that A is a subring of A [[X]]. We know that
a is nilpotent. In other words, X1 − (X− a) is nilpotent (since X1︸︷︷︸

=X

− (X− a) =

X − (X− a) = a). Thus, Corollary 10.5 (applied to n = 1 and p = X − a) yields
that X − a ∈ A [[X]] is regular. This proves Proposition 6.1 again. (Of course,
this second proof of Proposition 6.1 is circular if you have used Proposition 6.1 in
proving Proposition 10.4; thus, for it to be valid, you need a proof of Proposition
10.4 that is independent on Proposition 6.1.)

10.3. Intermezzo on sums of nilpotents

We next prove a standard fact about nilpotent elements in commutative rings:

Proposition 10.6. Let A be a commutative ring. Let a and b be two nilpotent
elements of A. Then, the element a + b of A is nilpotent.

Proof of Proposition 10.6. The element a of A is nilpotent. In other words, there exists
some p ∈N such that ap = 0 (by the definition of “nilpotent”). Consider this p.
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The element b of A is nilpotent. In other words, there exists some q ∈ N such
that bq = 0 (by the definition of “nilpotent”). Consider this q.

Every k ∈ {0, 1, . . . , p} satisfies

bp+q−k = 0. (60)

[Proof of (60): Let k ∈ {0, 1, . . . , p}. Then, k ≤ p, so that p − k ≥ 0. Hence,
bq+(p−k) = bq︸︷︷︸

=0

bp−k = 0. In view of q + (p− k) = p + q − k, this rewrites as

bp+q−k = 0. This proves (60).]
Every k ∈ {p + 1, p + 2, . . . , p + q} satisfies

ak = 0. (61)

[Proof of (61): Let k ∈ {p + 1, p + 2, . . . , p + q}. Thus, k ≥ p + 1 ≥ p and therefore
k − p ≥ 0. Hence, ap+(k−p) = ap︸︷︷︸

=0

ak−p = 0. In view of p + (k− p) = k, this

rewrites as ak = 0. This proves (61).]
Recall that the ring A is commutative. Hence, the binomial formula yields

(a + b)p+q =
p+q

∑
k=0

(
p + q

k

)
akbp+q−k

=
p

∑
k=0

(
p + q

k

)
ak bp+q−k︸ ︷︷ ︸

=0
(by (60))

+
p+q

∑
k=p+1

(
p + q

k

)
ak︸︷︷︸
=0

(by (61))

bp+q−k

(here, we have split the sum at k = p, since 0 ≤ p ≤ p + q)

=
p

∑
k=0

(
p + q

k

)
ak · 0︸ ︷︷ ︸

=0

+
p+q

∑
k=p+1

(
p + q

k

)
· 0bp+q−k

︸ ︷︷ ︸
=0

= 0 + 0 = 0.

Hence, there exists a k ∈ N such that (a + b)k = 0 (namely, k = p + q). In other
words, the element a + b of A is nilpotent (by the definition of “nilpotent”). This
proves Proposition 10.6.

Corollary 10.7. Let A be a commutative ring. Let a and b be two nilpotent
elements of A. Then, the element a− b of A is nilpotent.

Proof of Corollary 10.7. The element b of A is nilpotent. In other words, there exists
some q ∈ N such that bq = 0 (by the definition of “nilpotent”). Consider this q.
Then, (−b)q = (−1)q bq︸︷︷︸

=0

= 0. Hence, there exists a k ∈ N such that (−b)k = 0

(namely, k = q). In other words, the element −b of A is nilpotent (by the definition
of “nilpotent”). Hence, Proposition 10.6 (applied to −b instead of b) shows that the
element a+(−b) of A is nilpotent (since a is nilpotent). In other words, the element
a− b of A is nilpotent (since a + (−b) = a− b). This proves Corollary 10.7.
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10.4. Nilpotent power series have nilpotent coefficients

In Definition 3.1 (a), we have introduced the notation [Xn] p for the coefficient of
Xn in a polynomial p ∈ A [X]. We can extend this notation to formal power series
p ∈ A [[X]] in the obvious way:

Definition 10.8. Let A be a commutative ring.
If p ∈ A [[X]] is a formal power series in some indeterminate X over A, and if

n ∈N, then [Xn] p will denote the coefficient of Xn in p. For example,[
X3
] (

1 + X + X2 + X3 + · · ·
)
= 1;[

X4
] (

1 + 2X + 3X2 + 4X3 + · · ·
)
= 5.

Clearly, every formal power series p ∈ A [[X]] satisfies p = ∑
n∈N

([Xn] p) Xn.

(Here, ∑
n∈N

([Xn] p) Xn is a well-defined infinite sum.)

Clearly, Definition 10.8 extends Definition 3.1 (a).
Our next goal is a necessary criterion for the nilpotency of a formal power series:

Theorem 10.9. Let A be a commutative ring. Let g ∈ A [[X]] be nilpotent. Then,
[Xn] g is nilpotent for each n ∈N.

In other words, each coefficient of a nilpotent formal power series in A [[X]] must
be nilpotent.

Note that the converse of Theorem 10.9 does not hold in general. (See [EleRos12]
and [Fields71] for counterexamples.)

Before we prove Theorem 10.9, we state a few simple lemmas. First, we recall the
rules for adding and multiplying formal power series:

Proposition 10.10. Let A be a commutative ring. Let n ∈N.
(a) Every p ∈ A [[X]] and q ∈ A [[X]] satisfy [Xn] (p + q) = [Xn] p + [Xn] q.
(b) Every λ ∈ A and p ∈ A [[X]] satisfy [Xn] (λp) = λ [Xn] p.

(c) Every p ∈ A [[X]] and q ∈ A [[X]] satisfy [Xn] (pq) =
n
∑

k=0

([
Xk] p

)
·([

Xn−k] q
)
.

Corollary 10.11. Let A be a commutative ring.
(a) Every p ∈ A [[X]] and q ∈ A [[X]] satisfy

[
X0] (pq) =

([
X0] p

)
·
([

X0] q
)
.

(b) Every p ∈ A [[X]] and n ∈N satisfy
[
X0] (pn) =

([
X0] p

)n.

Proof of Corollary 10.11. (a) This follows easily from Proposition 10.10 (c).
(b) This follows by induction on n (using Corollary 10.11 (a) in the induction

step).



Regular elements and lcm-coprimality page 60

Now we can easily prove the particular case of Theorem 10.9 for n = 0:

Lemma 10.12. Let A be a commutative ring. Let g ∈ A [[X]] be nilpotent. Then,[
X0] g is nilpotent.

Proof of Lemma 10.12. We have assumed that g is nilpotent. In other words, there
exists an n ∈ N such that gn = 0 (by the definition of “nilpotent”). Consider
this n. Now, Corollary 10.11 (b) (applied to p = g) yields

[
X0] (gn) =

([
X0] g

)n.
Hence,

([
X0] g

)n
=
[
X0] (gn)︸︷︷︸

=0

=
[
X0] 0 = 0. Thus, there exists a k ∈ N such that

([
X0] g

)k
= 0 (namely, k = n). In other words,

[
X0] g is nilpotent (by the definition

of “nilpotent”). This proves Lemma 10.12.

In order to get a grip on the other coefficients of a nilpotent formal power series,
we need a few more basic results. We begin with a general property of regular and
nilpotent elements:

Lemma 10.13. Let A be a commutative ring. Let r ∈ A and a ∈ A be such that
ra is nilpotent and r is regular. Then, a is nilpotent.

Proof of Lemma 10.13. We have assumed that ra is nilpotent. In other words, there
exists an n ∈N such that (ra)n = 0 (by the definition of “nilpotent”). Consider this
n. Then, rnan = (ra)n = 0.

Corollary 10.1 shows that the element rn of A is regular. In other words, every
x ∈ A satisfying rnx = 0 satisfies x = 0. Applying this to x = an, we obtain an = 0
(since rnan = 0). Hence, a is nilpotent.

This proves Lemma 10.13.

Corollary 10.14. Let A be a commutative ring. Let g ∈ A [[X]] be such that Xg is
nilpotent. Then, g is nilpotent.

Proof of Corollary 10.14. Proposition 10.4 (a) shows that the element X of A [[X]] is
regular. Hence, Lemma 10.13 (applied to A [[X]], X and g instead of A, r and a)
yields that g is nilpotent. This proves Corollary 10.14.

Corollary 10.15. Let A be a commutative ring. Let g ∈ A [[X]]. Define a formal
power series g̃ ∈ A [[X]] by g̃ = ∑

n∈N

([
Xn+1] g

)
· Xn. Then:

(a) We have g =
[
X0] g + Xg̃.

(b) We have
[
Xk] g =

[
Xk−1] g̃ for each positive integer k.

(c) If g is nilpotent, then g̃ is nilpotent.

Proof of Corollary 10.15. (a) Every formal power series f ∈ A [[X]] satisfies f =
∑

n∈N

([Xn] f ) ·Xn (since
[
X0] f ,

[
X1] f ,

[
X2] f , . . . are the coefficients of f ). Applying
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this to f = g, we obtain

g = ∑
n∈N

([Xn] g) · Xn =
([

X0
]

g
)
· X0︸︷︷︸

=1

+ ∑
n∈{1,2,3,...}

([Xn] f ) · Xn

︸ ︷︷ ︸
= ∑

n∈N
([Xn+1]g)·Xn+1

(here, we have substituted n+1
for n in the sum)

(here, we have split off the addend for n = 0 from the sum)

=
[

X0
]

g + ∑
n∈N

([
Xn+1

]
g
)
· Xn+1︸ ︷︷ ︸
=XXn

=
[

X0
]

g + ∑
n∈N

([
Xn+1

]
g
)
· XXn

︸ ︷︷ ︸
=X ∑

n∈N
([Xn+1]g)·Xn

=
[

X0
]

g + X ∑
n∈N

([
Xn+1

]
g
)
· Xn

︸ ︷︷ ︸
=g̃

=
[

X0
]

g + Xg̃.

This proves Corollary 10.15 (a).
(b) We have g̃ = ∑

n∈N

([
Xn+1] g

)
· Xn. Thus, the coefficients of the power series

g̃ are
[
X1] g,

[
X2] g,

[
X3] g, . . .. In other words, for each n ∈ N, we have [Xn] g̃ =[

Xn+1] g. Substituting k− 1 for n in this result, we obtain the following: For each
k ∈ {1, 2, 3, . . .}, we have

[
Xk−1] g̃ =

[
Xk] g. This proves Corollary 10.15 (b).

(c) Assume that g is nilpotent. Thus, Lemma 10.12 shows that
[
X0] g is nilpotent.

Hence, Corollary 10.7 (applied to A [[X]], g and
[
X0] g instead of A, a and b) shows

that the element g−
[
X0] g of A [[X]] is nilpotent.

But Corollary 10.15 (a) yields g =
[
X0] g + Xg̃; thus, g−

[
X0] g = Xg̃. Hence,

Xg̃ is nilpotent (since g−
[
X0] g is nilpotent). Therefore, Corollary 10.14 (applied

to g̃ instead of g) yields that g̃ is nilpotent. This proves Corollary 10.15 (c).

We are now ready to prove Theorem 10.9:

Proof of Theorem 10.9. We shall prove Theorem 10.9 by induction on n:
Induction base: If A is a commutative ring, and if g ∈ A [[X]] is nilpotent, then[

X0] g is nilpotent (by Lemma 10.12). In other words, Theorem 10.9 holds for n = 0.
This completes the induction base.

Induction step: Let k be a positive integer. Assume that Theorem 10.9 holds for
n = k− 1. We must prove that Theorem 10.9 holds for n = k.

We have assumed that Theorem 10.9 holds for n = k − 1. In other words, the
following statement holds:

Statement 1: Let A be a commutative ring. Let g ∈ A [[X]] be nilpotent.
Then,

[
Xk−1] g is nilpotent.

Now, we must prove that Theorem 10.9 holds for n = k. In other words, we must
prove the following statement:
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Statement 2: Let A be a commutative ring. Let g ∈ A [[X]] be nilpotent.
Then,

[
Xk] g is nilpotent.

[Proof of Statement 2: Define a formal power series g̃ ∈ A [[X]] by g̃ = ∑
n∈N

([
Xn+1] g

)
·

Xn. Then, Corollary 10.15 (c) shows that g̃ is nilpotent. Hence, Statement 1 (applied
to g̃ instead of g) yields that

[
Xk−1] g̃ is nilpotent. But Corollary 10.15 (b) yields[

Xk] g =
[
Xk−1] g̃. Hence,

[
Xk] g is nilpotent (since

[
Xk−1] g̃ is nilpotent). This

proves Statement 2.]
So we have proven Statement 2. In other words, we have proven that Theorem

10.9 holds for n = k. This completes the induction step. Thus, Theorem 10.9 is
proven.

TODO!
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