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Abstract. Let A be the group algebra k [Sn] of the n-th symmetric
group Sn over a commutative ring k. For any two subsets A and B of
[n], we define the elements

∇B,A := ∑
w∈Sn;

w(A)=B

w and ∇̃B,A := ∑
w∈Sn;

w(A)⊆B

w

of A. We study these elements, showing in particular that their mini-
mal polynomials factor into linear factors (with integer coefficients). We
express the product ∇D,C∇B,A as a Z-linear combination of ∇U,V’s.

More generally, for any two set compositions (i.e., ordered set parti-
tions) A and B of {1, 2, . . . , n}, we define ∇B,A ∈ A to be the sum of
all permutations w ∈ Sn that send each block of A to the corresponding
block of B. This generalizes ∇B,A. The factorization property of mini-
mal polynomials does not extend to the ∇B,A, but we describe the ideal
spanned by the ∇B,A and its complement.

In this note, we explore some easily definable elements in the group algebra of a
symmetric group.
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1. Rook sums in the symmetric group algebra

1.1. Definitions

Let n be a nonnegative integer. Let [n] := {1, 2, . . . , n}.
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Fix a commutative ring k.
Let Sn be the n-th symmetric group, and let A := k [Sn] be its group algebra over

k.
The antipode of the group algebra A is the k-linear map A → A that sends each

permutation w ∈ Sn to w−1. We will denote this map by S. It is well-known that S
is a k-algebra anti-automorphism and an involution (i.e., satisfies S ◦ S = id).

For any two subsets A and B of [n], we define the elements

∇B,A := ∑
w∈Sn;

w(A)=B

w and ∇̃B,A := ∑
w∈Sn;

w(A)⊆B

w

of A. We shall refer to these elements as rectangular rook sums.
The following proposition collects some easy properties of these elements:

Proposition 1.1.1. Let A and B be two subsets of [n]. Then:

(a) We have ∇B,A = 0 if |A| ̸= |B|.

(b) We have ∇̃B,A = 0 if |A| > |B|.

(c) We have ∇̃B,A = ∑
V⊆B;

|V|=|A|

∇V,A.

(d) We have ∇B,A = ∇[n]\B, [n]\A.

(e) If |A| = |B|, then ∇B,A = ∇̃B,A.

(f) The antipode S satisfies S (∇B,A) = ∇A,B.

(g) The antipode S satisfies S
(
∇̃B,A

)
= ∇̃[n]\A, [n]\B.

Proposition 1.1.1 (c) shows that the elements ∇B,A and ∇̃B,A have the same span
as B and A range over the subsets of [n], or even as B ranges over all subsets of [n]
while A is fixed.

You might wonder: What is this span? What is its dimension? This will be
answered later (Corollary 2.6.1).

1.2. The product rule

What is more interesting is that the span of the ∇B,A is a nonunital k-subalgebra
of A. It has an explicit multiplication rule, which we shall state after a quick
definition:
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Definition 1.2.1. For any two subsets B and C of [n], we define the positive
integer

ωB,C := |B ∩ C|! · |B \ C|! · |C \ B|! · |[n] \ (B ∪ C)|! ∈ Z.

Theorem 1.2.2. Let A, B, C, D be four subsets of [n] such that |A| = |B| and
|C| = |D|. Then,

∇D,C∇B,A = ωB,C ∑
U⊆D,
V⊆A;
|U|=|V|

(−1)|U|−|B∩C|
(

|U|
|B ∩ C|

)
∇U,V .

Proof idea. We shall first show that

∇D,C∇B,A = ωB,C ∑
w∈Sn;

|w(A)∩D|=|B∩C|

w. (1)

[Proof of (1): Each permutation w appearing in the product ∇D,C∇B,A has the
property that |w (A) ∩ D| = |B ∩ C| (because it can be written as w = uv with

u (C) = D and v (A) = B, and therefore we have w (A)︸ ︷︷ ︸
=u(v(A))

∩ D︸︷︷︸
=u(C)

= u

v (A)︸ ︷︷ ︸
=B

 ∩

u (C) = u (B) ∩ u (C) = u (B ∩ C), so that |w (A) ∩ D| = |B ∩ C|). It remains to
show that each w with this property appears exactly ωB,C times in this product. In
other words, given a permutation w ∈ Sn satisfy |w (A) ∩ D| = |B ∩ C|, we must
show that there are exactly ωB,C ways to decompose w as w = uv with u (C) = D
and v (A) = B. But this is an exercise in counting: We want to count the permu-
tations v ∈ Sn satisfying v (A) = B and

(
wv−1) (C) = D. Such a permutation v

must send A to B and send w−1 (D) to C. In other words, it must send the four
subsets A ∩ w−1 (D), A \ w−1 (D), w−1 (D) \ A and [n] \

(
A ∪ w−1 (D)

)
to the re-

spectively equinumerous subsets B ∩ C, B \ C, C \ B and [n] \ (B ∪ C), respectively.
The number of ways to do this is

|B ∩ C|! · |B \ C|! · |C \ B|! · |[n] \ (B ∪ C)|!,

which is exactly ωB,C. Thus, the proof of (1) is complete.]

In view of (1), it only remains to show that

∑
w∈Sn;

|w(A)∩D|=|B∩C|

w = ∑
U⊆D,
V⊆A;
|U|=|V|

(−1)|U|−|B∩C|
(

|U|
|B ∩ C|

)
∇U,V .
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After expanding the right hand side as a sum of permutations, we can compare
coefficients of a given coefficient w ∈ Sn on both sides of this equality. That is, we
must now prove that{

1, if |w (A) ∩ D| = |B ∩ C| ;
0, else

= ∑
U⊆D,
V⊆A;

|U|=|V|;
w(V)=U

(−1)|U|−|B∩C|
(

|U|
|B ∩ C|

)

for each permutation w ∈ Sn. This is fairly easy: We have

∑
U⊆D,
V⊆A;

|U|=|V|;
w(V)=U

(−1)|U|−|B∩C|
(

|U|
|B ∩ C|

)
= ∑

U⊆w(A)∩D
(−1)|U|−|B∩C|

(
|U|

|B ∩ C|

)

(since the set V is uniquely determined by U via w (V) = U, and is a subset of A if
and only if we have U ⊆ w (A)∩ D), and it remains to recall the easy combinatorial
identity

∑
U⊆Z

(−1)|U|−k
(
|U|
k

)
=

{
1, if |Z| = k;
0, else

that holds for any finite set Z and any k ∈ N.

We can restate Theorem 1.2.2 as follows:

Theorem 1.2.3. Let A, B, C, D be four subsets of [n] such that |A| = |B| and
|C| = |D|. Then,

∇D,C∇B,A = ωB,C ∑
V⊆A

(−1)|V|−|B∩C|
(

|V|
|B ∩ C|

)
∇̃D,V .
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Proof. Theorem 1.2.2 yields

∇D,C∇B,A = ωB,C ∑
U⊆D,
V⊆A;
|U|=|V|

(−1)|U|−|B∩C|
(

|U|
|B ∩ C|

)
∇U,V

= ωB,C ∑
U⊆D,
V⊆A;
|U|=|V|

(−1)|V|−|B∩C|
(

|V|
|B ∩ C|

)
∇U,V

(
due to the |U| = |V|

condition

)

= ωB,C ∑
V⊆A

(−1)|V|−|B∩C|
(

|V|
|B ∩ C|

)
∑

U⊆D;
|U|=|V|

∇U,V

︸ ︷︷ ︸
=∇̃D,V

(by Proposition 1.1.1 (c))

= ωB,C ∑
V⊆A

(−1)|V|−|B∩C|
(

|V|
|B ∩ C|

)
∇̃D,V .

1.3. The D-filtration

We shall next derive some nilpotency-type consequence from the multiplication
rule.

For the rest of this section, we fix a subset D of [n]. We define

Fk := span
{
∇̃D,C | C ⊆ [n] with |C| ≤ k

}
for each k ∈ Z. Of course, Fn ⊇ Fn−1 ⊇ · · · ⊇ F0 ⊇ F−1 = 0. It is easy to see that
F0 is spanned by ∇̃D,∅ = ∇∅,∅ = ∑

w∈Sn

w.

Definition 1.3.1. For any subset C ⊆ [n] and any k ∈ N, we define the integer

δD,C,k := ∑
B⊆D;
|B|=k

ωB,C (−1)k−|B∩C|
(

k
|B ∩ C|

)
∈ Z.

Now, we note the following:

Proposition 1.3.2. Let C ⊆ [n] satisfy |C| = |D|. Let k ∈ N. Then,

(∇D,C − δD,C,k)Fk ⊆ Fk−1.
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Proof. By the definition of Fk, it suffices to show that

(∇D,C − δD,C,k) ∇̃D,A ∈ Fk−1 (2)

for each A ⊆ [n] with |A| ≤ k.
To prove this, we fix A ⊆ [n] with |A| ≤ k. Then, Proposition 1.1.1 (c) yields

∇̃D,A = ∑
V⊆D;
|V|=|A|

∇V,A = ∑
B⊆D;
|B|=|A|

∇B,A. (3)

Multiplying this equality by ∇D,C from the left, we obtain

∇D,C∇̃D,A = ∑
B⊆D;
|B|=|A|

∇D,C∇B,A. (4)

However, for each subset B ⊆ D satisfying |B| = |A|, we can use Theorem 1.2.3
to obtain

∇D,C∇B,A = ωB,C ∑
V⊆A

(−1)|V|−|B∩C|
(

|V|
|B ∩ C|

)
∇̃D,V︸ ︷︷ ︸

∈Fk−1 unless V=A
(since |V|<|A|≤k unless V=A)

≡ ωB,C (−1)|A|−|B∩C|
(

|A|
|B ∩ C|

)
∇̃D,A modFk−1. (5)

Recall that |A| ≤ k. Hence, we are in one of the following two cases:
Case 1: We have |A| = k.
Case 2: We have |A| < k.
Let us first consider Case 1. In this case, we have |A| = k. Hence, (4) becomes

∇D,C∇̃D,A = ∑
B⊆D;
|B|=|A|

∇D,C∇B,A

≡ ∑
B⊆D;
|B|=|A|

ωB,C (−1)|A|−|B∩C|
(

|A|
|B ∩ C|

)
∇̃D,A (by (5))

= ∑
B⊆D;
|B|=k

ωB,C (−1)k−|B∩C|
(

k
|B ∩ C|

)
︸ ︷︷ ︸

=δD,C,k

∇̃D,A (since |A| = k)

= δD,C,k∇̃D,A modFk−1.

In other words, ∇D,C∇̃D,A − δD,C,k∇̃D,A ∈ Fk−1. In other words, (∇D,C − δD,C,k) ∇̃D,A ∈
Fk−1. Hence, (2) is proved in Case 1.
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Let us now consider Case 2. In this case, we have |A| < k. Hence, |A| ≤ k − 1,
so that ∇̃D,A ∈ Fk−1. Now, (4) becomes

∇D,C∇̃D,A = ∑
B⊆D;
|B|=|A|

∇D,C∇B,A

≡ ∑
B⊆D;
|B|=|A|

ωB,C (−1)|A|−|B∩C|
(

|A|
|B ∩ C|

)
∇̃D,A (by (5))

∈ Fk−1

(
since ∇̃D,A ∈ Fk−1

)
.

Combining this with δD,C,k∇̃D,A ∈ Fk−1 (since ∇̃D,A ∈ Fk−1), we obtain ∇D,C∇̃D,A −
δD,C,k∇̃D,A ∈ Fk−1. In other words, (∇D,C − δD,C,k) ∇̃D,A ∈ Fk−1. Hence, (2) is
proved in Case 2.

We have now proved (2) in both Cases 1 and 2. Thus, (2) always holds, and
Proposition 1.3.2 is proved.

Definition 1.3.3. Let α = (αC)C⊆[n]; |C|=|D| be a family of scalars in k indexed by
the |D|-element subsets of [n]. Then, we set

∇D,α := ∑
C⊆[n];
|C|=|D|

αC∇D,C ∈ A.

Furthermore, for each k ∈ N, we set

δD,α,k := ∑
C⊆[n];
|C|=|D|

αCδD,C,k ∈ k.

Proposition 1.3.4. Let α = (αC)C⊆[n]; |C|=|D| be a family of scalars in k indexed
by the |D|-element subsets of [n]. Let k ∈ N. Then,

(∇D,α − δD,α,k)Fk ⊆ Fk−1.

Proof. Proposition 1.3.2 yields (∇D,C − δD,C,k)Fk ⊆ Fk−1 for each C ⊆ [n] satisfying
|C| = |D|. Multiply this relation by αC and sum up over all C ⊆ [n] satisfying
|C| = |D|. The result is Proposition 1.3.4.

Proposition 1.3.5. Let α = (αC)C⊆[n]; |C|=|D| be a family of scalars in k indexed
by the |D|-element subsets of [n]. Then, for each integer m ≥ −1, we have(

m

∏
k=0

(∇D,α − δD,α,k)

)
Fm = 0.
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Proof. Induction on m. The base case is obvious, since F−1 = 0. The induction step
uses Proposition 1.3.4.

1.4. The triangularity theorem

We can now state our main theorem (still using Definition 1.3.3):

Theorem 1.4.1. Let α = (αC)C⊆[n]; |C|=|D| be a family of scalars in k indexed by
the |D|-element subsets of [n]. Then,( |D|

∏
k=0

(∇D,α − δD,α,k)

)
∇D,α = 0.

Proof. For each subset C of [n] satisfying |C| = |D|, we have ∇D,C = ∇̃D,C (by
Proposition 1.1.1 (e)) and thus ∇D,C = ∇̃D,C ∈ F|C| = F|D| (since |C| = |D|). Thus,
∇D,α ∈ F|D| as well (since ∇D,α is a k-linear combination of such ∇D,C’s). However,
Proposition 1.3.5 (applied to m = |D|) yields( |D|

∏
k=0

(∇D,α − δD,α,k)

)
F|D| = 0.

Combine these two facts, and conclude.

Using the antipode S of A, we can obtain a reflected version of Theorem 1.4.1:

Theorem 1.4.2. Let α = (αC)C⊆[n]; |C|=|D| be a family of scalars in k indexed by
the |D|-element subsets of [n]. Set

∇α,D := ∑
C⊆[n];
|C|=|D|

αC∇C,D ∈ A.

Then, ( |D|

∏
k=0

(∇α,D − δD,α,k)

)
∇α,D = 0.

Proof. The antipode S is a k-algebra anti-homomorphism, and sends ∇D,α to ∇α,D
(since it sends ∇D,C to ∇C,D for each C). Thus, Theorem 1.4.2 follows easily by
applying the antipode to Theorem 1.4.1. (Note that we don’t have to reverse the
order of factors in the product, since all these factors commute with each other.)
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Corollary 1.4.3. Let B and D be two subsets of [n]. For each k ∈ N, we set

δ̃D,B,k := ∑
C⊆B;

|C|=|D|

δD,C,k ∈ Z.

Then, ( |D|

∏
k=0

(
∇̃B,D − δD,B,k

))
∇̃B,D = 0.

Proof. Define a family α = (αC)C⊆[n]; |C|=|D| of scalars in k by setting

αC =

{
1, if C ⊆ B;
0, if C ̸⊆ B

for each C ⊆ [n] .

Then, Proposition 1.1.1 (c) yields

∇̃B,D = ∑
V⊆B;

|V|=|D|

∇V,D = ∑
V⊆[n];
|V|=|D|

αV∇V,D = ∇α,D,

where ∇α,D is defined as in Theorem 1.4.2. Hence, Corollary 1.4.3 yields Theorem
1.4.2, once we realize that the δD,α,k from Theorem 1.4.2 is precisely the δ̃D,B,k.

Corollary 1.4.3 shows that the element ∇̃B,D has a minimal polynomial that fac-
tors entirely into linear factors. Moreover, there are at most |D|+ 2 factors, and one
of them is X or else there are at most |D|+ 1 of them.

Question 1.4.4. Can we simplify the formula for δ̃D,B,k ?

1.5. A table of minimal polynomials

For any subsets A and B of [n], we let κA,B be the sum (in Z [Sn]) of all permutations
w ∈ Sn that satisfy w (A) ∩ B = ∅ (that is, w (a) /∈ B for all a ∈ A). Then, κA,B is
simply ∇̃[n]\B, A. Thus, Corollary 1.4.3 shows that the element κA,B has a minimal
polynomial that factors into at most |A| + 2 factors. Note that these factors will
sometimes have multiplicities (e.g., the case of n = 6 and a = 3 and b = 2 and
c = 1).

Let us collect a table of these minimal polynomials. We observe that the minimal
polynomial of κB,A depends only on the three numbers a := |A|, b := |B| and
c := |A ∩ B| (since any two pairs (A, B) that agree in these three numbers can be
obtained from each other by the action of some permutation σ ∈ Sn, and therefore
the corresponding elements κB,A are conjugate to each other in A). Hence, we can
rename κB,A as κa,b,c.
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We also note that κa,b,c = 0 if c > a or b > a or a + b > n. Hence, we only need
to consider the cases a, b ∈ [0, n] and a + b ≤ n and c ∈ [0, min {a, b}].

Moreover, κB,A is the antipode of κA,B (by Proposition 1.1.1 (g)), and the antipode
preserves minimal polynomials. Thus, we only need to consider the case a ≤ b.

This being said, here is a table of minpols (= minimal polynomials) of κa,b,c’s
produced by SageMath:

——————————————————
Let n = 1.
For b = 0, the minpol is x − 1.

——————————————————
Let n = 2.
For b = 0, the minpol is (x − 2)x.
For a = 1 and b = 1 and c = 0, the minpol is x − 1.
For a = 1 and b = 1 and c = 1, the minpol is (x − 1)(x + 1).
——————————————————
Let n = 3.
For b = 0, the minpol is (x − 6)x.
For a = 1 and b = 1 and c = 0, the minpol is (x − 4)(x − 1)x.
For a = 1 and b = 1 and c = 1, the minpol is (x − 4)x(x + 2).
For a = 2 and b = 1 and c = 0, the minpol is (x − 2)x.
For a = 2 and b = 1 and c = 1, the minpol is (x − 2)x(x + 1).

——————————————————
Let n = 4.
For b = 0, the minpol is (x − 24)x.
For a = 1 and b = 1 and c = 0, the minpol is (x − 18)(x − 2)x.
For a = 1 and b = 1 and c = 1, the minpol is (x − 18)x(x + 6).
For a = 2 and b = 1 and c = 0, the minpol is (x − 12)(x − 4)x.
For a = 2 and b = 1 and c = 1, the minpol is (x − 12)x(x + 4).
For a = 3 and b = 1 and c = 0, the minpol is (x − 6)x.
For a = 3 and b = 1 and c = 1, the minpol is (x − 6)x(x + 2).
For a = 2 and b = 2 and c = 0, the minpol is (x − 4)x.
For a = 2 and b = 2 and c = 1, the minpol is (x − 4)(x + 2)x2.
For a = 2 and b = 2 and c = 2, the minpol is (x − 4)x(x + 4).

——————————————————
Let n = 5.
For b = 0, the minpol is (x − 120)x.
For a = 1 and b = 1 and c = 0, the minpol is (x − 96)(x − 6)x.
For a = 1 and b = 1 and c = 1, the minpol is (x − 96)x(x + 24).
For a = 2 and b = 1 and c = 0, the minpol is (x − 72)(x − 12)x.
For a = 2 and b = 1 and c = 1, the minpol is (x − 72)x(x + 18).
For a = 3 and b = 1 and c = 0, the minpol is (x − 48)(x − 18)x.
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For a = 3 and b = 1 and c = 1, the minpol is (x − 48)x(x + 12).
For a = 4 and b = 1 and c = 0, the minpol is (x − 24)x.
For a = 4 and b = 1 and c = 1, the minpol is (x − 24)x(x + 6).
For a = 2 and b = 2 and c = 0, the minpol is (x − 36)(x − 16)(x − 4)x.
For a = 2 and b = 2 and c = 1, the minpol is (x − 36)x(x + 4).
For a = 2 and b = 2 and c = 2, the minpol is (x − 36)(x − 12)x(x + 24).
For a = 3 and b = 2 and c = 0, the minpol is (x − 12)x.
For a = 3 and b = 2 and c = 1, the minpol is (x − 12)(x − 2)x(x + 4).
For a = 3 and b = 2 and c = 2, the minpol is (x − 12)(x − 4)x(x + 8).

——————————————————
Let n = 6.
For b = 0, the minpol is (x − 720)x.
For a = 1 and b = 1 and c = 0, the minpol is (x − 600)(x − 24)x.
For a = 1 and b = 1 and c = 1, the minpol is (x − 600)x(x + 120).
For a = 2 and b = 1 and c = 0, the minpol is (x − 480)(x − 48)x.
For a = 2 and b = 1 and c = 1, the minpol is (x − 480)x(x + 96).
For a = 3 and b = 1 and c = 0, the minpol is (x − 360)(x − 72)x.
For a = 3 and b = 1 and c = 1, the minpol is (x − 360)x(x + 72).
For a = 4 and b = 1 and c = 0, the minpol is (x − 240)(x − 96)x.
For a = 4 and b = 1 and c = 1, the minpol is (x − 240)x(x + 48).
For a = 5 and b = 1 and c = 0, the minpol is (x − 120)x.
For a = 5 and b = 1 and c = 1, the minpol is (x − 120)x(x + 24).
For a = 2 and b = 2 and c = 0, the minpol is (x − 288)(x − 72)(x − 8)x.
For a = 2 and b = 2 and c = 1, the minpol is (x − 288)x(x + 12)(x + 36).
For a = 2 and b = 2 and c = 2, the minpol is (x − 288)(x − 48)x(x + 144).
For a = 3 and b = 2 and c = 0, the minpol is (x − 144)(x − 72)(x − 24)x.
For a = 3 and b = 2 and c = 1, the minpol is (x − 144)(x + 16)x2.
For a = 3 and b = 2 and c = 2, the minpol is (x − 144)(x − 24)x(x + 72).
For a = 4 and b = 2 and c = 0, the minpol is (x − 48)x.
For a = 4 and b = 2 and c = 1, the minpol is (x − 48)(x − 12)x(x + 12).
For a = 4 and b = 2 and c = 2, the minpol is (x − 48)(x − 8)x(x + 24).
For a = 3 and b = 3 and c = 0, the minpol is (x − 36)x.
For a = 3 and b = 3 and c = 1, the minpol is (x − 36)(x − 12)x(x + 4)(x + 12).
For a = 3 and b = 3 and c = 2, the minpol is (x − 36)(x − 12)x(x + 4)(x + 12).
For a = 3 and b = 3 and c = 3, the minpol is (x − 36)x(x + 36).

1.6. Aside: The formal Nabla-algebra

We take a tangent and address a question that is suggested by Theorem 1.2.2 but
takes us out of the symmetric group algebra A. Namely, let us see what happens if
we take the multiplication rule in Theorem 1.2.2 literally while forgetting what the
∇B,A are.
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Theorem 1.6.1. For any two subsets A and B of [n] satisfying |A| = |B|, introduce

a formal symbol ∆B,A. Thus, we have introduced altogether
n
∑

k=0

(
n
k

)2

=

(
2n
n

)
symbols ∆B,A. Let D be the free k-module with basis (∆B,A)A,B⊆[n] with |A|=|B|.
Define a multiplication on D by

∆D,C∆B,A := ωB,C ∑
U⊆D,
V⊆A;
|U|=|V|

(−1)|U|−|B∩C|
(

|U|
|B ∩ C|

)
∆U,V .

(Recall Definition 1.2.1, which defines the ωB,C here.) Then, D becomes a nonuni-
tal k-algebra.

Proof omitted due to excessive ugliness.

Question 1.6.2. The above proof idea is clearly in bad taste. There should be a
more conceptual proof that identifies D as some existing (nonunital) k-algebra

(what nonunital k-algebra has dimension
(

2n
n

)
over k ?) or at least with a

subquotient of a such.

Example 1.6.3. Let n = 1. Then, the k-module D in Theorem 1.6.1 has basis
(u, v) with u = ∆∅,∅ and v = ∆{1},{1}. The multiplication on D defined ibidem
is given by

uu = uv = vu = u, vv = v.

Thus, the nonunital k-algebra D is isomorphic to the k-algebra k [x] /
(
x2 − x

)
,

and therefore has a unity (namely, v).

Example 1.6.4. Let n = 2. Then, the k-module D in Theorem 1.6.1 has basis
(u, v11, v12, v21, v22, w) with u = ∆∅,∅ and vij = ∆{i},{j} and w = ∆[2],[2]. The
multiplication on D defined ibidem is given by

uu = uw = wu = 2u, uvij = viju = u,

vdcvba = u − vda if b ̸= c;
vdcvba = vda if b = c,

vijw = vi1 + vi2, wvij = v1j + v2j,

ww = 2w.

This nonunital k-algebra D has a unity if and only if 2 is invertible in k. This

unity is
1
4
(v11 + v22 − v12 − v21 + 2w).
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Question 1.6.5. Does the k-algebra D in Theorem 1.6.1 have a unity if n! is
invertible in k ? (I suspect that the answer is “yes”.)

1.7. Other rook sums?

Encouraged by the above results, we can define an element

∇T := ∑
w∈Sn;

(i,w(i))∈T for each i∈[n]

w

for any subset T of [n] × [n]. This is the sum of the n-rook placements on the
(arbitrary) board T. It is tempting to conjecture that the minimal polynomial of ∇T
will always factor nicely, but this is not true: If n = 5 and T = {(i, j) | j ̸= i + 1},
then the minimal polynomial of ∇T has irreducible factors of degrees 1, 4, 5 and 6
(over Q).

Of course, some boards do behave nicely: If T = {(i, j) ∈ [n]× [n] | i ̸= j}, then
∇T is the sum of all derangements in Sn, thus a central element of Z [Sn], and
hence the minimal polynomial of ∇T factors (since the center of Q [Sn] is split
semisimple).

2. Row-to-row sums in the symmetric group algebra

2.1. Definitions

As we recall, n is a nonnegative integer and k a commutative ring. We work in the
group algebra A = k [Sn] of the symmetric group Sn.

A set decomposition of a set U shall mean a tuple (U1, U2, . . . , Uk) of disjoint sub-
sets of U such that U1 ∪ U2 ∪ · · · ∪ Uk = U. The subsets U1, U2, . . . , Uk are called
the blocks of this set decomposition (U1, U2, . . . , Uk). The number k of these blocks
is called the length of this set decomposition. The length of a set decomposition U
is called ℓ (U).

A set composition of a set U shall mean a set decomposition of U whose blocks
are all nonempty. Clearly, any set decomposition of U can be transformed into a
set composition of U by removing all empty blocks.

Let SC (n) denote the set of all set compositions of [n].
If A = (A1, A2, . . . , Ak) and B = (B1, B2, . . . , Bk) are two set decompositions of

[n] having the same length, then we define the element

∇B,A := ∑
w∈Sn;

w(Ai)=Bi for all i

w of A.

This will be called a row-to-row sum. We observe some easy properties:
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Proposition 2.1.1. Let A = (A1, A2, . . . , Ak) and B = (B1, B2, . . . , Bk) be two set
decompositions of [n] having the same length. Then:

(a) We have ∇B,A = 0 unless each i ∈ [k] satisfies |Ai| = |Bi|.

(b) The element ∇B,A does not change if we permute the blocks of A and the
blocks of B using the same permutation. In other words, for any permuta-
tion σ ∈ Sk, we have ∇B,A = ∇Bσ,Aσ, where Aσ :=

(
Aσ(1), Aσ(2), . . . , Aσ(k)

)
and Bσ :=

(
Bσ(1), Bσ(2), . . . , Bσ(k)

)
.

(c) The element ∇B,A does not change if we remove empty blocks from A and
from B, provided that these blocks are in the same positions in both A and
B.

(d) The antipode S of A satisfies S (∇B,A) = ∇A,B.

Moreover, these row-to-row sums ∇B,A generalize the rectangular rook sums
∇B,A from Section 1:

Proposition 2.1.2. Let A and B be two subsets of [n]. Define the two set decom-
positions A := (A, [n] \ A) and B := (B, [n] \ B) of [n]. Then, ∇B,A = ∇B,A.

Remark 2.1.3. It might be more convenient to rewrite the row-to-row elements
using colorings instead of set (de)compositions. Namely, a coloring of [n] means
a map f : [n] → C to some set C. If C = [k] for some k ∈ N, then such a coloring
f can be regarded as a set decomposition of [n] of length k, where the i-th block
is f−1 (i) for each i ∈ [k]. The image f (j) of an element j ∈ [n] under a coloring
f : [n] → C is called the color of j (under f ). Now, the row-to-row sum ∇g, f
corresponding to two colorings f and g of [n] is the sum of all permutations
w ∈ Sn that satisfy g ◦ w = f . (This is a “preservation of colors” condition.)

Remark 2.1.4. Let u ∈ Sn be any permutation. Let A be the set com-
position ({1} , {2} , . . . , {n}) of [n], and let B be the set composition
({u (1)} , {u (2)} , . . . , {u (n)}) of [n]. Then, ∇B,A = u. Thus, the row-to-row
sums ∇B,A in general are not as special as their particular cases the rectangular
rook sums ∇B,A. In particular, the minimal polynomials of general row-to-row
sums ∇B,A cannot be factored into linear factors over Z.

This all was easy. Let us now come to deeper facts.
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2.2. The two ideals

For each subset U of [n], we define the element

∇−
U := ∑

w∈Sn;
w(i)=i for all i∈[n]\U

(−1)w w ∈ A.

This is called the antisymmetrizer of U. Note that it equals 1 if |U| ≤ 1. Another
way to rephrase the definition of ∇−

U is

∇−
U := ∑

w∈SU

(−1)w w ∈ A,

where SU denotes the symmetric group on the set U (embedded into Sn in the
standard way).

Definition 2.2.1. Let k ∈ N. We define two k-submodules Ik and Jk of A by

Ik := span {∇B,A | A, B ∈ SC (n) with ℓ (A) = ℓ (B) ≤ k}

and

Jk := A · span
{
∇−

U | U is a subset of [n] having size k + 1
}
· A.

Proposition 2.2.2. Let k ∈ N. Then:

(a) Both Ik and Jk are ideals of A.

(b) We have

Jk = A · span
{
∇−

U | U is a subset of [n] having size k + 1
}

= span
{
∇−

U | U is a subset of [n] having size k + 1
}
· A.

(c) The antipode S satisfies S (Ik) = Ik and S (Jk) = Jk.

(d) We have

Ik = span {∇B,A | A and B are set decompositions of [n]
with ℓ (A) = ℓ (B) ≤ k} .

(e) We have

Jk = A · span
{
∇−

U | U is a subset of [n] having size > k
}
· A.
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Proof. (a) Clearly, Jk is an ideal of A. It remains to show that so is Ik. To this
purpose, it suffices to show that

u∇B,Av = ∇uB,v−1A (6)

for any permutations u, v ∈ Sn and any set compositions A, B ∈ SC (n) satisfying
ℓ (A) = ℓ (B), where the symmetric group Sn acts on the set SC (n) by the formula

w (B1, B2, . . . , Bi) = (w (B1) , w (B2) , . . . , w (Bi)) .

But this is easy.

(b) It is easy to see that any permutation w ∈ Sn and any subset U of [n] satisfy

w∇−
U = ∇−

w(U)
w. (7)

This equality yields

A · span
{
∇−

U | U is a subset of [n] having size k + 1
}

= span
{
∇−

U | U is a subset of [n] having size k + 1
}
· A.

From this, part (b) easily follows.

(c) The equality S (Ik) = Ik follows from Proposition 2.1.1. The equality S (Jk) =
Jk follows from the equality S

(
∇−

U
)
= ∇−

U , which holds for each U ⊆ [n].

(d) Proposition 2.1.1 (c) yields that if A and B are set decompositions of [n] sat-
isfying ℓ (A) = ℓ (B) ≤ k, then the row-to-row sum ∇B,A can be rewritten as ∇D,C
for two set compositions C, D of [n] satisfying ℓ (C) = ℓ (D) ≤ ℓ (A) = ℓ (B) ≤ k
(namely, C and D are obtained from A and B by removing all empty blocks). Thus,
Ik does not change if we replace the set compositions in the definition of Ik by set
decompositions. Hence, part (d) is proved.

(e) Clearly,

Jk ⊆ A · span
{
∇−

U | U is a subset of [n] having size > k
}
· A

(since any subset of size k + 1 has size > k). It remains to prove the reverse in-
clusion. Since Jk is an ideal of A, it suffices to show that ∇−

U ∈ Jk whenever U
is a subset of [n] having size > k. So let U be a subset of [n] having size > k.
Then, U has a subset V of size k + 1. Consider this V. Now, ∇−

U can be written as
∇−

U = ∇−
V f for some f ∈ A, since the symmetric group SV is a subgroup of SU.

Consider this f . We have ∇−
V ∈ Jk (by the definition of Jk, since V is a subset of [n]

having size k + 1) and thus ∇−
V f ∈ Jk (since Jk is an ideal of A). In other words,

∇−
U ∈ Jk (since ∇−

U = ∇−
V f ). This proves part (e).
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2.3. Annihilators and the bilinear form

If B is any subset of A, then we define the two subsets

LAnnB := {a ∈ A | ab = 0 for all b ∈ B} and
RAnnB := {a ∈ A | ba = 0 for all b ∈ B}

of A. We call them the left annihilator and the right annihilator of B, respectively.
Moreover, we define the k-bilinear form

⟨·, ·⟩ : A×A → k,

which sends the pair (u, v) to

{
1, if u = v;
0, if u ̸= v

for any two permutations u, v ∈ Sn.

This is the standard nondegenerate symmetric bilinear form on A = k [Sn] known
from representation theory.

If B is any subset of A, then we define the subset

B⊥ := {a ∈ A | ⟨a, b⟩ = 0 for all b ∈ B}

of A. This is called the orthogonal complement of B in A. Note that it does not change
if we replace ⟨a, b⟩ by ⟨b, a⟩ in its definition, since the form ⟨·, ·⟩ is symmetric.

Definition 2.3.1. Let k ∈ N. Let w ∈ Sn be a permutation. We say that w
avoids 12 · · · (k + 1) if there exists no (k + 1)-element subset U of [n] such that
the restriction w |U is increasing (i.e., if there exist no k + 1 elements i1 < i2 <
· · · < ik+1 such that w (i1) < w (i2) < · · · < w (ik+1)). We let Avn (k + 1) denote
the set of all permutations w ∈ Sn that avoid 12 · · · (k + 1).

Note that this notion of “avoiding 12 · · · (k + 1)” is taken from the theory of
pattern avoidance.

Question 2.3.2. Explore the relation between the following and [BaiRai01, §8].

2.4. The main theorem

Theorem 2.4.1. Let k ∈ N. Then:

(a) We have Ik = J ⊥
k = LAnnJk = RAnnJk.

(b) We have Jk = I⊥
k = LAnn Ik = RAnn Ik.

(c) The k-module Ik is free of rank |Avn (k + 1)|.

(d) The k-module Jk is free of rank |Sn \ Avn (k + 1)|.
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(e) The k-module A/Ik is free with basis (w)w∈Sn\Avn(k+1). (Here, w denotes
the projection of w ∈ A onto the quotient A/Ik.)

(f) The k-module A/Jk is free with basis (w)w∈Avn(k+1).

(g) Assume that n! is invertible in k. Then, A = Ik ⊕Jk (internal direct sum)
as k-module. Moreover, Ik and Jk are nonunital subalgebras of A and
satisfy A ∼= Ik ×Jk as k-algebras.

We note that the ideals Ik and Jk of A have a simple representation-theoretical
interpretation when k is a field of characteristic 0; this is discussed in Proposition
2.7.1 further below.

2.5. Lemmas for the proof of the main theorem

The proof of this will be conveyed via a series of lemmas.

Lemma 2.5.1. Let B be a left ideal of A. Then:

(a) We have B⊥ = LAnn (S (B)).

(b) If S (B) = B, then B⊥ = LAnnB = RAnnB.

Proof. Let coeff1 : A → k be the map that sends each element of A = k [Sn]
to the coefficient of the identity permutation id in this element. In other words,
coeff1 : A → k is the k-linear map that sends the permutation id ∈ Sn to 1 while
sending any non-identity permutation w ∈ Sn to 0.

It is easy to see that the bilinear form ⟨·, ·⟩ can be expressed as follows: For any
a, b ∈ A, we have

⟨a, b⟩ = coeff1 (S (a) b) (8)
= coeff1 (bS (a)) (9)
= coeff1 (S (b) a) (10)
= coeff1 (aS (b)) . (11)

(a) Let a ∈ LAnn (S (B)). Then, aS (b) = 0 for all b ∈ B. Hence, (11) yields

⟨a, b⟩ = coeff1

aS (b)︸ ︷︷ ︸
=0

 = coeff1 0 = 0 for all b ∈ B. In other words, a ∈ B⊥. Thus,

we have shown that LAnn (S (B)) ⊆ B⊥.
Conversely, let c ∈ B⊥. Then, ⟨c, b⟩ = 0 for all b ∈ B. Now, let b ∈ B be arbitrary.

Then, for every w ∈ Sn, we have wb ∈ B (since B is a left ideal of A) and therefore
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⟨c, wb⟩ = 0 (since c ∈ B⊥), so that

0 = ⟨c, wb⟩ = coeff1 (cS (wb)) (by (11))

= coeff1

(
cS (b)w−1

) since S (wb) = S (b) S (w)︸ ︷︷ ︸
=w−1

= S (b)w−1


=
(

the coefficient of id in cS (b)w−1
)

= (the coefficient of w in cS (b)) .

Since this holds for each w ∈ Sn, we thus obtain cS (b) = 0. Since this holds
for each b ∈ B, we conclude that c ∈ LAnn (S (B)). Thus, we have shown that
B⊥ ⊆ LAnn (S (B)). Combining this with LAnn (S (B)) ⊆ B⊥, we obtain B⊥ =
LAnn (S (B)). Thus, Lemma 2.5.1 (a) is proved.

(b) Assume that S (B) = B. Then, Lemma 2.5.1 (a) yields B⊥ = LAnn (S (B)) =
LAnnB (since S (B) = B). Furthermore, since the bilinear form ⟨·, ·⟩ is S-invariant
(i.e., satisfies ⟨S (a) , S (b)⟩ = ⟨a, b⟩ for all a, b ∈ A), we can easily see that (S (B))⊥ =
S
(
B⊥). In view of S (B) = B, we can rewrite this as B⊥ = S

(
B⊥). However, S

is a k-algebra anti-automorphism. Thus, RAnn (S (B)) = S (LAnnB). In view of

S (B) = B, we can rewrite this as RAnnB = S

LAnnB︸ ︷︷ ︸
=B⊥

 = S
(
B⊥) = B⊥. Thus,

B⊥ = RAnnB. Combined with B⊥ = LAnnB, this completes the proof of Lemma
2.5.1 (b).

Lemma 2.5.2. Let M be a free k-module with a basis (mi)i∈I . Let J and K be two
disjoint subsets of I such that J ∪ K = I. Let N be a k-submodule of M such
that the quotient module M/N has a basis (mi)i∈J . (Here, as usual, m denotes
the projection of any vector m ∈ M onto the quotient M/N .)

Then:

(a) The k-module N is free of rank |K|.

(b) There exists a k-linear projection π : M → N (that is, a k-linear map
π : M → N such that π |N= id).

Proof. For each k ∈ K, the vector mk ∈ M/N can be written as a k-linear combi-
nation of the family (mi)i∈J (since this family is a basis of M/N ). In other words,
there exist coefficients ck,j for all k ∈ K and j ∈ J such that each k ∈ K satisfies

mk = ∑
j∈J

ck,jmj. (12)

Now, let us set
vk := mk − ∑

j∈J
ck,jmj (13)
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for each k ∈ K. This element vk belongs to N (since vk = mk − ∑
j∈J

ck,jmj = mk −

∑
j∈J

ck,jmj = 0 by (12)). Thus, (vk)k∈K is a family of vectors in N . This family is

easily seen to be k-linearly independent (since the only vector in this family that
contains a given mk is vk). Moreover, it spans the k-module N , because any vector
in N can be reduced (modulo this family) to a k-linear combination of the mj with
j ∈ J, and the latter combination must have zeroes for its coefficients for our vector
to belong to N (since (mi)i∈J is linearly independent in M/N ). Thus, the family
(vk)k∈K is a basis of N . Therefore, N is free of rank |K|. This proves Lemma 2.5.2
(a).

(b) Let π : M → N be the k-linear map that sends each basis element mi of M
to {

vi, if i ∈ K;
0, if i ∈ J.

This is well-defined (since (mi)i∈I is a basis of M, and since each i ∈ I belongs to
exactly one of the sets K and J). It is easy to see that this map π sends vk to vk for
each k ∈ K (because applying π to the right hand side of (13) kills all mj addends
while sending mk to vk). Thus, π |N= id (since (vk)k∈K is a basis of N ). Thus, π is
a projection. This proves Lemma 2.5.2 (b).

Lemma 2.5.3. Let k ∈ N. Then, IkJk = JkIk = 0.

Proof. Let us first show that IkJk = 0. Indeed, we have

Ik = span {∇B,A | A, B ∈ SC (n) with ℓ (A) = ℓ (B) ≤ k}

and
Jk = span

{
∇−

U | U is a subset of [n] having size k + 1
}
· A

(by Proposition 2.2.2 (b)). Thus, in order to prove that IkJk = 0, it suffices to show
that ∇B,A∇−

U = 0 for all set compositions A, B ∈ SC (n) satisfying ℓ (A) = ℓ (B) ≤ k
and all subsets U of [n] having size k + 1. So let us show this. We fix two set
compositions A, B ∈ SC (n) satisfying ℓ (A) = ℓ (B) ≤ k and a subset U of [n]
having size k + 1.

We have ℓ (A) = ℓ (B) ≤ k < k + 1 = |U|. In other words, A has fewer blocks
than U has elements. Hence, by the pigeonhole principle, there exist two distinct
elements u and v of U that belong to the same block of A. Pick such u and v. Let
τ ∈ SU be the transposition that swaps u and v. Then, ∇−

U = (1 − τ) q for some
q ∈ k [SU] (since ⟨τ⟩ = {1, τ} is a subgroup of the group SU). Consider this q. But
(6) yields

∇B,Aτ = ∇B,τ−1A = ∇B,A
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(since τ−1A = A (because u and v belong to the same block of A)). Thus,

∇B,A ∇−
U︸︷︷︸

=(1−τ)q

= ∇B,A (1 − τ)︸ ︷︷ ︸
=∇B,A−∇B,Aτ

=0
(since ∇B,Aτ=∇B,A)

q = 0.

This completes our proof of IkJk = 0.
It remains to prove that JkIk = 0. This can be done similarly, but can also be

derived from IkJk = 0 easily: Since S is an algebra anti-automorphism, we have

S (IkJk) = S (Jk)︸ ︷︷ ︸
=Jk

(by Proposition 2.2.2 (c))

S (Ik)︸ ︷︷ ︸
=Ik

(by Proposition 2.2.2 (c))

= JkIk.

Thus, JkIk = S (IkJk) = 0 (since IkJk = 0). The proof of Lemma 2.5.3 is thus
complete.

Lemma 2.5.4. Let k ∈ N. Then, the quotient module A/Ik is spanned by the
family (w)w∈Sn\Avn(k+1).

Proof. It suffices to prove that

u ∈ span
(
(w)w∈Sn\Avn(k+1)

)
for each u ∈ Sn. (14)

To prove this, we proceed by induction on u in lexicographic order. Thus, we fix a
permutation v ∈ Sn, and we assume (as the induction hypothesis) that (14) holds
for every u < v in lexicographic order. We must now prove (14) for u = v.

If v ∈ Sn \ Avn (k + 1), then this is trivial. Thus, we WLOG assume that v /∈ Sn \
Avn (k + 1). Hence, v ∈ Avn (k + 1). Therefore, by a variant of the Erdös–Szekeres
theorem, there exists a set decomposition A = (A1, A2, . . . , Ak) of [n] such that all
restrictions v |A1 , v |A2 , . . . , v |Ak are decreasing1. Consider this set decomposition
A = (A1, A2, . . . , Ak). Define a further set decomposition B = (B1, B2, . . . , Bk) of [n]
by

Bi := v (Ai) for each i ∈ [k] .

1Let us recall how this can be shown: Let v be the sequence (v (1) , v (2) , . . . , v (n)). Then, v has
no increasing subsequence of length > k (because v ∈ Avn (k + 1)). For each i ∈ {1, 2, . . . , k}, we
let

Ai := {j ∈ [n] | the longest increasing subsequence of v
ending with v (j) has length i} .

These k sets A1, A2, . . . , Ak are clearly disjoint, and their union is [n] (since the sequence v
has no increasing subsequence of length > k). In other words, A = (A1, A2, . . . , Ak) is a set
decomposition of [n]. By its definition, it is easy to see that all restrictions v |A1 , v |A2 , . . . , v |Ak
are decreasing (because if two elements p < q of Ai satisfied v (p) < v (q), then the longest
increasing subsequence of v ending with v (q) would be longer than the one ending with v (p)).
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Thus, v ∈ Sn is a permutation satisfying v (Ai) = Bi for all i. Hence, the row-to-row
sum

∇B,A = ∑
w∈Sn;

w(Ai)=Bi for all i

w

contains the permutation v as one of its addends. All its remaining addends can be
obtained from v by permuting the values of v on A1, permuting the values of v on
A2, and so on. Any such permutation decreases v in lexicographic order (because
the restrictions v |A1 , v |A2 , . . . , v |Ak are decreasing). Thus, all the addends of
∇B,A except for v are lexicographically smaller than v. Hence,

∇B,A = v + (some permutations w < v) .

Therefore,
v = ∇B,A − (some permutations w < v) . (15)

But we have ℓ (A) = ℓ (B) = k. Hence, Proposition 2.2.2 (d) yields ∇B,A ∈ Ik.
Thus, projecting the equality (15) onto the quotient A/Ik, we obtain

v = ∇B,A︸ ︷︷ ︸
=0

(since ∇B,A∈Ik)

− (some permutations w < v)

= − (some permutations w < v)︸ ︷︷ ︸
∈span((w)w∈Sn\Avn(k+1))

(by our induction hypothesis)

∈ span
(
(w)w∈Sn\Avn(k+1)

)
.

In other words, (14) holds for u = v. This completes the induction. Thus, Lemma
2.5.4 is proved.

Lemma 2.5.5. Let k ∈ N. Then, the quotient module A/Jk is spanned by the
family (w)w∈Avn(k+1).

Proof. It suffices to prove that

u ∈ span
(
(w)w∈Avn(k+1)

)
for each u ∈ Sn. (16)

To prove this, we proceed by induction on u in reverse lexicographic order. Thus,
we fix a permutation v ∈ Sn, and we assume (as the induction hypothesis) that (16)
holds for every u > v in lexicographic order. We must now prove (16) for u = v.

If v ∈ Avn (k + 1), then this is trivial. Thus, we WLOG assume that v /∈ Avn (k + 1).
Hence, v ∈ Sn \ Avn (k + 1). Therefore, there exists a (k + 1)-element subset U of
[n] such that the restriction v |U is increasing. Consider this U. Thus, the sum

v∇−
U = ∑

w∈Sn agrees with v on
all elements outside of U

±w
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contains the permutation v as one of its addends. All its remaining addends can
be obtained from v by permuting the values of v on U. Any such permutation
increases v in lexicographic order (because the restriction v |U is increasing). Thus,
all the addends of v∇−

U except for v are lexicographically larger than v. Hence,

v∇−
U = v ± (some permutations w > v) .

Therefore,
v = v∇−

U ± (some permutations w > v) . (17)

But the definition of Jk yields v∇−
U ∈ Jk. Thus, projecting the equality (17) onto

the quotient A/Jk, we obtain

v = v∇−
U︸︷︷︸

=0
(since v∇−

U∈Jk)

±(some permutations w > v)

= − (some permutations w > v)︸ ︷︷ ︸
∈span((w)w∈Avn(k+1))

(by our induction hypothesis)

∈ span
(
(w)w∈Avn(k+1)

)
.

In other words, (16) holds for u = v. This completes the induction. Thus, Lemma
2.5.5 is proved.

Lemma 2.5.6. Let k ∈ N. Let (αw)w∈Avn(k+1) ∈ kAvn(k+1) be a family of scalars
satisfying

∑
w∈Avn(k+1)

αww ∈ I⊥
k .

Then, αw = 0 for all w ∈ Avn (k + 1).

Proof. Assume the contrary. Thus, there exist some w ∈ Avn (k + 1) such that
αw ̸= 0. Let v be the lexicographically smallest such w. Thus, αv ̸= 0, but

αw = 0 for every w ∈ Sn satisfying w < v. (18)

As in the proof of Lemma 2.5.4, we can construct set decompositions A and B of
[n] such that ℓ (A) = ℓ (B) = k and ∇B,A ∈ Ik and

∇B,A = v + (some permutations w < v) (19)

hold. Consider these A and B. From ∑
w∈Avn(k+1)

αww ∈ I⊥
k and ∇B,A ∈ Ik, we
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conclude that

〈
∑

w∈Avn(k+1)
αww, ∇B,A

〉
= 0. Thus,

0 =

〈
∑

w∈Avn(k+1)
αww, ∇B,A

〉
= ∑

w∈Avn(k+1)
αw︸︷︷︸

=0 if w<v
(by (18))

⟨w, ∇B,A⟩︸ ︷︷ ︸
=0 if w>v
(by (19))

= αv ⟨v, ∇B,A⟩︸ ︷︷ ︸
=1

(by (19))

= αv ̸= 0,

which is absurd. This completes the proof of Lemma 2.5.6.

Lemma 2.5.7. Let k ∈ N. Let (αw)w∈Sn\Avn(k+1) ∈ kSn\Avn(k+1) be a family of
scalars satisfying

∑
w∈Sn\Avn(k+1)

αww ∈ J ⊥
k .

Then, αw = 0 for all w ∈ Sn \ Avn (k + 1).

Proof. Assume the contrary. Thus, there exist some w ∈ Sn \ Avn (k + 1) such that
αw ̸= 0. Let v be the lexicographically largest such w. Thus, αv ̸= 0, but

αw = 0 for every w ∈ Sn satisfying w > v. (20)

As in the proof of Lemma 2.5.5, we can construct a (k + 1)-element subset U of
[n] such that v∇−

U ∈ Jk and

v∇−
U = v ± (some permutations w > v) . (21)

Consider this U. From ∑
w∈Sn\Avn(k+1)

αww ∈ J ⊥
k and v∇−

U ∈ Jk, we conclude that〈
∑

w∈Sn\Avn(k+1)
αww, v∇−

U

〉
= 0. Thus,

0 =

〈
∑

w∈Sn\Avn(k+1)
αww, v∇−

U

〉
= ∑

w∈Sn\Avn(k+1)
αw︸︷︷︸

=0 if w>v
(by (20))

〈
w, v∇−

U
〉︸ ︷︷ ︸

=0 if w<v
(by (21))

= αv
〈
v, v∇−

U
〉︸ ︷︷ ︸

=1
(by (21))

= αv ̸= 0,

which is absurd. This completes the proof of Lemma 2.5.7.
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Lemma 2.5.8. Let k ∈ N. Then, the k-module A/Ik is free with basis
(w)w∈Sn\Avn(k+1).

Proof. The family (w)w∈Sn\Avn(k+1) spans this k-module A/Ik, as we know from
Lemma 2.5.4. It remains to prove that it is k-linearly independent.

Let (αw)w∈Sn\Avn(k+1) ∈ kSn\Avn(k+1) be a family of scalars satisfying

∑
w∈Sn\Avn(k+1)

αww = 0. (22)

We thus need to show that αw = 0 for all w ∈ Sn \ Avn (k + 1).
However, (22) means that ∑

w∈Sn\Avn(k+1)
αww ∈ Ik. But Lemma 2.5.3 yields IkJk =

0. Thus, Ik ⊆ LAnnJk. However, Proposition 2.2.2 (c) yields S (Jk) = Jk. Further-
more, Jk is an ideal of A (by Proposition 2.2.2 (a)). Thus, Lemma 2.5.1 (b) (applied
to B = Jk) yields J ⊥

k = LAnn (Jk) = RAnn (Jk). Thus,

∑
w∈Sn\Avn(k+1)

αww ∈ Ik ⊆ LAnnJk = J ⊥
k .

Lemma 2.5.7 thus yields that αw = 0 for all w ∈ Sn \ Avn (k + 1). This completes
the proof of Lemma 2.5.8.

Lemma 2.5.9. Let k ∈ N. Then, the k-module A/Jk is free with basis
(w)w∈Avn(k+1).

Proof. Analogous to the proof of Lemma 2.5.8. (Of course, use Lemma 2.5.5 and
Lemma 2.5.6 instead of Lemma 2.5.4 and Lemma 2.5.7 now.)

Lemma 2.5.10. Let k ∈ N. Then,

Ik = J ⊥
k = LAnnJk = RAnnJk.

Proof. Proposition 2.2.2 (c) yields S (Jk) = Jk. Furthermore, Jk is an ideal of
A (by Proposition 2.2.2 (a)). Thus, Lemma 2.5.1 (b) (applied to B = Jk) yields
J ⊥

k = LAnnJk = RAnnJk. Thus, it remains to prove that Ik = J ⊥
k .

Lemma 2.5.3 yields IkJk = 0. Thus, Ik ⊆ LAnnJk = J ⊥
k . Thus, we only need

to show that J ⊥
k ⊆ Ik.

Let a ∈ J ⊥
k . We must prove that a ∈ Ik.

Lemma 2.5.4 shows that the quotient module A/Ik is spanned by the family
(w)w∈Sn\Avn(k+1). Hence, the projection a ∈ A/Ik can be written as a k-linear
combination of this family. In other words, we can write a as

a = ∑
w∈Sn\Avn(k+1)

αww (23)
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for some family (αw)w∈Sn\Avn(k+1) ∈ kSn\Avn(k+1) of scalars. Consider this family.
We can rewrite (23) as

a − ∑
w∈Sn\Avn(k+1)

αww ∈ Ik ⊆ J ⊥
k .

Since a ∈ J ⊥
k , this yields ∑

w∈Sn\Avn(k+1)
αww ∈ J ⊥

k . By Lemma 2.5.7, we thus

conclude that αw = 0 for all w ∈ Sn \ Avn (k + 1). Thus, (23) rewrites as a =
∑

w∈Sn\Avn(k+1)
0w = 0, so that a ∈ Ik. This completes our proof of Lemma 2.5.10.

Lemma 2.5.11. Let k ∈ N. Then,

Jk = I⊥
k = LAnn Ik = RAnn Ik.

Proof. Analogous to the proof of Lemma 2.5.10. (Of course, use Lemma 2.5.5 and
Lemma 2.5.6 instead of Lemma 2.5.4 and Lemma 2.5.7 now.)

Lemma 2.5.12. Assume that n! is invertible in k. Let A and B be two disjoint
subsets of Sn such that A ∪ B = Sn. Let I and J be two ideals of A such that
I = LAnnJ and J = LAnn I . Assume that the family (w)w∈A is a basis of
the k-module A/I , and that the family (w)w∈B is a basis of the k-module A/J .
Then, A = I ⊕ J (internal direct sum) as k-module. Moreover, I and J are
nonunital subalgebras of A and satisfy A ∼= I × J as k-algebras.

Proof. From I = LAnnJ , we obtain IJ = 0. Similarly, J I = 0.
Lemma 2.5.2 (b) (applied to M = A and N = I and I = Sn and J = A and

K = B) yields that there exists a k-linear projection π : A → I (that is, a k-linear
map π : A → I such that π |I= id). Consider this π.

Note that I is an ideal of A, thus a left ideal of A, hence a left A-submodule of
A. Moreover, |Sn| = n! is invertible in k. Hence, the standard proof of the Maschke
theorem (via averaging the projection π over Sn) yields that there exists a k-linear
projection π′ : A → I that is a left A-module homomorphism2. Consider this π′.

Let e := π′ (1) ∈ I . Then, we claim that

ue = u for each u ∈ I . (24)

[Proof of (24): Let u ∈ I . Then, π′ (u) = u (since π′ is a projection). However,
π′ is a left A-module homomorphism. Thus, π′ (u1) = u π′ (1)︸ ︷︷ ︸

=e

= ue, so that

ue = π′

(
u1︸︷︷︸
=u

)
= π′ (u) = u. This proves (24).]

2Explicitly, π′ can be constructed as follows:

π′ (a) =
1

|Sn| ∑
σ∈Sn

σπ
(

σ−1a
)

for each a ∈ A.
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Clearly, I is a nonunital subalgebra of A (since I is an ideal of A). From (24),
we see that this algebra I has a right unity (namely, e). A similar argument (using
right instead of left A-modules) yields that I has a left unity. Thus, a standard
argument shows that I has a unity (since any associative operation that has a left
neutral element and a right neutral element has a neutral element). In other words,
I is a unital algebra (although its unity is not that of A). Let 1I denote its unity.

Set g := 1 − 1I . Then, each u ∈ I satisfies

gu = (1 − 1I) u = u − 1Iu︸︷︷︸
=u

(since 1I is the
unity of I)

= u − u = 0

In other words, g ∈ LAnn I = J . Moreover, each v ∈ J satisfies 1Iv = 0 (since
1I︸︷︷︸
∈I

v︸︷︷︸
∈J

∈ IJ = 0) and thus

g︸︷︷︸
=1−1I

v = (1 − 1I) v = v − 1Iv︸︷︷︸
=0

= v.

Hence, g is a left unity of the algebra J (since g ∈ J ). A similar computation
shows that g is a right unity of J . Hence, g is a unity of J . We shall thus rename
g as 1J now.

Moreover, each u ∈ I ∩ J satisfies

u = u︸︷︷︸
∈I∩J⊆I

1J︸︷︷︸
∈J

(since u ∈ I ∩ J ⊆ J )

∈ IJ = 0

and thus u = 0. In other words, I ∩ J = 0. Furthermore, each a ∈ A satisfies

a = 1I a + (1 − 1I)︸ ︷︷ ︸
=g=1J

a = 1I a︸︷︷︸
∈I

(since I is an ideal
and 1I∈I)

+ 1J a︸︷︷︸
∈J

(since J is an ideal
and 1J ∈J )

∈ I + J .

This shows that I + J = A. Combining this with I ∩ J = 0, we conclude that
A = I ⊕ J (internal direct sum) as k-module.

Recalling further that IJ = J I = 0, we conclude that A ∼= I ×J as k-algebras
(via the isomorphism that sends (i, j) ∈ I × J to i + j ∈ A). Thus, the proof of
Lemma 2.5.12 is complete.

2.6. Proof of the main theorem

Proof of Theorem 2.4.1. (a) This is just Lemma 2.5.10.
(b) This is just Lemma 2.5.11.
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(c) Lemma 2.5.8 yields that the k-module A/Ik is free with basis (w)w∈Sn\Avn(k+1).
Hence, Lemma 2.5.2 (a) (applied to M = A and N = Ik and I = Sn and
J = Sn \ Avn (k + 1) and K = Avn (k + 1)) yields that the k-module Ik is free of
rank |Avn (k + 1)|. This proves Theorem 2.4.1 (c).

(d) This is proved similarly to part (c), but using Lemma 2.5.9 instead of Lemma
2.5.8.

(e) This is just Lemma 2.5.8.
(f) This is just Lemma 2.5.9.
(g) Proposition 2.2.2 (a) yields that both Ik and Jk are ideals of A. Theo-

rem 2.4.1 (a) yields Ik = LAnnJk. Theorem 2.4.1 (b) yields Jk = LAnn Ik.
Clearly, Sn \ Avn (k + 1) and Avn (k + 1) are two disjoint subsets of Sn such that
(Sn \ Avn (k + 1)) ∪ Avn (k + 1) = Sn. Theorem 2.4.1 (e) says that the k-module
A/Ik is free with basis (w)w∈Sn\Avn(k+1). Theorem 2.4.1 (f) says that the k-module
A/Jk is free with basis (w)w∈Avn(k+1). Hence, Lemma 2.5.12 (applied to A = Sn \
Avn (k + 1) and B = Avn (k + 1) and I = Ik and J = Jk) yields that A = Ik ⊕Jk
(internal direct sum) as k-module, and moreover, Ik and Jk are nonunital subal-
gebras of A and satisfy A ∼= Ik × Jk as k-algebras. This proves Theorem 2.4.1
(g).

Corollary 2.6.1. We have

I2 = span {∇B,A | A, B ⊆ [n]} . (25)

Moreover, the k-module I2 is free of rank |Avn (3)|, which is the Catalan number
Cn.

Proof. The equality (25) follows from the definition of I2 using Proposition 2.1.2.
The “Moreover” claim follows from Theorem 2.4.1 (c).

2.7. The Specht module connection

The following proposition discusses the representation-theoretical significance of
the ideals Ik and Jk. We use some basic representation theory, including the con-
cept of a Specht module (see, e.g., [EGHLSVY11, §5.12]).

Proposition 2.7.1. Assume that k is a field of characteristic 0. For each partition
λ of n, let Sλ denote the corresponding Specht module (a left A-module). For
each a ∈ A and each partition λ of n, we let aλ ∈ End

(
Sλ
)

denote the action of
a on the Specht module Sλ.

Consider the map

AW : A → ∏
λ⊢n

End
(

Sλ
)

,

a 7→ (aλ)λ⊢n .
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This map AW is known to be a k-algebra isomorphism. (This follows from
the Artin–Wedderburn decomposition of A, since the Sλ are the absolutely irre-
ducible A-modules; alternatively, this can be derived from [Ruther48, §17, Theo-
rem 12].)

For each subset U of {λ | λ ⊢ n}, we consider the subproduct ∏
λ∈U

End
(
Sλ
)

of ∏
λ⊢n

End
(
Sλ
)
. The preimage of this subproduct under AW is thus an ideal of

A, and will be denoted by AU.
Now, let k ∈ N. Then,

Ik = A{λ⊢n | ℓ(λ)≤k} and Jk = A{λ⊢n | ℓ(λ)>k}.

The proof of this proposition will rely on the following general fact:

Lemma 2.7.2. Let M be a k-module. Let I and J be two k-submodules of M
such that M = I ⊕ J (internal direct sum). Let U and V be two k-submodules
of M such that I ⊆ U and J ⊆ V and U ∩ V = 0. Then, I = U and J = V .

Proof. Let u ∈ U . We shall show that u ∈ I .
We have u ∈ U ⊆ M = I ⊕ J . Thus, u = i + j for some i ∈ I and j ∈ J .

Consider these i and j. From u = i + j, we obtain j = u︸︷︷︸
∈U

− i︸︷︷︸
∈I⊆U

⊆ U − U ⊆ U .

Combining this with j ∈ J ⊆ V , we obtain j ∈ U ∩ V = 0. In other words, j = 0.
Hence, u = i + j︸︷︷︸

=0

= i ∈ I .

Forget that we fixed u. We thus have shown that u ∈ I for each u ∈ U . In other
words, U ⊆ I . Combined with I ⊆ U , this yields I = U . Similarly, we can show
J = V . This proves Lemma 2.7.2.

Proof of Proposition 2.7.1. For each U ⊆ {λ | λ ⊢ n}, we have

AU = {a ∈ A | the λ-th entry of AW (a) is 0 for all λ /∈ U}
= {a ∈ A | aλ = 0 for all λ /∈ U}

=
{

a ∈ A | aSλ = 0 for all λ /∈ U
}

.

Hence, in order to prove that Ik ⊆ A{λ⊢n | ℓ(λ)≤k}, it suffices to show that aSλ = 0
for all a ∈ Ik and all partitions λ ⊢ n that don’t satisfy ℓ (λ) ≤ k. Let us prove this.

Let λ ⊢ n be a partition that doesn’t satisfy ℓ (λ) ≤ k. Thus, ℓ (λ) > k. We must
prove that aSλ = 0 for each a ∈ Ik.

Since Ik = span {∇B,A | A, B ∈ SC (n) with ℓ (A) = ℓ (B) ≤ k}, it suffices to
prove that ∇B,ASλ = 0 for any two compositions A, B ∈ SC (n) with ℓ (A) =
ℓ (B) ≤ k. So let us consider two compositions A, B ∈ SC (n) with ℓ (A) = ℓ (B) ≤
k. We must prove that ∇B,ASλ = 0.
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Recall that Sλ = Aaλbλ, where aλ is the Young symmetrizer of λ, and where bλ

is the Young antisymmetrizer of λ. Hence, Sλ = Aaλ︸︷︷︸
⊆A

bλ ⊆ Abλ. It thus suffices

to show that ∇B,AAbλ = 0 (since ∇B,ASλ = 0 will then follow). In other words, it
suffices to show that ∇B,Awbλ = 0 for any w ∈ Sn. But this is not hard: We have
wbλ = bTw, where T is a certain Young tableau of shape λ (filled with the entries
1, 2, . . . , n in some order, not necessarily standard). The first column of this tableau
T contains ℓ (λ) entries, and thus contains more than k entries (since ℓ (λ) > k).
Hence, at least two entries of this column belong to the same block of A (by the
pigeonhole principle, since A has only ℓ (A) ≤ k blocks). Pick two such entries. Let
τ ∈ Sn be the transposition that swaps these two entries. This transposition τ thus
preserves the blocks of A, and therefore preserves ∇B,A from the right (i.e., satisfies
∇B,Aτ = ∇B,A). On the other hand, this transposition τ swaps two entries in the
first column of T, and thus belongs to the column group of T. Hence, bT = (τ − 1) η
for some η ∈ A. Thus,

∇B,A wbλ︸︷︷︸
=bTw

= ∇B,A bT︸︷︷︸
=(τ−1)η

w = ∇B,A (τ − 1)︸ ︷︷ ︸
=∇B,Aτ−∇B,A

=0
(since ∇B,Aτ=∇B,A)

ηw = 0.

This completes our proof of ∇B,ASλ = 0.
Thus, as explained above, we have shown that

Ik ⊆ A{λ⊢n | ℓ(λ)≤k}. (26)

A similar argument shows that

Jk ⊆ A{λ⊢n | ℓ(λ)>k}. (27)

(Here, however, we need to argue that ∇−
UAaλ = 0 whenever U is a subset of [n]

having size k + 1 and whenever λ ⊢ n is a partition satisfying ℓ (λ) ≤ k. This again
relies on the pigeonhole principle, now to argue that two elements of U belong to
the same row of our tableau T.)

However, if X and Y are two disjoint subsets of {λ | λ ⊢ n}, then AX ∩AY = 0
(since the subproducts ∏

λ∈X
End

(
Sλ
)

and ∏
λ∈Y

End
(
Sλ
)

of ∏
λ⊢n

End
(
Sλ
)

have inter-

section 0). Thus,
A{λ⊢n | ℓ(λ)≤k} ∩A{λ⊢n | ℓ(λ)>k} = 0.

However, Theorem 2.4.1 (g) yields A = Ik ⊕ Jk (internal direct sum). Thus,
Lemma 2.7.2 (applied to M = A and I = Ik and J = Jk and U = A{λ⊢n | ℓ(λ)≤k}
and V = A{λ⊢n | ℓ(λ)>k}) yields

Ik = A{λ⊢n | ℓ(λ)≤k} and Jk = A{λ⊢n | ℓ(λ)>k}.

This proves Proposition 2.7.1.
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