The Theory of Witt Vectors

Joseph Rabinoff
version of 7 May 2009 (posted on arXiv as arXiv:1409.7445v1)
Errata and addenda by Darij Grinberg

I will refer to the results appearing in the note "The Theory of Witt Vectors" by the numbers under which they appear in this note (specifically, in its version of May 7th, 2009^{11}.

10. Errata

- Page 2, proof of Lemma 1.4: Replace " $y p^{p^{i}(p-n) "}$ by " $y^{p^{i-1}(p-n) "}$ (in the displayed equation, just after the binomial coefficient).
- Page 4: "Letting $X_{1}, Y_{1}, X_{2}, Y_{2}, \ldots$ be indeterminates" should be "Letting $X_{0}, X_{1}, X_{1}, Y_{1}, X_{2}, Y_{2}, \ldots$ be indeterminates".
- Page 4, proof of Theorem 1.5: Throughout the proof, the indexing of the S_{i} is wrong: Every " $S_{p_{i}}$ " should be replaced by " S_{i} "; also, " S_{1} ", " S_{p} " and " $S_{p^{n}}$ " should be " S_{0} ", " S_{1} " and " S_{n} ", respectively.
That said, of course, the notation you are using from $\S 2$ on is different. Maybe it is worth pointing this out, that the S_{k} introduced in $\S 1$ are the $S_{p^{k}}$ (and not the S_{k}) in $\S 2$ and later.
- Page 4, proof of Theorem 1.5: In the last displayed equation of the proof, replace " $\tau\left(x_{1}\right)+p \tau\left(x_{1}\right)$ " by " $\tau\left(x_{0}\right)+p \tau\left(x_{1}\right)$ ". Similarly, replace " $\tau\left(y_{1}\right)+$ $p \tau\left(y_{1}\right)$ " by " $\tau\left(y_{0}\right)+p \tau\left(y_{1}\right)$ ", and replace " $\tau\left(\widetilde{s}_{1}\right)+p \tau\left(\widetilde{s}_{1}\right)$ " by " $\tau\left(\widetilde{s}_{0}\right)+$ $p \tau\left(\widetilde{s}_{1}\right)^{\prime \prime}$.
- Page 7: In the displayed equation " $w_{n}\left(\left(S_{n}\right)_{n \in P}\right)=w_{n}\left(\left(X_{n}\right)_{n \in P}\right)+w_{n}\left(\left(Y_{n}\right)_{n \in P}\right)$ ", you are using the letter " n " in two different meanings (as an index and as a variable). I suggest replacing it by " $w_{m}\left(\left(S_{n}\right)_{n \in P}\right)=w_{m}\left(\left(X_{n}\right)_{n \in P}\right)+$ $w_{m}\left(\left(Y_{n}\right)_{n \in P}\right)^{\prime \prime}$.
- Page 7, Example 2.12: Replace " $\sum_{i=0}^{n} p^{i} X_{i}^{p^{n-i}}{ }^{\prime}$ by " $\sum_{i=0}^{n} p^{i} X_{p^{i}}^{p^{n-i}}{ }^{\prime}$.
- Page 8, Theorem 2.13: "reprsentatives" \rightarrow "representatives".
- Page 8, proof of Theorem 2.13: Replace " $\widetilde{x}_{p^{i}}$ " and " $\widetilde{y}_{p^{i}}$ " by " \widetilde{x}_{i} " and " \widetilde{y}_{i} ", respectively (in the third displayed equation of this proof).

[^0]- Page 10, proof of Lemma 3.2: Replace " $y_{n} \in \mathbf{Z}\left[X_{1}, \ldots, X_{n}\right]$ " by " $y_{n} \in$ $\mathbf{Z}\left[x_{1}, \ldots, x_{n}\right]^{\prime \prime}$.
- Page 10, proof of Lemma 3.2: Replace "for some choice of $x_{n} \in A$ " by "for some choice of $x_{n} \in B^{\prime \prime}$.
- Page 12, proof of Theorem 2.6: When you say "The unicity of the ring structure on $W(A)^{\prime \prime}$, it might be helpful to clarify that you are talking about the unicity of the whole functor W, not of a single ring structure $W(A)$ considered in isolation. (I don't think the latter would be unique, without the functoriality requirement.)
- Page 12, proof of Theorem 2.6: I think your proof is missing a part: the proof of the fact that every element of $W(A)$ has an additive inverse (one of the ring axioms). To prove this, I would again argue by functoriality (first constructing the additive inverse of the Witt vector $X=\left(X_{1}, X_{2}, X_{3}, \ldots\right)$ in $W\left(\mathbf{Q}\left[X_{1}, X_{2}, X_{3}, \ldots\right]\right)$, then showing (using Lemma3.2) that its Witt coordinates belong to $\mathbf{Z}\left[X_{1}, X_{2}, X_{3}, \ldots\right]$, then projecting it onto $W(A)$ for any A).
- Page 12, §3: I think it is worth explicitly stating (as a proposition?) the fact that the bijection $x \mapsto f_{x}: W(A) \rightarrow \Lambda(A)$ introduced in Corollary 3.3 is a ring homomorphism. This is easy to prove ${ }^{2}$, and used a few times in the rest of your paper.
- Page 13, Proposition 4.5: Replace " $s_{n}=\left\{\begin{array}{ll}x_{n} & \text { if } x_{n} \neq 0 \\ y_{n} & \text { if } y_{n} \neq 0\end{array}\right.$ " by " $s_{n}=\left\{\begin{array}{ll}x_{n}, & \text { if } y_{n}=0 ; \\ y_{n}, & \text { if } x_{n}=0\end{array}\right.$. (Otherwise, you are making no claim about the case when both x_{n} and y_{n} are 0 .)
- Page 13, proof of Proposition 4.5: "the equality of polynomial equations" \rightarrow "the equality of polynomials" maybe?
- Page 14, §5: "Verchiebung" \rightarrow "Verschiebung".
- Page 15, Lemma 5.2: "two natural transformations" \rightarrow "two natural transformations between group-valued functors". (This is to clarify that the natural transformations have to preserve the groups' addition.)
- Page 15, proof of Lemma 5.2: "Let $A_{n}=A\left[X_{1}, X_{2}, \ldots, X_{n}\right]$ " should be "Let $A_{n}=K\left[X_{1}, X_{2}, \ldots, X_{n}\right]^{\prime \prime}$.

[^1]- Page 15, proof of Lemma 5.2: The notation $A_{n}\left(\right.$ for $\left.K\left[X_{1}, X_{2}, \ldots, X_{n}\right]\right)$ conflicts with the notation A_{0} (for $K[x]$). I would suggest changing one of the two notations.
- Page 15, proof of Lemma 5.2: "commutivity" \rightarrow "commutativity".
- Page 19, proof of Proposition 5.10: Remove the sentence "By Proposition 5.9, we may assume that n and m are prime" (nothing wrong about it, but it is unnecessary). Replace "Since m and n are distinct primes" by "Since m and n are relatively prime".
- Page 19, proof of Proposition 5.12: The letter " N " should be replaced by a (operatorname, or mathrm-shaped) " N " several times (whenever it stands for the norm map).
- Page 19, proof of Proposition 5.12: Replace "Now let $n>1$ " by "Now let $n \geq 1^{\prime \prime}$.
- Page 20, Theorem 5.14: "reprsentatives" \rightarrow "representatives".
- Page 21, proof of Theorem 5.14: Replace all three summation signs by " $\sum_{n=0}^{\infty}$ ".
- Page 22, proof of Theorem 6.1: Replace " $\sigma_{m}(y)$ " by " $\sigma_{m}(x)$ " (after "so by induction").
- Page 22, proof of Theorem 6.1: Replace " $\sigma_{n}(y)=\sigma_{p_{i}}(y) \circ \sigma_{m}(y)$ " by " $\sigma_{n}(x)=\sigma_{p_{i}}\left(\sigma_{m}(x)\right)^{\prime}$.
- Page 22, proof of Theorem 6.1: Replace " $\sigma_{n}(y) \equiv$ " by " $\sigma_{n}(x) \equiv$ " (twice).
- Page 22, proof of Theorem 6.1: Replace " $\sigma_{n}(y)-$ " by " $\sigma_{n}(x)-$ ".
- Page 24, §7: Replace "since is difficult" by "since it is difficult".
- Page 25, proof of Lemma 7.3: In the first displayed equation of this proof, add a " x " addend on the left hand side (the sum should start with x, not with $\frac{x^{p}}{p}$.
- Page 25, proof of Lemma 7.3: Replace " $x p^{p^{n}}$ coefficient" by " $x{ }^{p^{n}}$-coefficient".
- Page 25, proof of Lemma 7.3: After " $p \nmid s$ ", add "and $s>1$ ".
- Page 26, proof of Lemma 7.4: Replace "a p th power" by "a power of p " (twice).
- Page 26, Lemma 7.5: Replace " $\prod_{r \geq 1}$ " by " $\prod_{r \geq 0}$ ".
- Page 26, Lemma 7.5: I would suggest clarifying that the product $\prod_{r \geq 0} \operatorname{hexp}\left(x_{p^{r} t} t^{r}\right)$ is taken in $A[[t]]$, not in $\Lambda(A)$.
- Page 26, proof of Lemma 7.5: Replace every appearance of " $\prod_{r \geq 1}$ ", " $\prod_{n \geq 1}$ " or " $\prod_{m \geq 1}$ " by " $\prod_{r \geq 0}$ ", " $\prod_{n \geq 0}{ }^{\prime}$ or " $\prod_{m \geq 0}$ ", respectively.
- Page 27, Theorem 7.6: Replace " $\prod_{r \geq 1}$ " by " $\prod_{r \geq 0}$ ".
- Page 27, Theorem 7.6: I would suggest clarifying that the product $\prod_{r \geq 0} \operatorname{hexp}\left(x_{p^{r}} t^{p^{r}}\right)$ is taken in $A[[t]]$, not in $\Lambda(A)$.
- Page 27: In "every element of $\widehat{\Lambda}(\mathcal{N}):=1+\mathcal{N}[t]$ can be written uniquely as a finite product $\Pi\left(1-a_{n} t^{n}\right)$ ", I would replace the product sign " Π " by " $\prod_{n=0}^{\infty}$ " (as the reader would otherwise expect $\prod_{n=1}^{\infty}$ instead). (Alternatively, you can replace it by " $\prod_{n=1}^{\infty}$ ", but then you'd need to replace " $\widehat{\Lambda}(\mathcal{N}):=$ $1+\mathcal{N}[t]$ " by " $\widehat{\Lambda}(\mathcal{N}):=1+t \mathcal{N}[t]$ ".)

11. Addenda

Let me now add some further properties of Witt vectors.
I shall use the notations of $\$ 2-\$ 7$ of your notes. In particular, the Witt polynomials w_{n} will be defined as in Definition 2.4 (not as in $\S 1$): namely, by

$$
w_{n}=\sum_{d \mid n} d X_{d}^{n / d} \in \mathbf{Z}\left[\left\{X_{d}: d \mid n\right\}\right] .
$$

Thus, if p is a prime and if n is a nonnegative integer, then the definition of $w_{p^{n}}$ yields

$$
\begin{equation*}
w_{p^{n}}=\sum_{d \mid p^{n}} d X_{d}^{p^{n} / d}=\sum_{i=0}^{n} p^{i} X_{p^{i}}^{p^{n-i}} \tag{1}
\end{equation*}
$$

(since the positive divisors of p^{n} are $p^{0}, p^{1}, \ldots, p^{n}$).
Sam Raskin has pointed out to me that Theorem 6.6 can be generalized: namely, the condition that L be perfect can be dropped from the definition of a p-ring. In other words, the following holds:

Theorem 11.1. Let p be a prime. Let R be a ring equipped with a decreasing sequence $R=\mathfrak{a}_{0} \supset \mathfrak{a}_{1} \supset \mathfrak{a}_{2} \supset \mathfrak{a}_{3} \supset \cdots$ of ideals such that $\left(\mathfrak{a}_{n} \cdot \mathfrak{a}_{m} \subset \mathfrak{a}_{n+m}\right.$ for all $n \geq 0$ and $\left.m \geq 0\right)$. Equip R with the topology defined by this sequence of ideals. Assume that R is Hausdorff and complete for this
topology. Assume that the residue ring $L=R / \mathfrak{a}_{1}$ has $p \cdot 1_{L}=0$. Let π denote the canonical projection $R \rightarrow R / \mathfrak{a}_{1}=L$.

Let K be a perfect ring of characteristic p. Let $f: K \rightarrow L$ be a ring homomorphism.

There exists a unique continuous ring homomorphism $\theta: W_{p}(K) \rightarrow R$ making the square

commute.
Theorem 11.1 generalizes your Theorem 6.6.
The proof of Theorem 11.1 given below is (at least on a superficial level) quite different from your proof of Theorem 6.6; it is inspired by the proof of [BriCon09, Lemma 4.4.1] (thanks again to Sam Raskin for the reference). ${ }^{3}$

Before I prove Theorem 11.1, let me derive various facts that will be used in its proof and (some of which) are of independent interest:

Proposition 11.2. Let R be a ring equipped with a decreasing sequence $R=\mathfrak{a}_{0} \supset \mathfrak{a}_{1} \supset \mathfrak{a}_{2} \supset \mathfrak{a}_{3} \supset \cdots$ of ideals such that $\left(\mathfrak{a}_{n} \cdot \mathfrak{a}_{m} \subset \mathfrak{a}_{n+m}\right.$ for all $n \geq 0$ and $\left.m \geq 0\right)$. Equip R with the topology defined by this sequence of ideals. Assume that R is Hausdorff for this topology.
(a) We have $\bigcap_{n \geq 0} \mathfrak{a}_{n}=0$.
(b) If u and v are two elements of R such that every $i \geq 0$ satisfies $u \equiv$ $v \bmod \mathfrak{a}_{i}$, then $u=v$.
(c) For every $n \geq 0$, let π_{n} be the canonical projection $R \rightarrow R / \mathfrak{a}_{n}$.

Let A be a set, and let $\varphi: A \rightarrow R$ and $\psi: A \rightarrow R$ be two maps. Assume that $\pi_{n} \circ \varphi=\pi_{n} \circ \psi$ for every $n \geq 0$. Then, $\varphi=\psi$.

Proof of Proposition 11.2 Recall the definition of the topology on R: A subset S of R is said to be open if and only if for every $s \in S$, there exists an $n \geq 0$ satisfying $s+\mathfrak{a}_{n} \subset S$.
(a) Let $u \in \bigcap_{n \geq 0} \mathfrak{a}_{n}$. We shall show that $u=0$.

Let P be an open subset of R containing u. Let Q be an open subset of R containing 0 . (We shall not use the fact that Q is open.)

The subset P of R is open. In other words, for every $s \in P$, there exists an $n \geq 0$ satisfying $s+\mathfrak{a}_{n} \subset P$ (by the definition of the topology on R). Applying this to $s=u$, we conclude that there exists an $n \geq 0$ satisfying $u+\mathfrak{a}_{n} \subset P$. Let p be this n. Thus, $p \geq 0$ satisfies $u+\mathfrak{a}_{p} \subset P$.

[^2]On the other hand, $0 \in Q$ (since Q contains 0).
But $u \in \bigcap_{n \geq 0} \mathfrak{a}_{n} \subset \mathfrak{a}_{p}$ and thus $u \equiv 0 \bmod \mathfrak{a}_{p}$. Hence, $0 \equiv u \bmod \mathfrak{a}_{p}$. In other words, $0 \in u+\mathfrak{a}_{p} \subset P$. Combining this with $0 \in Q$, we obtain $0 \in P \cap Q$. Hence, the set $P \cap Q$ contains at least one element (namely, 0). Thus, $P \cap Q \neq \varnothing$.

Now, forget that we fixed P and Q. We thus have shown that if P is an open subset of R containing u, and if Q is an open subset of R containing 0 , then $P \cap Q \neq \varnothing$. Since the topological space R is Hausdorff, this shows that $u=0$.

Now, forget that we fixed u. We thus have proven that every $u \in \bigcap_{n>0} \mathfrak{a}_{n}$ satisfies $u=0$. In other words, $\bigcap_{n \geq 0} \mathfrak{a}_{n}=0$. This proves Proposition 11.2 (a).
(b) Let u and v be two elements of R such that every $i \geq 0$ satisfies $u \equiv$ v mod \mathfrak{a}_{i}. Hence, every $i \geq 0$ satisfies $u-v \in \mathfrak{a}_{i}\left(\right.$ since $\left.u \equiv v \bmod \mathfrak{a}_{i}\right)$. In other words, $u-v \in \bigcap_{i \geq 0} \mathfrak{a}_{i}=\bigcap_{n \geq 0} \mathfrak{a}_{n}=0$ (by Proposition 11.2 (a)). In other words, $u-v=0$, so that $u=v$. This proves Proposition 11.2 (b).
(c) Let $a \in A$. Let $n \geq 0$. Then, $\pi_{n}(\varphi(a))=\underbrace{\left(\pi_{n} \circ \varphi\right)}_{=\pi_{n} \circ \psi}(a)=\left(\pi_{n} \circ \psi\right)(a)=$ $\pi_{n}(\psi(a))$. Since π_{n} is the canonical projection $R \rightarrow R / \mathfrak{a}_{n}$, this rewrites as $\varphi(a) \equiv \psi(a) \bmod \mathfrak{a}_{n}$. In other words, $\varphi(a)-\psi(a) \in \mathfrak{a}_{n}$.

Now, forget that we fixed n. We thus have proven that $\varphi(a)-\psi(a) \in \mathfrak{a}_{n}$ for each $n \geq 0$. Hence, $\varphi(a)-\psi(a) \in \bigcap_{n \geq 0} \mathfrak{a}_{n}=0$ (by Proposition 11.2 (a)), so that $\varphi(a)-\psi(a)=0$ and thus $\varphi(a)=\psi(a)$.

Now, forget that we fixed a. We have now shown that $\varphi(a)=\psi(a)$ for each $a \in A$. In other words, $\varphi=\psi$. This proves Proposition 11.2 (c).

Proposition 11.3. Let R be a ring equipped with a decreasing sequence $R=\mathfrak{a}_{0} \supset \mathfrak{a}_{1} \supset \mathfrak{a}_{2} \supset \mathfrak{a}_{3} \supset \cdots$ of ideals such that $\left(\mathfrak{a}_{n} \cdot \mathfrak{a}_{m} \subset \mathfrak{a}_{n+m}\right.$ for all $n \geq 0$ and $\left.m \geq 0\right)$. Equip R with the topology defined by this sequence of ideals. Assume that R is Hausdorff for this topology. For every $n \geq 0$, let π_{n} be the canonical projection $R \rightarrow R / \mathfrak{a}_{n}$.

Let A be a ring. Let $\gamma: A \rightarrow R$ be a map. Assume that the map $\pi_{n} \circ \gamma$: $A \rightarrow R / \mathfrak{a}_{n}$ is a ring homomorphism for each $n \geq 0$. Then, the map γ is a ring homomorphism.

Proof of Proposition 11.3 We need to show the following four claims:
Claim 1: We have $\gamma\left(0_{A}\right)=0_{R}$.
Claim 2: We have $\gamma(a)+\gamma(b)=\gamma(a+b)$ for any $a \in A$ and $b \in A$.
Claim 3: We have $\gamma\left(1_{A}\right)=1_{R}$.
Claim 4: We have $\gamma(a) \gamma(b)=\gamma(a b)$ for any $a \in A$ and $b \in A$.
We shall only prove Claim 4; all the other three claims can be proven in the same vein.

Proof of Claim 4: Let $a \in A$ and $b \in A$. Let n be a nonnegative integer. Then, the map $\pi_{n} \circ \gamma: A \rightarrow R / \mathfrak{a}_{n}$ is a ring homomorphism (by our assumption). Thus, $\left(\pi_{n} \circ \gamma\right)(a) \cdot\left(\pi_{n} \circ \gamma\right)(b)=\left(\pi_{n} \circ \gamma\right)(a b)$.

Now, recall that π_{n} is the canonical projection $R \rightarrow R / \mathfrak{a}_{n}$, and thus a ring homomorphism. Hence,

$$
\begin{aligned}
\pi_{n}(\gamma(a) \gamma(b)) & =\underbrace{\pi_{n}(\gamma(a))}_{=\left(\pi_{n} \circ \gamma\right)(a)} \cdot \underbrace{\pi_{n}(\gamma(b))}_{=\left(\pi_{n} \circ \gamma\right)(b)}=\left(\pi_{n} \circ \gamma\right)(a) \cdot\left(\pi_{n} \circ \gamma\right)(b) \\
& =\left(\pi_{n} \circ \gamma\right)(a b)=\pi_{n}(\gamma(a b)) .
\end{aligned}
$$

In other words, $\gamma(a) \gamma(b) \equiv \gamma(a b) \bmod \mathfrak{a}_{n}$ (since π_{n} is the canonical projection $R \rightarrow R / \mathfrak{a}_{n}$). In other words, $\gamma(a) \gamma(b)-\gamma(a b) \in \mathfrak{a}_{n}$.

Now, forget that we fixed n. We thus have shown that $\gamma(a) \gamma(b)-\gamma(a b) \in \mathfrak{a}_{n}$ for every $n \geq 0$. Thus, $\gamma(a) \gamma(b)-\gamma(a b) \in \bigcap_{n>0} \mathfrak{a}_{n}=0$ (by Proposition 11.2 (a)). In other words, $\gamma(a) \gamma(b)-\gamma(a b)=0$, so that $\gamma(a) \gamma(b)=\gamma(a b)$. This proves Claim 4.

As we have said, the Claims 1, 2 and 3 can be shown by analogous arguments. Thus, all four claims are proven, and the proof of Proposition 11.3 is complete.

Proposition 11.4. Let R be a ring equipped with a decreasing sequence $R=\mathfrak{a}_{0} \supset \mathfrak{a}_{1} \supset \mathfrak{a}_{2} \supset \mathfrak{a}_{3} \supset \cdots$ of ideals such that $\left(\mathfrak{a}_{n} \cdot \mathfrak{a}_{m} \subset \mathfrak{a}_{n+m}\right.$ for all $n \geq 0$ and $\left.m \geq 0\right)$. Equip R with the topology defined by this sequence of ideals. For every $n \geq 0$, let π_{n} be the canonical projection $R \rightarrow R / \mathfrak{a}_{n}$.

Let A be a topological space. Let $\varphi: A \rightarrow R$ be a map. Assume that for each $n \geq 0$, the map $\pi_{n} \circ \varphi: A \rightarrow R / \mathfrak{a}_{n}$ is continuous (where R / \mathfrak{a}_{n} is equipped with the discrete topology). Then, the map $\varphi: A \rightarrow R$ is continuous.

Proof of Proposition 11.4 Recall the definition of the topology on R: A subset S of R is said to be open if and only if for every $s \in S$, there exists an $n \geq 0$ satisfying $s+\mathfrak{a}_{n} \subset S$.

Let U be an open subset of R. We shall show that the subset $\varphi^{-1}(U)$ of A is open.

Indeed, let $t \in \varphi^{-1}(U)$ be arbitrary. Thus, $\varphi(t) \in U$.
The subset U of R is open. In other words, for every $s \in U$, there exists an $n \geq 0$ satisfying $s+\mathfrak{a}_{n} \subset U$ (by the definition of the topology on R). Applying this to $s=\varphi(t)$, we conclude that there exists an $n \geq 0$ satisfying $\varphi(t)+\mathfrak{a}_{n} \subset U$. Consider this n.

Consider the set R / \mathfrak{a}_{n} as a topological space, equipped with the discrete topology. Then, each subset of R / \mathfrak{a}_{n} is open. In particular, the subset $\left\{\pi_{n}(\varphi(t))\right\}$ of R / \mathfrak{a}_{n} is open.

By our assumption, the map $\pi_{n} \circ \varphi: A \rightarrow R / \mathfrak{a}_{n}$ is continuous. Thus, for each open subset Q of R / \mathfrak{a}_{n}, the subset $\left(\pi_{n} \circ \varphi\right)^{-1}(Q)$ of A is open. Applying this to $Q=\left\{\pi_{n}(\varphi(t))\right\}$, we conclude that the subset $\left(\pi_{n} \circ \varphi\right)^{-1}\left(\left\{\pi_{n}(\varphi(t))\right\}\right)$ of A is open (since the subset $\left\{\pi_{n}(\varphi(t))\right\}$ of R / \mathfrak{a}_{n} is open). Denote this subset
$\left(\pi_{n} \circ \varphi\right)^{-1}\left(\left\{\pi_{n}(\varphi(t))\right\}\right)$ by G. Thus, $G=\left(\pi_{n} \circ \varphi\right)^{-1}\left(\left\{\pi_{n}(\varphi(t))\right\}\right)$ is an open subset of A.

Furthermore, $G \subset \varphi^{-1}(U) \quad{ }^{4}$ and $t \in G{ }^{5}$. Hence, G is an open neighborhood of t (since G is open and satisfies $t \in G$) and is a subset of $\varphi^{-1}(U)$ (since $G \subset \varphi^{-1}(U)$). We thus have shown that there exists some open neighborhood of t that is a subset of $\varphi^{-1}(U)$ (namely, G).

Now, forget that we fixed t. We have now proven that for each $t \in \varphi^{-1}(U)$, there exists some open neighborhood of t that is a subset of $\varphi^{-1}(U)$. This means that the subset $\varphi^{-1}(U)$ of A is open (by one of the criteria for openness).

Now, forget that we fixed U. We thus have shown that if U is an open subset of R, then the subset $\varphi^{-1}(U)$ of A is open. In other words, the map $\varphi: A \rightarrow R$ is continuous. This proves Proposition 11.4 .

Proposition 11.5. Let p be a positive integer. Let R be a ring equipped with a decreasing sequence $R=\mathfrak{a}_{0} \supset \mathfrak{a}_{1} \supset \mathfrak{a}_{2} \supset \mathfrak{a}_{3} \supset \cdots$ of ideals such that

$$
\begin{equation*}
\left(\mathfrak{a}_{n} \cdot \mathfrak{a}_{m} \subset \mathfrak{a}_{n+m} \text { for all } n \geq 0 \text { and } m \geq 0\right) \tag{3}
\end{equation*}
$$

Assume that the residue ring $L=R / \mathfrak{a}_{1}$ has $p \cdot 1_{L}=0$.
(a) We have $\mathfrak{a}_{1}^{n} \subset \mathfrak{a}_{n}$ for every $n \geq 0$.
(b) We have $p \cdot 1_{R} \in \mathfrak{a}_{1}$ and $p R \subset \mathfrak{a}_{1}$.
(c) We have $p^{n} \cdot 1_{R} \in \mathfrak{a}_{n}$ for every $n \geq 0$.
(d) If x and y are two elements of R satisfying $x \equiv y \bmod \mathfrak{a}_{1}$, then

$$
x^{p^{i}} \equiv y^{p^{i}} \bmod \mathfrak{a}_{i+1} \quad \text { for every } i \geq 0
$$

(e) Every $u \in \mathfrak{a}_{1}$, every $n \geq 0$ and every $i \in\{0,1, \ldots, n\}$ satisfy $p^{i} u^{p^{n-i}} \in \mathfrak{a}_{n}$.
(f) If a and b are two elements of R and i is a positive integer satisfying $a \equiv b \bmod \mathfrak{a}_{i}$, then

$$
a^{p} \equiv b^{p} \bmod \mathfrak{a}_{i+1}
$$

(g) We have $p \mathfrak{a}_{n-1} \subset \mathfrak{a}_{n}$ for every positive integer n.

Proof of Proposition 11.5 (a) Using (3), we can easily prove Proposition 11.5 (a) (by induction on n). (The induction base follows from $\mathfrak{a}_{1}^{0} \subset R=\mathfrak{a}_{0}$.)
(b) We have $p \cdot 1_{R} \in \mathfrak{a}_{1}$ (since the projection of $p \cdot 1_{R}$ onto $R / \mathfrak{a}_{1}=L$ is $p \cdot 1_{L}=$ 0) and thus $p R=\underbrace{\left(p \cdot 1_{R}\right)}_{\in \mathfrak{a}_{1}} R \subset \mathfrak{a}_{1} R \subset \mathfrak{a}_{1}$ (since \mathfrak{a}_{1} is an ideal of R). This proves

[^3]Proposition 11.5 (b).
(c) We have $p^{n} \cdot 1_{R}=(\underbrace{p \cdot 1_{R}}_{\in \mathfrak{a}_{1}})^{n} \in \mathfrak{a}_{1}^{n} \subset \mathfrak{a}_{n}$ (by Proposition 11.5 (a)) for every $n \geq 0$. This proves Proposition 11.5 (c).
(g) Let n be a positive integer. Proposition 11.5 (b) yields $p R \subset \mathfrak{a}_{1}$. Now, $p \underbrace{\mathfrak{a}_{n-1}}_{\subset R \mathfrak{a}_{n-1}} \subset \underbrace{p R}_{\subset \mathfrak{a}_{1}} \mathfrak{a}_{n-1} \subset \mathfrak{a}_{1} \cdot \mathfrak{a}_{n-1} \subset \mathfrak{a}_{n}$ (by (3), applied to 1 and $n-1$ instead of n and m). This proves Proposition 11.5 (g).
(f) Let a and b be two elements of R, and let i be a positive integer satisfying $a \equiv b \bmod \mathfrak{a}_{i}$.

Since i is a positive integer, we have $i \geq 1$. Thus, $\mathfrak{a}_{i} \subset \mathfrak{a}_{1}$ (since $\mathfrak{a}_{0} \supset \mathfrak{a}_{1} \supset \mathfrak{a}_{2} \supset$ $\left.\mathfrak{a}_{3} \supset \cdots\right)$.

Proposition 11.5 (b) yields $p \cdot 1_{R} \in \mathfrak{a}_{1}$ and $p R \subset \mathfrak{a}_{1}$.
It is well-known that every $u \in R$ and $v \in R$ and $g \geq 0$ satisfy

$$
\begin{equation*}
u^{g}-v^{g}=(u-v)\left(\sum_{k=0}^{g-1} u^{k} v^{g-1-k}\right) \tag{4}
\end{equation*}
$$

But $a \equiv b \bmod \mathfrak{a}_{i}$. Hence, $a-b \in \mathfrak{a}_{i} \subset \mathfrak{a}_{1}$, so that $a \equiv b \bmod \mathfrak{a}_{1}$. Also,

$$
\begin{aligned}
\sum_{k=0}^{p-1} \underbrace{a^{k}}_{\begin{array}{c}
\equiv b^{k} \bmod \mathfrak{a}_{1} \\
\left(\text { since } a \equiv b \bmod \mathfrak{a}_{1}\right)
\end{array}} b^{p-1-k} & \equiv \sum_{k=0}^{p-1} \underbrace{b^{k} b^{p-1-k}}_{=b^{p-1}}=\sum_{k=0}^{p-1} b^{p-1}=p b^{p-1} \\
& =\underbrace{p \cdot 1_{R}}_{\substack{\equiv 0 \bmod _{1} \\
\left(\text { since } p \cdot 1_{R} \in \mathfrak{a}_{1}\right)}} b^{p-1} \equiv 0 \bmod \mathfrak{a}_{1}
\end{aligned}
$$

thus, $\sum_{k=0}^{p-1} a^{k} b^{p-1-k} \in \mathfrak{a}_{1}$. Now, (4) (applied to $a=u, b=v$ and $g=p$) yields

$$
a^{p}-b^{p}=\underbrace{(a-b)}_{\in \mathfrak{a}_{i}} \underbrace{\left(\sum_{k=0}^{p-1} a^{k} b^{p-1-k}\right)}_{\in \mathfrak{a}_{1}} \in \mathfrak{a}_{i} \mathfrak{a}_{1} \subset \mathfrak{a}_{i+1}
$$

(by (3), applied to $n=i$ and $m=1$). In other words, $a^{p} \equiv b^{p} \bmod \mathfrak{a}_{i+1}$. This proves Proposition 11.5 (f).
(d) Proposition 11.5 (d) can be proven by induction over i, similarly to the proof of Lemma 1.4. However, let me sketch a slightly different proof, for the sake of diversity. We proceed by induction over i. The case of $i=0$ is obvious. The induction step proceeds as follows: Let $i \geq 1$, and assume that $x^{p^{i-1}} \equiv$ $y^{p^{i-1}} \bmod \mathfrak{a}_{i}$. We must show that $x^{p^{i}} \equiv y^{p^{i}} \bmod \mathfrak{a}_{i+1}$.

Set $a=x p^{p^{i-1}}$ and $b=y y^{p^{i-1}}$. Then, $a=x p^{i-1} \equiv y^{p^{i-1}}=b \bmod \mathfrak{a}_{i}$. Hence, Proposition $11.5(\mathbf{f})$ yields $a^{p} \equiv b^{p} \bmod \mathfrak{a}_{i+1}$. Since $a=x^{p^{i-1}}$, we have $a^{p}=$ $\left(x^{p^{i-1}}\right)^{p}=x^{p^{i}}$. Similarly, $b^{p}=y^{p^{i}}$. Thus, $x^{p^{i}}=a^{p} \equiv b^{p}=y^{p^{i}} \bmod \mathfrak{a}_{i+1}$. This completes the induction step; thus, Proposition 11.5 (d) is proven.
(e) Let $u \in \mathfrak{a}_{1}, n \geq 0$ and $i \in\{0,1, \ldots, n\}$. We have $u \in \mathfrak{a}_{1}$, so that $u \equiv$ 0 mod \mathfrak{a}_{1}. Thus, Proposition 11.5 (d) (applied to $u, 0$ and $n-i$ instead of x, y and i) yields $u^{p^{n-i}} \equiv 0^{p^{n-i}}=0 \bmod \mathfrak{a}_{(n-i)+1}$ (since p^{n-i} is a positive integer). Thus, $u^{p^{n-i}} \in \mathfrak{a}_{(n-i)+1} \subset \mathfrak{a}_{n-i}$. Now,

$$
\begin{aligned}
& p^{i} \underbrace{u^{p^{n-i}}}_{\in \mathfrak{a}_{n-i} \subset R \mathfrak{R a}_{n-i}} \in \underbrace{p^{i} R}_{=p^{i} \cdot 1_{R} R} \underbrace{}_{\begin{array}{c}
\in \mathfrak{a}_{i} \\
\mathfrak{a}_{n-i}
\end{array}=\underbrace{p^{i} \cdot 1_{R}}_{\begin{array}{c}
\text { (by Proposion } \\
\text { applied to } i \text { instead of } n \text {) }
\end{array}}} \quad R \mathfrak{a}_{n-i} \\
& \subset \mathfrak{a}_{i} \underbrace{R \mathfrak{a}_{n-i}}_{\begin{array}{c}
\mathfrak{a}_{n-i} \\
\text { (since } \mathfrak{a}_{n-i} \text { is an } \\
\text { ideal of } R)
\end{array}} \subset \mathfrak{a}_{i} \mathfrak{a}_{n-i} \subset \mathfrak{a}_{n}
\end{aligned}
$$

(by (3), applied to i and $n-i$ instead of n and m). This proves Proposition 11.5 (e).

The following proposition is just the fundamental theorem on homomorphisms (in a slight disguise):

Proposition 11.6. Let A, B and C be three rings. Let $\varphi: A \rightarrow B$ be a surjective ring homomorphism. Let $\psi: A \rightarrow C$ be a ring homomorphism such that $\psi(\operatorname{Ker} \varphi)=0$. Then, there exists a unique ring homomorphism $\zeta: B \rightarrow C$ such that $\zeta \circ \varphi=\psi$.

Proof of Proposition 11.6 The surjective ring homomorphism $\varphi: A \rightarrow B$ induces a canonical ring isomorphism $B \cong A / \operatorname{Ker} \varphi$. Thus, the ring B and the ring homomorphism $\varphi: A \rightarrow B$ satisfy the universal property of the quotient $A / \operatorname{Ker} \varphi$. But this is precisely the statement of Proposition 11.6 .

Proposition 11.7. Let p be a prime. Let R be a ring equipped with a decreasing sequence $R=\mathfrak{a}_{0} \supset \mathfrak{a}_{1} \supset \mathfrak{a}_{2} \supset \mathfrak{a}_{3} \supset \cdots$ of ideals such that $\left(\mathfrak{a}_{n} \cdot \mathfrak{a}_{m} \subset \mathfrak{a}_{n+m}\right.$ for all $n \geq 0$ and $\left.m \geq 0\right)$. Assume that the residue ring $L=$ R / \mathfrak{a}_{1} has $p \cdot 1_{L}=0$. Let π denote the canonical projection $R \rightarrow R / \mathfrak{a}_{1}=L$. For every $n \geq 0$, let π_{n} be the canonical projection $R \rightarrow R / \mathfrak{a}_{n}$.

Let $n \geq 0$. There exists a unique ring homomorphism $\widetilde{w}_{p^{n}}: W_{p}(L) \rightarrow R / \mathfrak{a}_{n}$ such that the diagram

I commutes.

Proof of Proposition 11.7 The map $\pi: R \rightarrow L$ is surjective (being a projection). Hence, the map $W_{p}(\pi): W_{p}(R) \rightarrow W_{p}(L)$ is also surjective ${ }^{6}$. Furthermore, this $\operatorname{map} W_{p}(\pi)$ is a ring homomorphism (since π is a ring homomorphism).

Now, let $x \in \operatorname{Ker}\left(W_{p}(\pi)\right)$. We are going to show that $w_{p^{n}}(x) \in \mathfrak{a}_{n}$.
Indeed, the definition of $W_{p}(\pi)$ yields

$$
\left(W_{p}(\pi)\right)(x)=\left(\pi\left(x_{m}\right)\right)_{m \in P_{p}} .
$$

Hence, $\left(\pi\left(x_{m}\right)\right)_{m \in P_{p}}=\left(W_{p}(\pi)\right)(x)=0$ (since $x \in \operatorname{Ker}\left(W_{p}(\pi)\right)$). In other words, $\pi\left(x_{m}\right)=0$ for every $m \in P_{p}$. In other words,

$$
\begin{equation*}
x_{m} \in \mathfrak{a}_{1} \quad \text { for every } m \in P_{p} \tag{6}
\end{equation*}
$$

(because π is the canonical projection $R \rightarrow R / \mathfrak{a}_{1}$, and therefore the equality $\pi\left(x_{m}\right)=0$ means that $\left.x_{m} \in \mathfrak{a}_{1}\right)$.

Every $i \in\{0,1, \ldots, n\}$ satisfies $p^{i} \in P_{p}$ and thus $x_{p^{i}} \in \mathfrak{a}_{1}$ (by (6), applied to $m=p^{i}$), so that

$$
\begin{equation*}
p^{i} x_{p^{i}}^{p^{n-i}} \in \mathfrak{a}_{n} \tag{7}
\end{equation*}
$$

(by Proposition 11.5 (e), applied to $u=x_{p^{i}}$).
From (1), we obtain

$$
w_{p^{n}}(x)=\sum_{i=0}^{n} \underbrace{p^{i} x_{p^{i}}^{p^{n-i}}}_{\substack{\in \mathfrak{a}_{n} \\\left(\text { by } 7{ }^{7}\right)}} \in \sum_{i=0}^{n} \mathfrak{a}_{n} \subset \mathfrak{a}_{n} .
$$

Thus, $\pi_{n}\left(w_{p^{n}}(x)\right)=0$ (since π_{n} is the canonical projection $\left.R \rightarrow R / \mathfrak{a}_{n}\right)$. Hence, $\left(\pi_{n} \circ w_{p^{n}}\right)(x)=\pi_{n}\left(w_{p^{n}}(x)\right)=0$.

Now, forget that we fixed x. We thus have shown that

$$
\left(\pi_{n} \circ w_{p^{n}}\right)(x)=0 \quad \text { for every } x \in \operatorname{Ker}\left(W_{p}(\pi)\right) .
$$

In other words,

$$
\left(\pi_{n} \circ w_{p^{n}}\right)\left(\operatorname{Ker}\left(W_{p}(\pi)\right)\right)=0
$$

${ }^{6}$ Proof. Recall that $W_{p}(R)=R^{P_{p}}$ (as sets) and $W_{p}(L)=L^{P_{p}}$ (as sets). The map $W_{p}(\pi)$ is defined by

$$
W_{p}(\pi)\left(\left(a_{n}\right)_{n \in P_{p}}\right)=\left(\pi\left(a_{n}\right)\right)_{n \in P_{p}} \quad \text { for every }\left(a_{n}\right)_{n \in P_{p}} \in W_{p}(R) .
$$

In other words, the map $W_{p}(\pi): W_{p}(R) \rightarrow W_{p}(L)$ is identical with the map $\prod_{q \in P_{p}} \pi: R^{P_{p}} \rightarrow$ $L^{P_{p}}$. But the latter map is clearly surjective (since the map π is surjective). Hence, the former map is surjective. Qed.

On the other hand, $w_{p^{n}}: W_{p}(R) \rightarrow R$ is a ring homomorphism (by Theorem 2.6 (ii), applied to R, P_{p} and p^{n} instead of A, P and n). The map $\pi_{n}: R \rightarrow R / \mathfrak{a}_{n}$ also is a ring homomorphism (being the canonical projection). Hence, the map $\pi_{n} \circ w_{p^{n}}: W_{p}(R) \rightarrow R / \mathfrak{a}_{n}$ is a ring homomorphism (being the composition of two ring homomorphisms).

Thus, Proposition 11.6 (applied to $A=W_{p}(R), B=W_{p}(L), C=R / \mathfrak{a}_{n}, \varphi=$ $W_{p}(\pi)$ and $\left.\psi=\pi_{n} \circ w_{p^{n}}\right)$ yields that there exists a unique ring homomorphism $\zeta: W_{p}(L) \rightarrow R / \mathfrak{a}_{n}$ such that $\zeta \circ W_{p}(\pi)=\pi_{n} \circ w_{p^{n}}$. Renaming ζ as $\widetilde{w}_{p^{n}}$ in this statement, we obtain the following: There exists a unique ring homomorphism $\widetilde{w}_{p^{n}}: W_{p}(L) \rightarrow R / \mathfrak{a}_{n}$ such that $\widetilde{w}_{p^{n}} \circ W_{p}(\pi)=\pi_{n} \circ w_{p^{n}}$. In other words, there exists a unique ring homomorphism $\widetilde{w}_{p^{n}}: W_{p}(L) \rightarrow R / \mathfrak{a}_{n}$ such that the diagram (5) commutes. This proves Proposition 11.7 .

Definition 11.8. Let K and R be two rings. A map $\varphi: K \rightarrow R$ is said to be multiplicative if and only if it satisfies $\varphi(1)=1$ and $(\varphi(a b)=\varphi(a) \varphi(b)$ for every $a \in K$ and $b \in K)$.

Proposition 11.9. Let K and R be two rings. Let $\varphi: K \rightarrow R$ be a multiplicative map. Let $v \in K$ and $i \geq 0$. Then, $\varphi\left(v^{i}\right)=(\varphi(v))^{i}$.

Proof of Proposition 11.9 This follows by straightforward induction on i.
Proposition 11.10. Let p be a prime. Let R be a ring equipped with a decreasing sequence $R=\mathfrak{a}_{0} \supset \mathfrak{a}_{1} \supset \mathfrak{a}_{2} \supset \mathfrak{a}_{3} \supset \cdots$ of ideals such that $\left(\mathfrak{a}_{n} \cdot \mathfrak{a}_{m} \subset \mathfrak{a}_{n+m}\right.$ for all $n \geq 0$ and $\left.m \geq 0\right)$. Equip R with the topology defined by this sequence of ideals. Assume that R is Hausdorff for this topology.

Assume that the residue ring $L=R / \mathfrak{a}_{1}$ has $p \cdot 1_{L}=0$. Let π denote the canonical projection $R \rightarrow R / \mathfrak{a}_{1}=L$.

Let K be a perfect ring of characteristic p. Let $f: K \rightarrow L$ be any map. Then, there exists at most one multiplicative map $r: K \rightarrow R$ satisfying

$$
\begin{equation*}
(\pi(r(a))=f(a) \quad \text { for every } a \in K) \tag{8}
\end{equation*}
$$

Proof of Proposition 11.10 We need to show that if r_{1} and r_{2} are two multiplicative maps $r: K \rightarrow R$ satisfying (8), then $r_{1}=r_{2}$.

So let r_{1} and r_{2} be two multiplicative maps $r: K \rightarrow R$ satisfying (8). We must show that $r_{1}=r_{2}$.

Let $u \in K$. Let $n \geq 0$. Then, the element $u^{1 / p^{n}}$ of K is well-defined (since K is a perfect ring of characteristic p). Moreover, r_{1} is multiplicative; thus, Proposition 11.9 (applied to $\varphi=r_{1}, v=u^{1 / p^{n}}$ and $i=p^{n}$) yields $r_{1}\left(\left(u^{1 / p^{n}}\right)^{p^{n}}\right)=$ $\left(r_{1}\left(u^{1 / p^{n}}\right)\right)^{p^{n}}$. Since $\left(u^{1 / p^{n}}\right)^{p^{n}}=u$, this rewrites as $r_{1}(u)=\left(r_{1}\left(u^{1 / p^{n}}\right)\right)^{p^{n}}$. Similarly, $r_{2}(u)=\left(r_{2}\left(u^{1 / p^{n}}\right)\right)^{p^{n}}$.

But the map r_{1} satisfies (8). Hence, (8) (applied to $r=r_{1}$ and $a=u^{1 / p^{n}}$) yields $\pi\left(r_{1}\left(u^{1 / p^{n}}\right)\right)=f\left(u^{1 / p^{n}}\right)$. Similarly, $\pi\left(r_{2}\left(u^{1 / p^{n}}\right)\right)=f\left(u^{1 / p^{n}}\right)$. Hence, $\pi\left(r_{1}\left(u^{1 / p^{n}}\right)\right)=f\left(u^{1 / p^{n}}\right)=\pi\left(r_{2}\left(u^{1 / p^{n}}\right)\right)$. In other words, $r_{1}\left(u^{1 / p^{n}}\right) \equiv$ $r_{2}\left(u^{1 / p^{n}}\right) \bmod \mathfrak{a}_{1}$ (since π is the canonical projection $R \rightarrow R / \mathfrak{a}_{1}$). Hence, Proposition 11.5 (d) (applied to $x=r_{1}\left(u^{1 / p^{n}}\right), y=r_{2}\left(u^{1 / p^{n}}\right)$ and $i=n$) yields $\left(r_{1}\left(u^{1 / p^{n}}\right)\right)^{p^{n}} \equiv\left(r_{2}\left(u^{1 / p^{n}}\right)\right)^{p^{n}} \bmod \mathfrak{a}_{n+1}$. Thus,

$$
r_{1}(u)=\left(r_{1}\left(u^{1 / p^{n}}\right)\right)^{p^{n}} \equiv\left(r_{2}\left(u^{1 / p^{n}}\right)\right)^{p^{n}}=r_{2}(u) \bmod \mathfrak{a}_{n+1}
$$

Thus, $r_{1}(u)-r_{2}(u) \in \mathfrak{a}_{n+1} \subset \mathfrak{a}_{n}$.
Now, forget that we fixed n. We thus have shown that $r_{1}(u)-r_{2}(u) \in \mathfrak{a}_{n}$ for every $n \geq 0$. In other words, $r_{1}(u)-r_{2}(u) \in \bigcap_{n \geq 0} \mathfrak{a}_{n}=0$ (by Proposition 11.2 (a)). In other words, $r_{1}(u)-r_{2}(u)=0$, so that $r_{1}(u)=r_{2}(u)$.

Now, forget that we fixed u. We thus have shown that $r_{1}(u)=r_{2}(u)$ for every $u \in K$. In other words, $r_{1}=r_{2}$. This completes the proof of Proposition 11.10

Theorem 11.11. Let p be a prime. Let R be a ring equipped with a decreasing sequence $R=\mathfrak{a}_{0} \supset \mathfrak{a}_{1} \supset \mathfrak{a}_{2} \supset \mathfrak{a}_{3} \supset \cdots$ of ideals such that $\left(\mathfrak{a}_{n} \cdot \mathfrak{a}_{m} \subset \mathfrak{a}_{n+m}\right.$ for all $n \geq 0$ and $\left.m \geq 0\right)$. Equip R with the topology defined by this sequence of ideals. Assume that R is Hausdorff and complete for this topology. Assume that the residue ring $L=R / \mathfrak{a}_{1}$ has $p \cdot 1_{L}=0$. Let π denote the canonical projection $R \rightarrow R / \mathfrak{a}_{1}=L$.

Let K be a perfect ring of characteristic p. Let $f: K \rightarrow L$ be a ring homomorphism.

There exists a unique multiplicative map $r: K \rightarrow R$ satisfying

$$
\begin{equation*}
(\pi(r(a))=f(a) \quad \text { for every } a \in K) \tag{9}
\end{equation*}
$$

Theorem 11.11 is a generalization of the existence of a Teichmüller system of representatives for a perfect ring 7 .

Proof of Theorem 11.11. Proposition 11.5 (b) shows that $p \cdot 1_{R} \in \mathfrak{a}_{1}$ and $p R \subset \mathfrak{a}_{1}$.
The map π is surjective (since it is the canonical projection $R \rightarrow R / \mathfrak{a}_{1}$).
Proposition 11.10 shows that there exists at most one multiplicative map r : $K \rightarrow R$ satisfying (9). It thus remains to prove that there exists at least one such map. In other words, it remains to construct such a map.

[^4]Let $a \in K$. Then, the element $a^{1 / p^{i}}$ of K is defined for every $i \in\{0,1,2, \ldots\}$ (since K is a perfect ring of characteristic p).

For every $i \in\{0,1,2, \ldots\}$, choose some $g_{i} \in R$ such that $\pi\left(g_{i}\right)=f\left(a^{1 / p^{i}}\right)$. (This is well-defined, since π is surjective.) Thus, a sequence $\left(g_{0}, g_{1}, g_{2}, \ldots\right) \in R^{\infty}$ of elements of R is defined. We have

$$
\begin{equation*}
g_{i}^{p^{i}} \equiv g_{i+1}^{p^{i+1}} \bmod \mathfrak{a}_{i+1} \quad \text { for every } i \geq 0 \tag{10}
\end{equation*}
$$

8 Thus, the sequence $\left(g_{0}^{p^{0}}, g_{1}^{p^{1}}, g_{2}^{p^{2}}, \ldots\right)$ is Cauchy with respect to the topology on R. Hence, the limit $\lim _{n \rightarrow \infty} g_{n}^{p^{n}}$ is defined. Denote this limit by g^{\prime}. Thus, $g^{\prime}=$ $\lim _{n \rightarrow \infty} g_{n}^{p^{n}}$. From 10, we obtain

$$
\begin{equation*}
g^{\prime} \equiv g_{i}^{p^{i}} \bmod \mathfrak{a}_{i+1} \quad \text { for every } i \geq 0 \tag{11}
\end{equation*}
$$

We notice the following fact: If $u \in R$ and $i \in\{0,1,2, \ldots\}$ are such that $\pi(u)=f\left(a^{1 / p^{i}}\right)$, then

$$
\begin{equation*}
g^{\prime} \equiv u^{p^{i}} \bmod \mathfrak{a}_{i+1} \tag{12}
\end{equation*}
$$

9
The value of g^{\prime} does not depend on the choice of the elements $g_{i} \quad 10$. We denote this value of g^{\prime} by $r(a)$ (to stress its dependence on a). It has the property
${ }^{8}$ Proof of 10): Let $i \geq 0$. The definition of g_{i} yields $\pi\left(g_{i}\right)=f\left(a^{1 / p^{i}}\right)$. The definition of g_{i+1} yields $\pi\left(g_{i+1}\right)=f\left(a^{1 / p^{i+1}}\right)$. Hence,

$$
\begin{aligned}
\pi\left(g_{i+1}^{p}\right)= & (\underbrace{\pi\left(g_{i+1}\right)}_{=f\left(a^{1 / p^{i+1}}\right)})^{p}=\left(f\left(a^{1 / p^{i+1}}\right)\right)^{p}=f(\underbrace{\left(a^{1 / p^{i+1}}\right)^{p}}_{=a^{1 / p^{i}}}) \\
& \quad(\text { since } f \text { is a ring homomorphism }) \\
= & f\left(a^{1 / p^{i}}\right)=\pi\left(g_{i}\right) .
\end{aligned}
$$

In other words, $g_{i+1}^{p} \equiv g_{i} \bmod \mathfrak{a}_{1}$. Hence, Proposition 11.5 (d) (applied to $x=g_{i+1}^{p}$ and $y=g_{i}$) yields $\left(g_{i+1}^{p}\right)^{p^{i}} \equiv g_{i}^{p^{i}} \bmod \mathfrak{a}_{i+1}$. Now, $g_{i+1}^{p^{i+1}}=\left(g_{i+1}^{p}\right)^{p^{i}} \equiv g_{i}^{p^{i}} \bmod \mathfrak{a}_{i+1}$. This proves 10 .
${ }^{9}$ Proof of 12): Let $u \in R$ and $i \in\{0,1,2, \ldots\}$ be such that $\pi(u)=f\left(a^{1 / p^{i}}\right)$. From $\pi(u)=$ $f\left(a^{1 / p^{i}}\right)=\pi\left(g_{i}\right)$, we obtain $u \equiv g_{i} \bmod \mathfrak{a}_{1}$. Hence, Proposition 11.5 (d) (applied to $x=u$ and $y=g_{i}$) yields $u^{p^{i}} \equiv g_{i}^{p^{i}} \bmod \mathfrak{a}_{i+1}$. Now, $u p^{p^{i}} \equiv g_{i}^{p^{i}} \equiv g^{\prime} \bmod \mathfrak{a}_{i+1}$ (by 11). This proves (12).
${ }^{10}$ Proof. We need to show that if g_{1}^{\prime} and g_{2}^{\prime} are two possible values of g^{\prime}, then $g_{1}^{\prime}=g_{2}^{\prime}$.
Indeed, let g_{1}^{\prime} and g_{2}^{\prime} be two possible values of g^{\prime}. Let $i \in\{0,1,2, \ldots\}$. Pick any $u \in R$ satisfying $\pi(u)=f\left(a^{1 / p^{i}}\right)$ (such a u exists, since π is surjective). Then, 12 (applied to
that if $u \in R$ and $i \in\{0,1,2, \ldots\}$ are such that $\pi(u)=f\left(a^{1 / p^{i}}\right)$, then

$$
\begin{equation*}
r(a) \equiv u^{p^{i}} \bmod \mathfrak{a}_{i+1} \tag{13}
\end{equation*}
$$

(indeed, this is just a restatement of (12) using the new notation $r(a)$ for g^{\prime}).
Now, forget that we fixed a. We thus have defined an element $r(a) \in R$ for each $a \in K$, and noticed that this element satisfies (13). Thus, we have defined a map $r: K \rightarrow R$ such that every $a \in K$ satisfies (13). In order to prove Theorem 11.11, it remains to prove that this map r is multiplicative and satisfies (9).

Proof that r is multiplicative: We have $r(1)=1 \quad 11$. Also, $r(a b)=r(a) r(b)$ for every $a \in K$ and $b \in K \quad{ }^{12}$. Hence, the map r is multiplicative.
g_{1}^{\prime} instead of g^{\prime}) yields $g_{1}^{\prime} \equiv u^{p^{i}} \bmod \mathfrak{a}_{i+1}$ (since g_{1}^{\prime} is one possible value of g^{\prime}). Similarly, $g_{2}^{\prime} \equiv u^{p^{i}} \bmod \mathfrak{a}_{i+1}$. Thus, $g_{1}^{\prime} \equiv u^{p^{i}} \equiv g_{2}^{\prime} \bmod \mathfrak{a}_{i+1}$. In other words, $g_{1}^{\prime}-g_{2}^{\prime} \in \mathfrak{a}_{i+1} \subset \mathfrak{a}_{i}$, so that $g_{1}^{\prime} \equiv g_{2}^{\prime} \bmod \mathfrak{a}_{i}$.

Now, forget that we fixed i. We thus have proven that $g_{1}^{\prime} \equiv g_{2}^{\prime} \bmod \mathfrak{a}_{i}$ for each $i \in$ $\{0,1,2, \ldots\}$. Hence, $g_{1}^{\prime}=g_{2}^{\prime}$ (by Proposition 11.2 (b), applied to $u=g_{1}^{\prime}$ and $v=g_{2}^{\prime}$), qed.
${ }^{11}$ Proof. Let $i \in\{0,1,2, \ldots\}$. Then, $f(\underbrace{\int^{1 / p^{i}}}_{=1})=f(1)=1$ (since f is a ring homomorphism), and thus $\pi(1)=1=f\left(1^{1 / p^{i}}\right)$. Hence, 13 (applied to $a=1$ and $\left.u=1\right)$ yields $r(1) \equiv 1^{p^{i}}=$ $1 \bmod \mathfrak{a}_{i+1}$. Thus, $r(1)-1 \in \mathfrak{a}_{i+1} \subset \mathfrak{a}_{i}$, so that $r(1) \equiv 1 \bmod \mathfrak{a}_{i}$.

Now, forget that we fixed i. We thus have shown that $r(1) \equiv 1 \bmod \mathfrak{a}_{i}$ for every $i \in$ $\{0,1,2, \ldots\}$. Hence, $r(1)=1$ (by Proposition 11.2 (b), applied to $u=r(1)$ and $v=1$), qed.
${ }^{12}$ Proof. Let $a \in K$ and $b \in K$. Let $i \in\{0,1,2, \ldots\}$.
Pick some $u \in R$ such that $\pi(u)=f\left(a^{1 / p^{i}}\right)$. (Such a u exists, since π is surjective.) Hence, (13) yields $r(a) \equiv u^{p^{i}} \bmod \mathfrak{a}_{i+1}$.

Pick some $v \in R$ such that $\pi(v)=f\left(b^{1 / p^{i}}\right)$. (Such a v exists, since π is surjective.) Hence, 13 (applied to b and v instead of a and u) yields $r(b) \equiv v^{p^{i}} \bmod \mathfrak{a}_{i+1}$.
Now,

$$
\begin{aligned}
\pi(u v) & =\underbrace{\pi(u)}_{=f\left(a^{1 / p^{i}}\right)=f\left(b^{1 / p^{i}}\right)} \underbrace{\pi(v)}=f\left(a^{1 / p^{i}}\right) f\left(b^{1 / p^{i}}\right) \\
& =f(\underbrace{a^{1 / p^{i}} b^{1 / p^{i}}}_{=(a b)^{1 / p^{i}}}) \quad \text { (since } f \text { is a ring homomorphism) } \\
& =f\left((a b)^{1 / p^{i}}\right) .
\end{aligned}
$$

Thus, 13 (applied to $a b$ and $u v$ instead of a and u) yields $r(a b) \equiv(u v)^{p^{i}}=$ $\underbrace{\text {, }}_{\equiv r(a) \bmod \mathfrak{a}_{i+1} \equiv r(b) \underbrace{u^{p^{i}}}_{\bmod \mathfrak{a}_{i+1}} \equiv r(a) r(b) \bmod \mathfrak{a}_{i+1} \text {. Thus, } r(a b)-r(a) r(b) \in \mathfrak{a}_{i+1} \subset \mathfrak{a}_{i} \text {, so that }{ }^{p^{i}}}$ $r(a b) \equiv r(a) r(b) \bmod \mathfrak{a}_{i}$.

Now, forget that we fixed i. We thus have shown that $r(a b) \equiv r(a) r(b) \bmod \mathfrak{a}_{i}$ for all $i \in\{0,1,2, \ldots\}$. Thus, $r(a b)=r(a) r(b)$ (by Proposition 11.2 (b), applied to $u=r(a b)$ and $v=r(a) r(b))$, qed.

Proof that r satisfies (9): Let $a \in K$. Pick some $u \in R$ such that $\pi(u)=f(a)$. (Such a u exists, since π is surjective.) Now, $\pi(u)=f(\underbrace{a}_{=a^{1}=a^{1 / p^{0}}})=f\left(a^{1 / p^{0}}\right)$. Hence, 13) (applied to $i=0$) yields $r(a) \equiv u^{p^{0}}=u^{1}=u \bmod \mathfrak{a}_{1}$. Hence, $\pi(r(a))=\pi(u)=f(a)$. Thus, 9) is proven.

So we have defined a map $r: K \rightarrow R$, and showed that this map r is multiplicative and satisfies (9). Thus, we have constructed the map r whose existence was alleged in Theorem 11.11. This proves Theorem 11.11.

Lemma 11.12. Let p be a prime. Let K be a perfect ring of characteristic p. Let $x \in W_{p}(K)$. Then, there exist two elements y and z of $W_{p}(K)$ such that $x=y^{p}+p z$.

Proof of Lemma 11.12 The ring K is a perfect ring of characteristic p. Hence, an element $x_{m}^{1 / p}$ of K is well-defined for every $m \in P_{p}$. Now, define $a \in W_{p}(K)$ by $a=\left(x_{m}^{1 / p}\right)_{m \in P_{p}}$. Then, $a_{m}=x_{m}^{1 / p}$ for every $m \in P_{p}$. In other words, $a_{m}^{p}=x_{m}$ for every $m \in P_{p}$.

Let $b=F_{p}(a)$. Then, Proposition 5.12 (applied to P_{p}, K, a and b instead of P, A, x and y) yields the following:

1. We have $b_{m} \equiv a_{m}^{p} \bmod p K$ for every $m \in P_{p}$.
2. We have $F_{p}(a) \equiv a^{p} \bmod p W_{p}(K)$.

We have $F_{p}(a) \equiv a^{p} \bmod p W_{p}(K)$. In other words, there exists some $c \in$ $W_{p}(K)$ such that $F_{p}(a)=a^{p}+p c$. Consider this c.

We have $p K=0$ (since K has characteristic p). Now, for every $m \in P_{p}$, we have $b_{m} \equiv a_{m}^{p} \bmod p K$, thus $b_{m}=a_{m}^{p}($ since $p K=0)$, hence $b_{m}=a_{m}^{p}=x_{m}$ (since $a_{m}^{p}=x_{m}$). Therefore, $b=x$. Comparing this with $b=F_{p}(a)$, we obtain $F_{p}(a)=x$. Thus, $x=F_{p}(a)=a^{p}+p c$. Hence, there exist two elements y and z of $W_{p}(K)$ such that $x=y^{p}+p z$ (namely, $y=a$ and $z=c$). This proves Lemma 11.12

Proposition 11.13. Let p be a prime. Let R be a ring equipped with a decreasing sequence $R=\mathfrak{a}_{0} \supset \mathfrak{a}_{1} \supset \mathfrak{a}_{2} \supset \mathfrak{a}_{3} \supset \cdots$ of ideals such that $\left(\mathfrak{a}_{n} \cdot \mathfrak{a}_{m} \subset \mathfrak{a}_{n+m}\right.$ for all $n \geq 0$ and $\left.m \geq 0\right)$. Equip R with the topology defined by this sequence of ideals. Assume that R is Hausdorff for this topology.

Assume that the residue ring $L=R / \mathfrak{a}_{1}$ has $p \cdot 1_{L}=0$. Let π denote the canonical projection $R \rightarrow R / \mathfrak{a}_{1}=L$.

Let K be a perfect ring of characteristic p. Let $G: W_{p}(K) \rightarrow L$ be any map.
Then, there exists at most one ring homomorphism $\theta: W_{p}(K) \rightarrow R$ such that $\pi \circ \theta=G$.

Proof of Proposition 11.13 We need to show that if θ_{1} and θ_{2} are two ring homomorphisms $\theta: W_{p}(K) \rightarrow R$ such that $\pi \circ \theta=G$, then $\theta_{1}=\theta_{2}$.

So let θ_{1} and θ_{2} be two ring homomorphisms $\theta: W_{p}(K) \rightarrow R$ such that $\pi \circ \theta=G$. We must show that $\theta_{1}=\theta_{2}$.

Define the maps π_{n} for all $n \geq 0$ as in Proposition 11.2(c).
We first observe that

$$
\begin{equation*}
\pi_{1} \circ \theta_{1}=\pi_{1} \circ \theta_{2} \tag{14}
\end{equation*}
$$

13
We shall show that

$$
\begin{equation*}
\pi_{n} \circ \theta_{1}=\pi_{n} \circ \theta_{2} \quad \text { for every } n \geq 0 \tag{15}
\end{equation*}
$$

Proof of (15): We shall prove (15) by induction on n :
Induction base: The map π_{0} is the canonical projection $R \rightarrow R / \mathfrak{a}_{0}=0$ (since $\mathfrak{a}_{0}=R$). Hence, any two maps become equal when composed with π_{0}. In particular, we thus have $\pi_{0} \circ \theta_{1}=\pi_{0} \circ \theta_{2}$. In other words, (15) holds for $n=0$. This completes the induction base.

Induction step: Let N be a positive integer. Assume that (15) holds for $n=$ $N-1$. We must show that (15) holds for $n=N$. In other words, we need to prove that $\pi_{N} \circ \theta_{1}=\pi_{N} \circ \theta_{2}$.

If $N=1$, then this follows immediately from (14). Hence, we WLOG assume that $N \neq 1$. Hence, $N \geq 2$ (since N is a positive integer). Thus, $N-1$ is a positive integer.

We have assumed that (15) holds for $n=N-1$. In other words, $\pi_{N-1} \circ \theta_{1}=$ $\pi_{N-1} \circ \theta_{2}$. For every $a \in W_{p}(K)$, we have

$$
\begin{equation*}
\theta_{1}(a) \equiv \theta_{2}(a) \bmod \mathfrak{a}_{N-1} \tag{16}
\end{equation*}
$$

14 and

$$
\begin{equation*}
\left(\theta_{1}(a)\right)^{p} \equiv\left(\theta_{2}(a)\right)^{p} \bmod \mathfrak{a}_{N} \tag{17}
\end{equation*}
$$

${ }^{15}$ and

$$
\begin{equation*}
p \theta_{1}(a) \equiv p \theta_{2}(a) \bmod \mathfrak{a}_{N} \tag{18}
\end{equation*}
$$

${ }^{13}$ Proof of (14): Both maps π_{1} and π are defined as the canonical projection $R \rightarrow R / \mathfrak{a}_{1}$. Hence, these two maps are equal. In other words, $\pi_{1}=\pi$.

We know that θ_{1} is a ring homomorphism $\theta: W_{p}(K) \rightarrow R$ such that $\pi \circ \theta=G$. Hence, $\pi \circ \theta_{1}=G$. The same argument (applied to θ_{2} instead of θ_{1}) shows that $\pi \circ \theta_{2}=G$. Hence, $\pi \circ \theta_{1}=G=\pi \circ \theta_{2}$. In light of $\pi_{1}=\pi$, this rewrites as $\pi_{1} \circ \theta_{1}=\pi_{1} \circ \theta_{2}$. This proves (14).
${ }^{14}$ Proof of (16): Let $a \in W_{p}(K)$. Then,

$$
\pi_{N-1}\left(\theta_{1}(a)\right)=\underbrace{\left(\pi_{N-1} \circ \theta_{1}\right)}_{=\pi_{N-1} \circ \theta_{2}}(a)=\left(\pi_{N-1} \circ \theta_{2}\right)(a)=\pi_{N-1}\left(\theta_{2}(a)\right) .
$$

In other words, $\theta_{1}(a) \equiv \theta_{2}(a) \bmod \mathfrak{a}_{N-1}$ (since π_{N-1} is the canonical projection $R \rightarrow$ R / \mathfrak{a}_{N-1}). This proves (16).
${ }^{15}$ Proof of (17): Let $a \in \overline{W_{p}}(K)$. From (16), we have $\theta_{1}(a) \equiv \theta_{2}(a) \bmod \mathfrak{a}_{N-1}$. Thus, Proposition 11.5 (f) (applied to $\theta_{1}(a), \theta_{2}(a)$ and $N-1$ instead of a, b and $\left.i\right)$ yields $\left(\theta_{1}(a)\right)^{p} \equiv$ $\left(\theta_{2}(a)\right)^{p} \bmod \mathfrak{a}_{(N-1)+1}$. In other words, $\left(\theta_{1}(a)\right)^{p} \equiv\left(\theta_{2}(a)\right)^{p} \bmod \mathfrak{a}_{N}$. This proves 17 .

16

Proposition 11.5 (b) yields $p R \subset \mathfrak{a}_{1}$.
Let $x \in W_{p}(K)$. Lemma 11.12 shows that there exist two elements y and z of $W_{p}(K)$ such that $x=y^{p}+p z$. Consider these y and z. Applying the map θ_{1} to the equality $x=y^{p}+p z$, we find

$$
\begin{equation*}
\theta_{1}(x)=\theta_{1}\left(y^{p}+p z\right)=\left(\theta_{1}(y)\right)^{p}+p \theta_{1}(z) \tag{19}
\end{equation*}
$$

(since θ_{1} is a ring homomorphism). The same argument (applied to θ_{2} instead of θ_{1}) shows that

$$
\begin{equation*}
\theta_{2}(x)=\left(\theta_{2}(y)\right)^{p}+p \theta_{2}(z) \tag{20}
\end{equation*}
$$

Now, (19) becomes

$$
\begin{aligned}
\theta_{1}(x) & =\underbrace{\left(\theta_{1}(y)\right)^{p}}_{\begin{array}{c}
\left.=\left(\theta_{2}(y)\right)^{p}\right)^{\bmod \mathfrak{a}_{N}} \\
\text { (by } \\
177, \text { applied to } a=y)
\end{array}}+\underbrace{p \theta_{1}(z)}_{\begin{array}{c}
\text { (by } \overline{\text { (18), applied to } a=z)}
\end{array}} \\
& \equiv\left(\theta_{2}(y)\right)^{p}+p \theta_{2}(z)=\theta_{2}(x) \bmod \mathfrak{m}_{N}
\end{aligned}
$$

(by (20)). In other words, $\pi_{N}\left(\theta_{1}(x)\right)=\pi_{N}\left(\theta_{2}(x)\right)$. Thus, $\left(\pi_{N} \circ \theta_{1}\right)(x)=$ $\pi_{N}\left(\theta_{1}(x)\right)=\pi_{N}\left(\theta_{2}(x)\right)=\left(\pi_{N} \circ \theta_{2}\right)(x)$.

Now, forget that we fixed x. We thus have proven that $\left(\pi_{N} \circ \theta_{1}\right)(x)=\left(\pi_{N} \circ \theta_{2}\right)(x)$ for every $x \in W_{p}(K)$. In other words, $\pi_{N} \circ \theta_{1}=\pi_{N} \circ \theta_{2}$. This completes the induction step. The induction proof of (15) is thus complete.

Proposition 11.2 (c) (applied to $A=W_{p}(K), \varphi=\theta_{1}$ and $\psi=\theta_{2}$) thus yields $\theta_{1}=\theta_{2}$. This completes the proof of Proposition 11.13 .

Proof of Theorem 11.1 Proposition 11.5 (b) shows that $p \cdot 1_{R} \in \mathfrak{a}_{1}$ and $p R \subset \mathfrak{a}_{1}$.
The map π is surjective (since it is the canonical projection $R \rightarrow R / \mathfrak{a}_{1}$).
Theorem 11.11 shows that there exists a unique multiplicative map $r: K \rightarrow R$ satisfying (9). Consider this r.

The ring K is perfect of characteristic p. Hence, an element $v^{1 / p^{n}}$ of K is welldefined for each $v \in K$ and each $n \geq 0$. In particular, an element $x_{p^{n}}^{1 / p^{n}}$ of K is well-defined for each $x \in W_{p}(K)$ and each $n \geq 0$.

Define a map $\Theta: W_{p}(K) \rightarrow R$ by

$$
\left(\Theta(x)=\sum_{n \geq 0} r\left(x_{p^{n}}^{1 / p^{n}}\right) p^{n} \quad \text { for every } x \in W_{p}(K)\right)
$$

${ }^{16}$ Proof of $\sqrt{188}$: Let $a \in W_{p}(K)$. From 16, we have $\theta_{1}(a) \equiv \theta_{2}(a) \bmod \mathfrak{a}_{N-1}$. In other words,
$\theta_{1}(a)-\theta_{2}(a) \in \mathfrak{a}_{N-1}$. Now,

$$
p \theta_{1}(a)-p \theta_{2}(a)=p \underbrace{\left(\theta_{1}(a)-\theta_{2}(a)\right)}_{\in \mathfrak{a}_{N-1}} \in p \mathfrak{a}_{N-1} \subset \mathfrak{a}_{N}
$$

(by Proposition $11.5(\mathbf{g})$, applied to $n=N)$. Thus, $p \theta_{1}(a) \equiv p \theta_{2}(a) \bmod \mathfrak{a}_{N}$. This proves 18.

This is well-defined (because the infinite sum $\sum_{n \geq 0} r\left(x_{p^{n}}^{1 / p^{n}}\right) p^{n}$ converges ${ }^{17}$. Moreover, the square (2) commutes for $\theta=\Theta$.

Notice that every $x \in W_{p}(K)$ satisfies

$$
\begin{equation*}
\Theta(x) \equiv \sum_{k=0}^{i} r\left(x_{p^{k}}^{1 / p^{k}}\right) p^{k} \bmod \mathfrak{a}_{i+1} \quad \text { for every } i \geq-1 \tag{22}
\end{equation*}
$$

19
For every $n \geq 0$, let π_{n} be the canonical projection $R \rightarrow R / \mathfrak{a}_{n}$. Then, every
 (by Proposition 11.5 (c))
${ }^{18}$ Proof. Let $x \in W_{p}(K)$. Every $n \geq 1$ satisfies

$$
r\left(x_{p^{n}}^{1 / p^{n}}\right) p^{n}=\underbrace{p^{n}}_{=p p^{n-1}} r\left(x_{p^{n}}^{1 / p^{n}}\right)=p \underbrace{p^{n-1} r\left(x_{p^{n}}^{1 / p^{n}}\right)}_{\in R} \in p R \subset \mathfrak{a}_{1}
$$

and thus

$$
\begin{equation*}
\pi\left(r\left(x_{p^{n}}^{1 / p^{n}}\right) p^{n}\right)=0 \tag{21}
\end{equation*}
$$

(since π is the canonical projection $R \rightarrow R / \mathfrak{a}_{1}$). Now,

$$
\begin{aligned}
& (\pi \circ \Theta)(x)=\pi(\underbrace{\Theta(x)}_{=\sum_{n \geq 0} r\left(\begin{array}{l}
1 / p_{p} p^{n}
\end{array}\right) p^{n}})=\pi\left(\sum_{n \geq 0} r\left(x_{p^{n}}^{1 / p^{n}}\right) p^{n}\right)=\sum_{n \geq 0} \pi\left(r\left(x_{p^{n}}^{1 / p^{n}}\right) p^{n}\right) \\
& =\pi(\underbrace{r\left(x_{p^{0}}^{1 / p^{0}}\right) p^{0}}_{=r\left(x_{1}\right) 1=r\left(x_{1}\right)})+\sum_{n \geq 1} \underbrace{\pi\left(r\left(x_{p^{n}}^{1 / p^{n}}\right) p^{n}\right)}_{\text {(by }=0 \text { 21) }} \\
& =\pi\left(r\left(x_{1}\right)\right)+\underbrace{\sum_{n \geq 1} 0}_{=0}=\pi\left(r\left(x_{1}\right)\right)=f\left(x_{1}\right)
\end{aligned}
$$

(by (9), applied to $a=x_{1}$). Comparing this with

$$
\left(f \circ w_{1}\right)(x)=f(\underbrace{w_{1}(x)}_{=x_{1}})=f\left(x_{1}\right),
$$

we obtain $(\pi \circ \Theta)(x)=\left(f \circ w_{1}\right)(x)$. Since we have proven this for every $x \in W_{p}(K)$, we thus conclude that $\pi \circ \Theta=f \circ w_{1}$. In other words, $\pi \circ \theta=f \circ w_{1}$ for $\theta=\Theta$. In other words, the square (2) commutes for $\theta=\Theta$.
${ }^{19}$ Proof of (22): Let $x \in W_{p}(K)$ and $i \geq-1$. Then, Proposition 11.5(c) yields that $p^{n} \cdot 1_{R} \in \mathfrak{a}_{n}$ for
$x \in W_{p}(K)$ and $n \geq 0$ satisfy

$$
\begin{equation*}
\left(\pi_{n} \circ \Theta\right)(x)=\pi_{n}\left(\sum_{i=0}^{n} p^{i}\left(r\left(x_{p^{i}}^{1 / p^{n}}\right)\right)^{p^{n-i}}\right) \tag{23}
\end{equation*}
$$

${ }^{20}$ Hence, for every $n \geq 0$, the map $\pi_{n} \circ \Theta: W_{p}(K) \rightarrow R / \mathfrak{a}_{n}$ is continuous
every $n \geq 0$. Now,

$$
\begin{aligned}
\Theta(x) & =\sum_{n \geq 0} r\left(x_{p^{n}}^{1 / p^{n}}\right) p^{n}=\sum_{n=0}^{i} r\left(x_{p^{n}}^{1 / p^{n}}\right) p^{n}+\underbrace{\sum_{n=1}}_{n \geq i+1} \underbrace{r\left(x_{p^{n}}^{1 / p^{n}}\right) p^{n}}_{=r\left(x_{p^{n}}^{1 / p^{n}}\right) p^{n} \cdot 1_{R}} \\
& =\sum_{n=0}^{i} r\left(x_{p^{n}}^{1 / p^{n}}\right) p^{n}+\sum_{n \geq i+1} r\left(x_{p^{n}}^{1 / p^{n}}\right) \underbrace{p^{n} \cdot 1_{R}}_{\substack{\left.\in \mathfrak{a}_{n} \subset \mathfrak{a}_{i+1} \\
\text { (since } n \geq i+1\right)}} \in \sum_{n=0}^{i} r\left(x_{p^{n}}^{1 / p^{n}}\right) p^{n}+\underbrace{\sum_{n \geq i} r\left(x_{p^{n}}^{1 / p^{n}}\right) \mathfrak{a}_{i+1}}_{n \geq i+1} \\
& \subset \sum_{n=0}^{i} r\left(x_{p^{n}}^{1 / p^{n}}\right) p^{n}+\mathfrak{a}_{i+1} .
\end{aligned}
$$

In other words, $\Theta(x) \equiv \sum_{n=0}^{i} r\left(x_{p^{n}}^{1 / p^{n}}\right) p^{n} \bmod \mathfrak{a}_{i+1}$. Renaming the summation index n as k in this congruence, we obtain $\Theta(x) \equiv \sum_{k=0}^{i} r\left(x_{p^{k}}^{1 / p^{k}}\right) p^{k} \bmod \mathfrak{a}_{i+1}$, qed.
${ }^{20}$ Proof of 23): Let $x \in W_{p}(K)$ and $n \geq 0$. Applying 22) to $i=n$, we obtain

$$
\Theta(x) \equiv \sum_{k=0}^{n} r\left(x_{p^{k}}^{1 / p^{k}}\right) p^{k}=\sum_{k=0}^{n} p^{k} r\left(x_{p^{k}}^{1 / p^{k}}\right)=\sum_{i=0}^{n} p^{i} r\left(x_{p^{i}}^{1 / p^{i}}\right) \bmod \mathfrak{a}_{n+1} .
$$

In other words, $\Theta(x)-\sum_{i=0}^{n} p^{i} r\left(x_{p^{i}}^{1 / p^{i}}\right) \in \mathfrak{a}_{n+1} \subset \mathfrak{a}_{n}$, so that

$$
\begin{equation*}
\Theta(x) \equiv \sum_{i=0}^{n} p^{i} r\left(x_{p^{i}}^{1 / p^{i}}\right) \bmod \mathfrak{a}_{n} \tag{24}
\end{equation*}
$$

Now, fix $i \in\{0,1, \ldots, n\}$. Recall that the map r is multiplicative. Thus, Proposition 11.9 (applied to $r, x_{p^{i}}^{1 / p^{n}}$ and p^{n-i} instead of φ, v and i) yields $r\left(\left(x_{p^{i}}^{1 / p^{n}}\right)^{p^{n-i}}\right)=\left(r\left(x_{p^{i}}^{1 / p^{n}}\right)\right)^{p^{n-i}}$. Hence,

$$
\begin{equation*}
\left(r\left(x_{p^{i}}^{1 / p^{n}}\right)\right)^{p^{n-i}}=r(\underbrace{\left(x_{p^{i}}^{1 / p^{n}}\right)^{p^{n-i}}}_{=x_{p^{i}}^{p^{n-i} / p^{n}}=x_{p^{i}}^{1 / p^{i}}})=r\left(x_{p^{i}}^{1 / p^{i}}\right) \tag{25}
\end{equation*}
$$

Now, forget that we fixed i. Thus, we have shown that holds for each $i \in\{0,1, \ldots, n\}$.
(where R / \mathfrak{a}_{n} is equipped with the discrete topology) ${ }^{21}$. Therefore, Proposition 11.4 (applied to $A=W_{p}(K)$ and $\varphi=\Theta$) shows that the map $\Theta: W_{p}(K) \rightarrow R$ is continuous.

Now, fix a nonnegative integer n.
Let ω denote the map $K \rightarrow K, u \mapsto u^{p}$. Thus, ω is the Frobenius homomorphism of the ring K, and is a ring homomorphism (since the ring K has characteristic p) and invertible (since the ring K is perfect). Hence, its inverse map ω^{-1} is also a ring homomorphism. Thus, the map ω^{-n} is also a ring homomorphism. It is easy to see that

$$
\begin{equation*}
\omega^{-i}(v)=v^{1 / p^{i}} \quad \text { for every } v \in K \text { and } i \geq 0 \tag{26}
\end{equation*}
$$

${ }^{22}$ We have

$$
\begin{equation*}
\left(f \circ \omega^{-n}\right)(v)=\pi\left(r\left(v^{1 / p^{n}}\right)\right) \tag{27}
\end{equation*}
$$

for each $v \in K . \quad{ }^{23}$
Now, (24) becomes

$$
\begin{aligned}
& \Theta(x) \equiv \sum_{i=0}^{n} p^{i} \underbrace{r\left(x_{p^{i}}^{1 / p^{i}}\right)}=\sum_{i=0}^{n} p^{i}\left(r\left(x_{p^{i}}^{1 / p^{n}}\right)\right)^{p^{n-i}} \bmod \mathfrak{a}_{n} . \\
& =\left(r\binom{\left(p_{p^{1}}^{1 / p^{n}}\right)}{\text { (by }[25)}^{p^{n-i}}\right.
\end{aligned}
$$

In other words, $\pi_{n}(\Theta(x))=\pi_{n}\left(\sum_{i=0}^{n} p^{i}\left(r\left(x_{p^{i}}^{1 / p^{n}}\right)\right)^{p^{n-i}}\right)$ (since π_{n} is the canonical projection $R \rightarrow R / \mathfrak{a}_{n}$). Thus,

$$
\left(\pi_{n} \circ \Theta\right)(x)=\pi_{n}(\Theta(x))=\pi_{n}\left(\sum_{i=0}^{n} p^{i}\left(r\left(x_{p^{i}}^{1 / p^{n}}\right)\right)^{p^{n-i}}\right),
$$

and so $\sqrt{23}$ is proven.
${ }^{21}$ Proof. Let $n \geq 0$. Then, for every $x \in W_{p}(K)$, the formula (23) expresses $\left(\pi_{n} \circ \Theta\right)(x)$ through the first $N+1$ coordinates $x_{p^{0}}, x_{p^{1}}, \ldots, x_{p^{N}}$ of x. Hence, $\left(\pi_{n} \circ \Theta\right)(x)$ depends only on the first $N+1$ coordinates $x_{p^{0}}, x_{p^{1}}, \ldots, x_{p^{N}}$ of x. Thus, the map $\pi_{n} \circ \Theta: W_{p}(K) \rightarrow R / \mathfrak{a}_{n}$ is continuous (by the definition of the topology on $W_{p}(K)$). Qed.
${ }^{22}$ Proof of 26): We have $\omega(v)=v^{p}$ for every $v \in K$. Thus, $\omega^{-1}(v)=v^{1 / p}$ for every $v \in K$. Thus, we can easily see (by a straightforward induction over i) that $\omega^{-i}(v)=v^{1 / p^{i}}$ for every $v \in K$ and $i \geq 0$. Thus, (26) is proven.
${ }^{23}$ Proof of (27): Let $v \in K$. Then,

$$
\left(f \circ \omega^{-n}\right)(v)=f(\underbrace{\omega^{-n}(v)}_{\begin{array}{c}
=v^{1 / p^{n}} \\
(\text { by }(26) \text { applied to } i=n)
\end{array}})=f\left(v^{1 / p^{n}}\right)=\pi\left(r\left(v^{1 / p^{n}}\right)\right)
$$

(because (9) (applied to $\left.a=v^{1 / p^{n}}\right)$ yields $\pi\left(r\left(v^{1 / p^{n}}\right)\right)=f\left(v^{1 / p^{n}}\right)$. This proves 27 .

Proposition 11.7 shows that there exists a unique ring homomorphism $\widetilde{w}_{p^{n}}$: $W_{p}(L) \rightarrow R / \mathfrak{a}_{n}$ such that the diagram (5) commutes. Consider this $\widetilde{w}_{p^{n}}$.

But $f \circ \omega^{-n}: K \rightarrow L$ is a ring homomorphism (since both f and ω^{-n} are ring homomorphisms). Thus, $W_{p}\left(f \circ \omega^{-n}\right): W_{p}(K) \rightarrow W_{p}(L)$ is a ring homomorphism as well. Now, we shall show that

$$
\begin{equation*}
\widetilde{w}_{p^{n}} \circ W_{p}\left(f \circ \omega^{-n}\right)=\pi_{n} \circ \Theta . \tag{28}
\end{equation*}
$$

Proof of (28): Let $x \in W_{p}(K)$. The definition of $W_{p}\left(f \circ \omega^{-n}\right)$ yields

$$
\left(W_{p}\left(f \circ \omega^{-n}\right)\right)(x)=(\underbrace{\left(f \circ \omega^{-n}\right)\left(x_{m}\right)}_{\begin{array}{c}
=\pi\left(r\left(x_{m}^{1 / p^{n}}\right)\right) \tag{29}\\
\text { (by } \frac{(27)}{2}, \text { applied } \\
\text { to } \left.v=x_{m}\right)
\end{array}})_{m \in P_{p}}=\left(\pi\left(r\left(x_{m}^{1 / p^{n}}\right)\right)\right)_{m \in P_{p}}
$$

On the other hand, define $y \in W_{p}(R)$ by $y=\left(r\left(x_{m}^{1 / p^{n}}\right)\right)_{m \in P_{p}}$. Then, the definition of $W_{p}(\pi)$ yields

$$
\begin{equation*}
\left(W_{p}(\pi)\right)(y)=\left(\pi\left(r\left(x_{m}^{1 / p^{n}}\right)\right)\right)_{m \in P_{p}}=\left(W_{p}\left(f \circ \omega^{-n}\right)\right)(x) \tag{29}
\end{equation*}
$$

Applying the map $\widetilde{w}_{p^{n}}: W_{p}(L) \rightarrow R / \mathfrak{a}_{n}$ to both sides of this equality, we obtain

$$
\widetilde{w}_{p^{n}}\left(\left(W_{p}(\pi)\right)(y)\right)=\widetilde{w}_{p^{n}}\left(\left(W_{p}\left(f \circ \omega^{-n}\right)\right)(x)\right)=\left(\widetilde{w}_{p^{n}} \circ W_{p}\left(f \circ \omega^{-n}\right)\right)(x) .
$$

Thus,

$$
\begin{align*}
\left(\widetilde{w}_{p^{n}} \circ W_{p}\left(f \circ \omega^{-n}\right)\right)(x) & =\widetilde{w}_{p^{n}}\left(\left(W_{p}(\pi)\right)(y)\right)=\underbrace{\left(\widetilde{w}_{p^{n}} \circ W_{p}(\pi)\right)}_{\begin{array}{c}
=\pi_{n} \circ w_{p^{n}} \\
\text { (since the diagram (5) } \\
\text { commutes) }
\end{array}}(y) \\
& =\left(\pi_{n} \circ w_{p^{n}}\right)(y)=\pi_{n}\left(w_{p^{n}}(y)\right) . \tag{30}
\end{align*}
$$

On the other hand, (11) yields

$$
w_{p^{n}}(y)=\sum_{i=0}^{n} p^{i}\left(r\left(x_{p^{i}}^{1 / p^{n}}\right)\right)^{p^{n-i}} \quad\left(\text { since } y=\left(r\left(x_{m}^{1 / p^{n}}\right)\right)_{m \in P_{p}}\right)
$$

Applying the map π_{n} to both sides of this equality, we obtain

$$
\pi_{n}\left(w_{p^{n}}(y)\right)=\pi_{n}\left(\sum_{i=0}^{n} p^{i}\left(r\left(x_{p^{i}}^{1 / p^{n}}\right)\right)^{p^{n-i}}\right)=\left(\pi_{n} \circ \Theta\right)(x)
$$

(by (23)). Hence, (30) becomes

$$
\begin{equation*}
\left(\widetilde{w}_{p^{n}} \circ W_{p}\left(f \circ \omega^{-n}\right)\right)(x)=\pi_{n}\left(w_{p^{n}}(y)\right)=\left(\pi_{n} \circ \Theta\right)(x) . \tag{31}
\end{equation*}
$$

Now, forget that we fixed x. We thus have proven (31) for each $x \in W_{p}(K)$. In other words, we have $\widetilde{w}_{p^{n}} \circ W_{p}\left(f \circ \omega^{-n}\right)=\pi_{n} \circ \Theta$. Thus, (28) is proven.

Now, the map $\widetilde{w}_{p^{n}} \circ W_{p}\left(f \circ \omega^{-n}\right)$ is a ring homomorphism (since it is the composition of the two ring homomorphisms $\widetilde{w}_{p^{n}}$ and $W_{p}\left(f \circ \omega^{-n}\right)$). In view of (28), this rewrites as follows: The map $\pi_{n} \circ \Theta$ is a ring homomorphism.

Now, forget that we fixed n. We thus have shown that the map $\pi_{n} \circ \Theta$ is a ring homomorphism for each $n \geq 0$. Hence, Proposition 11.3 (applied to $A=W_{p}(K)$ and $\gamma=\Theta$) shows that $\Theta: W_{p}(K) \rightarrow R$ is a ring homomorphism. Hence, there exists a continuous ring homomorphism $\theta: W_{p}(K) \rightarrow R$ making the square (2) commute (namely, $\theta=\Theta$).

It thus only remains to show that there exists at most one such homomorphism. It will clearly be enough to prove that there exists at most one ring homomorphism $\theta: W_{p}(K) \rightarrow R$ making the square (2) commute. In other words, it will be enough to prove that there exists at most one ring homomorphism $\theta: W_{p}(K) \rightarrow R$ such that $\pi \circ \theta=f \circ w_{1}$. But this follows from Proposition 11.13 (applied to $G=f \circ w_{1}$). Thus, the proof of Theorem 11.1 is complete.

References

[BriCon09] Olivier Brinon, Brian Conrad, CMI Summer School notes on p-adic Hodge theory (preliminary version), 24 June 2009. http://math.stanford.edu/~conrad/papers/notes.pdf

[^0]: ${ }^{1}$ This version is exactly the version that is available on the arXiv under the identifier arXiv:1409.7445v1; it also is exactly the version that used to be available at http://www. math.harvard.edu/~rabinoff/misc/witt.pdf

[^1]: ${ }^{2}$ It requires showing that $f_{x y}=f_{x} \prec \cdot f_{y}$ and $f_{x+y}=f_{x} \widehat{f} f_{y}$ for any $x, y \in W(A)$ (where $\widehat{\text { and }} \hat{+}$ are the multiplication and the addition in the ring $\Lambda(A)$), and that $f_{1}=1-t$ and $f_{0}=1$. Proving that $f_{x y}=f_{x} \times f_{y}$ for any $x, y \in W(A)$ is easy: it follows (by functoriality) from $f_{X Y}=f_{X} \curvearrowright f_{Y}$ (where X and Y are as in the proof of Theorem 2.6), which was proven in the proof of Theorem 2.6. Similarly, the other properties can be shown.

[^2]: ${ }^{3}$ As far as I recall, I devised this proof based on discussions with Sam Raskin at MIT in 2016. Sam seems to have a cleaner and shorter proof, which I unfortunately have never had the time to fully comprehend. Sorry, Sam, for making a mess of your ideas!

[^3]: ${ }^{4}$ Proof. Let $g \in G$. Thus, $g \in G=\left(\pi_{n} \circ \varphi\right)^{-1}\left(\left\{\pi_{n}(\varphi(t))\right\}\right)$. Hence, $\left(\pi_{n} \circ \varphi\right)(g) \in\left\{\pi_{n}(\varphi(t))\right\}$, so that $\left(\pi_{n} \circ \varphi\right)(g)=\pi_{n}(\varphi(t))$. Hence, $\pi_{n}(\varphi(t))=\left(\pi_{n} \circ \varphi\right)(g)=\pi_{n}(\varphi(g))$. In other words, $\varphi(t) \equiv \varphi(g) \bmod \mathfrak{a}_{n}$ (since π_{n} is the canonical projection $\left.R \rightarrow R / \mathfrak{a}_{n}\right)$. Thus, $\varphi(g) \in$ $\varphi(t)+\mathfrak{a}_{n} \subset U$. Hence, $g \in \varphi^{-1}(U)$.

 Now, forget that we fixed g. We thus have proven that $g \in \varphi^{-1}(U)$ for each $g \in G$. In other words, $G \subset \varphi^{-1}(U)$.
 ${ }^{5}$ Proof. We have $\left(\pi_{n} \circ \varphi\right)(t)=\pi_{n}(\varphi(t)) \in\left\{\pi_{n}(\varphi(t))\right\}$ and thus $t \in$ $\left(\pi_{n} \circ \varphi\right)^{-1}\left(\left\{\pi_{n}(\varphi(t))\right\}\right)=G$.

[^4]: ${ }^{7}$ More precisely: If we apply it to $L=K$ and $f=\mathrm{id}_{K}$, where R is a p-ring with residue ring K, then we recover the classical result that there exists a unique Teichmüller system of representatives $K \rightarrow R$.

