Witt vectors. Part 1

Michiel Hazewinkel

Sidenotes by Darij Grinberg

Witt#0: Teichmüller representatives

[not completed, not proofread]

The purpose of this note is to correct the results from section 4 of [1] and to give detailed proofs for them.

First, section 4 of [1] has four mistakes. Let us correct them:

- "The ring of power series k(T)" should be "The ring of power series k[T]".
- The map σ is never defined. It should be defined by $\sigma = \mathbf{f}_p$.
- In the sentence directly following (4.1), the term $\sigma^{-1}(x)$ should be $\sigma^{-r}(x)$ instead.
- We need to suppose that A is not only complete, but also separated (i. e., Hausdorff) in the m-adic topology. (Otherwise, at least some of the results stated in section 4 of [1] become false.)

Now it is time to formulate the main results of section 4 of [1]. But first we introduce a notation:

Definition. Let A be a ring, and $p \in \mathbb{N}$ a prime. An element $a \in A$ is said to be p-ancient if and only if

(for every $\mu \in \mathbb{N}$, there exists some $b \in A$ such that $b^{p^{\mu}} = a$).

With this definition, we can notice that for any commutative ring A with unity,

the element $0 \in A$ is p-ancient (since $0 = 0^{p^{\mu}}$ for every $\mu \in \mathbb{N}$);

the element $1 \in A$ is p-ancient (since $1 = 1^{p^{\mu}}$ for every $\mu \in \mathbb{N}$);

if two elements a and a' of A are p-ancient, then their product aa' is p-ancient as well (1)

(since for every $\mu \in \mathbb{N}$, there exists some $b \in A$ such that $b^{p^{\mu}} = a$ (since a is p-ancient), and there exists some $b' \in A$ such that $(b')^{p^{\mu}} = a'$ (since a' is p-ancient), and hence $(bb')^{p^{\mu}} = b^{p^{\mu}} (b')^{p^{\mu}} = aa'$, which shows that aa' is p-ancient as well);

if $p \cdot 1_A = 0$ in A, and if two elements a and a' of A are p-ancient, then their sum a + a' is p-ancient as well (2)

(since for every $\mu \in \mathbb{N}$, there exists some $b \in A$ such that $b^{p^{\mu}} = a$ (since a is p-ancient), and there exists some $b' \in A$ such that $(b')^{p^{\mu}} = a'$ (since a' is p-ancient), and hence

$$(b+b')^{p^{\mu}} = \underbrace{b^{p^{\mu}}}_{=a} + \underbrace{(b')^{p^{\mu}}}_{=a'}$$
 (by the Idiot's Binomial Formula, since $p \cdot 1_A = 0$ in A)
$$= a + a',$$

which shows that a + a' is p-ancient as well);

Now come the (corrected) main assertions of section 4 of [1]:

Theorem 1. Let A be a commutative ring with unity, and let \mathfrak{m} be an ideal¹ of A. Let $p \in \mathbb{N}$ be a prime such that $p \cdot 1_k = 0$ in the ring $k = A/\mathfrak{m}$. Assume that the ring homomorphism

$$\sigma: k \to k$$
 defined by $\sigma(x) = x^p$ for every $x \in k$

is bijective². Suppose, further, that the ring A is complete and separated in the \mathfrak{m} -adic topology.

For every element u of A, we let \overline{u} denote the canonical projection of u onto the factor ring A/\mathfrak{m} .

(a) For every $x \in k$, there exists one and only one *p*-ancient element *a* of *A* such that $\overline{a} = x$.

We will denote this element a by t(x). Clearly, $\overline{t(x)} = x$ for every $x \in k$.

Thus, we have defined a map $t: k \to A$.

- **(b)** We have t(0) = 0, t(1) = 1 and t(xx') = t(x)t(x') for any two elements x and x' of k.
- (c) If $p \cdot 1_A = 0$ in A, then t(x + x') = t(x) + t(x') for any two elements x and x' of k.
- (d) If $t': k \to A$ is a map such that

$$(t'(xx') = t'(x)t'(x')$$
 for any two elements of x and x' of k) (3)

and

$$\left(\overline{t'(x)} = x \text{ for every } x \in k\right),$$
 (4)

then t' = t.

 $^{^{1}}$ not necessarily a maximal ideal, despite the label \mathfrak{m} being mostly used for maximal ideals in literature

²This map $\sigma: k \to k$ is indeed a ring homomorphism, since $p \cdot 1_k = 0$ in the ring k. It is the so-called *Frobenius endomorphism* of the ring k.

(e) If $t': k \to A$ is a map such that

$$\left(t'\left(x^{p}\right) = \left(t'\left(x\right)\right)^{p} \text{ for any } x \in k\right) \tag{5}$$

and

$$\left(\overline{t'(x)} = x \text{ for every } x \in k\right),$$
 (6)

then t' = t.

Note that for every $x \in k$, the element t(x) is called the *Teichmüller representative* of x in A. Theorem 1 (a) characterizes this Teichmüller representative t(x) as the only p-ancient element of A whose residue class modulo \mathfrak{m} is x. Theorem 1 (b) shows that the Teichmüller system of representatives is multiplicative and respects 0 and 1. Roughly speaking, Theorem 1 (d) says that it is actually the only multiplicative system of representatives, and Theorem 1 (e) says that it is the only system of representatives that commutes with taking the p-th power.

Before we start proving Theorem 1, a lemma (generalizing Lemma 3 in [2]):

Lemma 2. Let A be a commutative ring with unity, and $p \in \mathbb{N}$ be a nonnegative integer³. Let $\mathfrak{m} \subseteq A$ be an ideal such that $p \cdot 1_A \in \mathfrak{m}$. Let $k \in \mathbb{N}$ and $\ell \in \mathbb{N}$ be such that k > 0. Let $a \in A$ and $b \in A$. If $a \equiv b \mod \mathfrak{m}^k$, then $a^{p^{\ell}} \equiv b^{p^{\ell}} \mod \mathfrak{m}^{k+\ell}$.

Proof of Lemma 2. Assume that $a \equiv b \mod \mathfrak{m}^k$. We need to show that every $\ell \in \mathbb{N}$ satisfies $a^{p^\ell} \equiv b^{p^\ell} \mod \mathfrak{m}^{k+\ell}$.

We will show this by induction over ℓ . For $\ell=0$, the claim that $a^{p^\ell}\equiv b^{p^\ell} \mod \mathfrak{m}^{k+\ell}$ is true (because it is equivalent to $a\equiv b \mod \mathfrak{m}^k$). Now, for the induction step, we assume that $a^{p^\ell}\equiv b^{p^\ell} \mod \mathfrak{m}^{k+\ell}$ for some $\ell\in\mathbb{N}$, and we want to show that $a^{p^{\ell+1}}\equiv b^{p^{\ell+1}} \mod \mathfrak{m}^{k+\ell+1}$. In fact, we have $a\equiv b \mod \mathfrak{m}$ (because $a\equiv b \mod \mathfrak{m}^k$ yields $a-b\in \mathfrak{m}^k\subseteq \mathfrak{m}$ (since k>0)) and thus

$$\sum_{k=0}^{p-1} \left(a^{p^{\ell}} \right)^k \left(b^{p^{\ell}} \right)^{p-1-k} \equiv \sum_{k=0}^{p-1} \underbrace{\left(b^{p^{\ell}} \right)^k \left(b^{p^{\ell}} \right)^{p-1-k}}_{=\left(b^{p^{\ell}} \right)^{p-1}} = \sum_{k=0}^{p-1} \left(b^{p^{\ell}} \right)^{p-1} = p \left(b^{p^{\ell}} \right)^{p-1} \equiv 0 \operatorname{mod} \mathfrak{m}$$

(since $p \cdot 1_A \in \mathfrak{m}$ yields $p \cdot 1_A \equiv 0 \mod \mathfrak{m}$), so that $\sum_{k=0}^{p-1} \left(a^{p^{\ell}}\right)^k \left(b^{p^{\ell}}\right)^{p-1-k} \in \mathfrak{m}$. Hence,

$$a^{p^{\ell+1}} - b^{p^{\ell+1}} = \left(a^{p^{\ell}}\right)^p - \left(b^{p^{\ell}}\right)^p = \underbrace{\left(a^{p^{\ell}} - b^{p^{\ell}}\right)}_{\in \mathfrak{m}^{k+\ell}, \text{ since}} \cdot \underbrace{\sum_{k=0}^{p-1} \left(a^{p^{\ell}}\right)^k \left(b^{p^{\ell}}\right)^{p-1-k}}_{\in \mathfrak{m}}$$

$$\left(\text{since } x^q - y^q = (x-y) \cdot \sum_{k=0}^{q-1} x^k y^{q-1-k} \text{ for any } q \in \mathbb{N}, \text{ any } x \in A \text{ and any } y \in A\right)$$

$$\in \mathfrak{m}^{k+\ell} \cdot \mathfrak{m} = \mathfrak{m}^{k+\ell+1}.$$

³Though we call it p, we do not require it to be a prime!

so that $a^{p^{\ell+1}} \equiv b^{p^{\ell+1}} \mod \mathfrak{m}^{k+\ell+1}$, and the induction step is complete. Thus, Lemma 2 is proven.

Proof of Theorem 1. Before we start proving Theorem 1, we notice three trivial things: First,

$$\overline{0} = 0,$$
 $\overline{1} = 1,$ $\overline{xy} = \overline{x} \cdot \overline{y},$ $\overline{x+y} = \overline{x} + \overline{y},$ $\overline{x^n} = \overline{x}^n$

for any $x \in A$, $y \in A$ and $n \in \mathbb{N}$. This is all because the canonical projection $A \to A/\mathfrak{m}$ is a ring homomorphism.

Besides,

$$y^{p^s} = \sigma^s(y)$$
 for every $y \in k$ and $s \in \mathbb{N}$. (7)

(This follows by induction over s from the fact that $x^p = \sigma(x)$ for every $x \in k$).

Finally, since the canonical projection $A \to A/\mathfrak{m}$ is a ring homomorphism, we have $\overline{p \cdot 1_A} = p \cdot 1_k = 0$. Thus, $p \cdot 1_A \in \mathfrak{m}$.

(a) In order to prove Theorem 1 (a), we have two prove two assertions:

Assertion 1: For every $x \in k$, there exists at least one p-ancient element a of A such that $\overline{a} = x$.

Assertion 2: For every $x \in k$, there exists at most one p-ancient element a of A such that $\overline{a} = x$.

Once these two Assertions are proven, Theorem 1 (a) will immediately follow.

Proof of Assertion 1. Let $x \in k$. For every $r \in \mathbb{N}$, let y_r be an element of A satisfying $\overline{y_r} = \sigma^{-r}(x)$. (Such a y_r clearly exists.) First, we are going to prove that

for every
$$\mu \in \mathbb{N}$$
, the sequence $\left(y_{r+\mu}^{p^r}\right)_{r\in\mathbb{N}}$ is a Cauchy sequence with respect to the \mathfrak{m} -adic topology. (8)

In fact, this requires proving that for every $\nu \in \mathbb{N}$, there exists some $N \in \mathbb{N}$ such that $y_{i+\mu}^{p^i} \equiv y_{j+\mu}^{p^j} \mod \mathfrak{m}^{\nu}$ for every $i \geq N$ and every $j \geq N$. We will prove this for $N = \max\{\nu-1,0\}$. Namely, if $i \geq \max\{\nu-1,0\}$ and $j \geq \max\{\nu-1,0\}$, then $i-(\nu-1) \geq 0$ (since $i \geq \max\{\nu-1,0\} \geq \nu-1$) and $j-(\nu-1) \geq 0$ (similarly), so that

$$\overline{y_{i+\mu}^{p^{i-(\nu-1)}}} = \overline{y_{i+\mu}}^{p^{i-(\nu-1)}} = \underbrace{\left(\sigma^{-(i+\mu)}(x)\right)^{p^{i-(\nu-1)}}}_{=\sigma^{i-(\nu-1)}\left(\sigma^{-(i+\mu)}(x)\right)} \\
= \underbrace{\left(\sigma^{-(i+\mu)}(x)\right)^{p^{i-(\nu-1)}}}_{\text{by }(7)} \\
\text{(since } \overline{y_{i+\mu}} = \sigma^{-(i+\mu)}(x) \text{ by the definition of } y_{i+\mu}\right)}_{= \sigma^{i-(\nu-1)}\left(\sigma^{-(i+\mu)}(x)\right) = \sigma^{i-(\nu-1)-(i+\mu)}(x) = \sigma^{-(\nu-1)-\mu}(x)$$

and

$$\overline{y_{j+\mu}^{p^{j-(\nu-1)}}} = \overline{y_{j+\mu}}^{p^{j-(\nu-1)}} = \underbrace{\left(\sigma^{-(j+\mu)}(x)\right)^{p^{j-(\nu-1)}}}_{=\sigma^{j-(\nu-1)}\left(\sigma^{-(j+\mu)}(x)\right)}$$

$$\text{(since } \overline{y_{j+\mu}} = \sigma^{-(j+\mu)}(x) \text{ by the definition of } y_{j+\mu} \text{)}$$

$$= \sigma^{j-(\nu-1)}\left(\sigma^{-(j+\mu)}(x)\right) = \sigma^{j-(\nu-1)-(j+\mu)}(x) = \sigma^{-(\nu-1)-\mu}(x),$$

so that $\overline{y_{i+\mu}^{p^{i-(\nu-1)}}} = \overline{y_{j+\mu}^{p^{j-(\nu-1)}}}$ and thus $y_{i+\mu}^{p^{i-(\nu-1)}} \equiv y_{j+\mu}^{p^{j-(\nu-1)}} \mod \mathfrak{m}$, so that Lemma 2 (applied to $a = y_{i+\mu}^{p^{i-(\nu-1)}}$, $b = y_{j+\mu}^{p^{j-(\nu-1)}}$, k = 1 and $\ell = \nu - 1$) yields $\left(y_{i+\mu}^{p^{i-(\nu-1)}}\right)^{p^{\nu-1}} \equiv \left(y_{j+\mu}^{p^{j-(\nu-1)}}\right)^{p^{\nu-1}} \mod \mathfrak{m}^{\nu}$, what rewrites as $y_{i+\mu}^{p^i} \equiv y_{j+\mu}^{p^j} \mod \mathfrak{m}^{\nu}$ (since $\left(y_{i+\mu}^{p^{i-(\nu-1)}}\right)^{p^{\nu-1}} = y_{i+\mu}^{p^i}$ and $\left(y_{j+\mu}^{p^{j-(\nu-1)}}\right)^{p^{\nu-1}} = y_{j+\mu}^{p^j}$). Thus, the sequence $\left(y_{r+\mu}^{p^r}\right)_{r \in \mathbb{N}}$ is a Cauchy sequence with respect to the \mathfrak{m} -adic topology. This proves (8).

Since the ring A is complete in the \mathfrak{m} -adic topology, every Cauchy sequence with respect to the \mathfrak{m} -adic topology has a limit in A. Thus, by (8), for every $\mu \in \mathbb{N}$, the sequence $\left(y_{r+\mu}^{p^r}\right)_{r\in\mathbb{N}}$ has a limit $\lim_{r\to\infty}y_{r+\mu}^{p^r}\in A$. In particular, for $\mu=0$, this means that the sequence $\left(y_r^{p^r}\right)_{r\in\mathbb{N}}$ has a limit $\lim_{r\to\infty}y_r^{p^r}\in A$. We denote this limit by a; thus, $a=\lim_{r\to\infty}y_r^{p^r}$.

Now, we are going to prove that the element $a \in A$ is p-ancient and satisfies $\overline{a} = x$. Once this is proven, Assertion 1 will immediately follow.

The element a is p-ancient, since for every $\mu \in \mathbb{N}$, there exists some $b \in A$ such that $b^{p^{\mu}} = a$ (in fact, take $b = \lim_{r \to \infty} y_{r+\mu}^{p^r}$; then,

$$b^{p^{\mu}} = \left(\lim_{r \to \infty} y_{r+\mu}^{p^r}\right)^{p^{\mu}} = \lim_{r \to \infty} \left(\underbrace{y_{r+\mu}^{p^r}\right)^{p^{\mu}}}_{=y_{r+\mu}^{p^r+\mu}}\right)$$
 (since the map $A \to A$, $u \mapsto u^{p^{\mu}}$ is continuous)
$$= \lim_{r \to \infty} y_{r+\mu}^{p^{r+\mu}} = \lim_{r \to \infty} y_r^{p^r}$$
 (here we substituted r for $r + \mu$ in the limit)
$$= a$$

). Besides, the canonical projection from A to A/\mathfrak{m} is continuous (where the ring A is given the \mathfrak{m} -adic topology, and the ring A/\mathfrak{m} is given the discrete topology), so that

$$\overline{\lim_{r \to \infty} y_r^{p^r}} = \lim_{r \to \infty} \underbrace{\overline{y_r^{p^r}}}_{=\overline{y_r}^{p^r}} = \lim_{r \to \infty} \underbrace{\left(\sigma^{-r}(x)\right)^{p^r}}_{=\sigma^r\left(\sigma^{-r}(x)\right)} = \lim_{r \to \infty} \sigma^r\left(\sigma^{-r}(x)\right) = \lim_{r \to \infty} x = x.$$

$$= \sigma^r\left(\sigma^{-r}(x)\right) \text{ by (7)}$$

Since $\lim_{r\to\infty}y_r^{p^r}=a$, this rewrites as $\overline{a}=x$. Hence, we have shown that a is p-ancient and satisfies $\overline{a}=x$. This proves Assertion 1.

Proof of Assertion 2. Let a_1 and a_2 be two p-ancient elements of A such that $\overline{a_1} = x$ and $\overline{a_2} = x$. We are going to prove that $a_1 = a_2$.

We will first prove that $a_1 - a_2 \in \mathfrak{m}^s$ for every $s \in \mathbb{N}$.

In fact, for every $\mu \in \mathbb{N}$, there exists some $b \in A$ such that $b^{p^{\mu}} = a_1$ (since a_1 is p-ancient). Applied to $\mu = s$, this yields that there exists some $b \in A$ such that $b^{p^s} = a_1$. Denote this b by b_1 ; thus we have found some $b_1 \in A$ such that $b_1^{p^s} = a_1$.

Similarly, we can find some $b_2 \in A$ such that $b_2^{p^s} = a_2$. Now,

$$\sigma^{s}\left(\overline{b_{1}}-\overline{b_{2}}\right) = \sigma^{s}\left(\overline{b_{1}}-\overline{b_{2}}\right) = \underbrace{\sigma^{s}\left(\overline{b_{1}}\right)}_{=\overline{b_{1}}^{p^{s}}} - \underbrace{\sigma^{s}\left(\overline{b_{2}}\right)}_{=\overline{b_{2}}^{p^{s}}} - \underbrace{\sigma^{s}\left(\overline{b_{2}}\right)}_{=\overline{b_{2}}^{p^{s}}}$$
 (since σ^{s} is a ring homomorphism)
$$= \overline{b_{1}}^{p^{s}} - \overline{b_{2}}^{p^{s}} = \underbrace{\overline{b_{1}}^{p^{s}}}_{=\overline{a_{1}}=x} - \underbrace{\overline{b_{2}}^{p^{s}}}_{=\overline{a_{2}}=x} = 0,$$

so that $\overline{b_1-b_2}=0$ (since $\sigma:k\to k$ is bijective, and thus $\sigma^s:k\to k$ is bijective as well). Therefore, $b_1-b_2\in\mathfrak{m}$ and thus $b_1\equiv b_2\,\mathrm{mod}\,\mathfrak{m}$. Consequently, Lemma 2 (applied to $b_1,\,b_2,\,1$ and s instead of $a,\,b,\,k$ and ℓ) yields $b_1^{p^s}\equiv b_2^{p^s}\,\mathrm{mod}\,\mathfrak{m}^{s+1}$ for every $s\in\mathbb{N}$. Thus, for every $s\in\mathbb{N}$, we have $b_1^{p^s}-b_2^{p^s}\in\mathfrak{m}^{s+1}=\mathfrak{m}\cdot\mathfrak{m}^s\subseteq\mathfrak{m}^s$ (since \mathfrak{m}^s is an ideal). Since $b_1^{p^s}=a_1$ and $b_2^{p^s}=a_2$, this rewrites as follows: For every $s\in\mathbb{N}$, we have $a_1-a_2\in\mathfrak{m}^s$. Hence, $a_1-a_2\in\bigcap_{s\in\mathbb{N}}\mathfrak{m}^s$. But $\bigcap_{s\in\mathbb{N}}\mathfrak{m}^s=0$, since the ring A is separated in the \mathfrak{m} -adic topology. Thus, $a_1-a_2\in 0$. In other words, $a_1-a_2=0$, so that $a_1=a_2$.

Hence, for any two p-ancient elements a_1 and a_2 of A such that $\overline{a_1} = x$ and $\overline{a_2} = x$, we have proven that $a_1 = a_2$. In other words, we have shown that any two p-ancient elements a of A such that $\overline{a} = x$ must be equal. Thus, Assertion 2 is proven.

Now that both Assertions 1 and 2 are proven, Theorem 1 (a) becomes obvious.

(b) The element t(0) is defined as the only p-ancient element a of A such that $\overline{a} = 0$. Hence, t(0) = 0 (because 0 is a p-ancient element of A and satisfies $\overline{0} = 0$).

The element t(1) is defined as the only p-ancient element a of A such that $\overline{a} = 1$. Hence, t(1) = 1 (because 1 is a p-ancient element of A and satisfies $\overline{1} = 1$).

Now, let x and x' be two elements of k. We want to prove that t(xx') = t(x) t(x'). We know that t(x) is a p-ancient element of A and that $\overline{t(x')} = x$. We also know that t(x') is a p-ancient element of A and that $\overline{t(x')} = x'$. Now, the element t(xx') is defined as the only p-ancient element a of A such that $\overline{a} = xx'$. Hence, t(xx') = t(x) t(x') (because t(x) t(x') is a p-ancient element of A and satisfies $\overline{t(x)} t(x') = t(x) t(x') = t($

Thus, Theorem 1 (b) is completely proven.

(c) Assume (for the duration of the proof of Theorem 1 (c)) that $p \cdot 1_A = 0$ in A. Let x and x' be two elements of k. We want to prove that t(x+x') = t(x) + t(x'). We know that t(x) is a p-ancient element of A and that $\overline{t(x')} = x$. We also know that t(x') is a p-ancient element of A and that $\overline{t(x')} = x'$. Now, the element t(x+x') is defined as the only p-ancient element a of A such that $\overline{a} = x + x'$. Hence, t(x+x') = t(x) + t(x') (because $\overline{t(x)} + t(x')$ is a p-ancient element of A on a satisfies $\overline{t(x)} + t(x') = x + x'$). This proves Theorem 1 (c).

(e) We can easily see that

$$t'(y^{p^{\mu}}) = (t'(y))^{p^{\mu}} \text{ for any } y \in k \text{ and any } \mu \in \mathbb{N}$$
 (9)

⁴by (1), since t(x) and t(x') are p-ancient

⁵by (2), since t(x) and t(x') are p-ancient

⁶. Hence,

$$t'(x) = (t'(\sigma^{-\mu}(x)))^{p^{\mu}}$$
 for any $y \in k$ and any $\mu \in \mathbb{N}$ (10)

- ⁷. Thus, for every $x \in k$, the element $t'(x) \in A$ is p-ancient (in fact, for every $\mu \in \mathbb{N}$, there exists some $b \in A$ such that $b^{p^{\mu}} = t'(x)$, namely $b = t'(\sigma^{-\mu}(x))$). Besides, this element t'(x) satisfies $\overline{t'(x)} = x$ (by (6)). On the other hand, we know that the only p-ancient element $a \in A$ that satisfies $\overline{a} = x$ is t(x). Thus, t'(x) = t(x). We have proven this for every $x \in k$; hence, t' = t. Thus, Theorem 1 (e) is proven.
- (d) By induction, (3) yields (5). Also, clearly, (4) is equivalent to (6). Thus, (5) and (6) hold, and therefore, Theorem 1 (e) yields that t' = t. This proves Theorem 1 (d).

Now, the proof of Theorem 1 is complete.

References

- [1] Michiel Hazewinkel, Witt vectors. Part 1, revised version: 20 April 2008.
- [2] Darij Grinberg, Witt#3: Ghost component computations.

Induction base: For $\mu = 0$, the equation (9) is trivially true. Induction step: Assume that some given $\mu \in \mathbb{N}$ satisfies

$$t'\left(y^{p^{\mu}}\right) = \left(t'\left(y\right)\right)^{p^{\mu}}$$
 for any $y \in k$.

Then,

$$t'\left(y^{p^{\mu+1}}\right) = \left(t'\left(y\right)\right)^{p^{\mu+1}}$$
 for any $y \in k$,

because

$$t'\left(y^{p^{\mu+1}}\right) = t'\left(y^{p^{\mu}p}\right) = t'\left(\left(y^{p^{\mu}}\right)^{p}\right) = \left(t'\left(y^{p^{\mu}}\right)\right)^{p} \qquad \text{(by (5), applied to } x = y^{p^{\mu}}\right)$$

$$= \left(\left(t'\left(y\right)\right)^{p^{\mu}}\right)^{p} \qquad \text{(by the induction assumption)}$$

$$= \left(t'\left(y\right)\right)^{p^{\mu}p} = \left(t'\left(y\right)\right)^{p^{\mu+1}},$$

and the induction step is complete. Thus, (9) is proven.

 7 since

$$t'(x) = t'\left(\underbrace{\sigma^{\mu}\left(\sigma^{-\mu}\left(x\right)\right)}_{=\left(\sigma^{-\mu}\left(x\right)\right)^{p^{\mu}}}\right) = t'\left(\left(\sigma^{-\mu}\left(x\right)\right)^{p^{\mu}}\right) = \left(t'\left(\sigma^{-\mu}\left(x\right)\right)\right)^{p^{\mu}}$$
by (7)

(by (9), applied to $y = \sigma^{-\mu}(x)$)

⁶Proof of (9) by induction over μ :