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Witt#0: Teichmiiller representatives
[not completed, not proofread]

The purpose of this note is to correct the results from section 4 of [1] and to give
detailed proofs for them.
First, section 4 of [1] has four mistakes. Let us correct them:
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e "The ring of power series k ((T))” should be ”The ring of power series k [[T]”.

e The map o is never defined. It should be defined by o = f,,.
e In the sentence directly following (4.1), the term o~! () should be 0" (z) instead.

e We need to suppose that A is not only complete, but also separated (i. e.,
Hausdorff) in the m-adic topology. (Otherwise, at least some of the results stated
in section 4 of [1] become false.)

Now it is time to formulate the main results of section 4 of [1]. But first we introduce
a notation:

Definition. Let A be a ring, and p € N a prime. An element a € A is said to be
p-ancient if and only if

(for every u € N, there exists some b € A such that o"" = a) .

With this definition, we can notice that for any commutative ring A with unity,

the element 0 € A is p-ancient

(since 0 = 07" for every p € N);

the element 1 € A is p-ancient

(since 1 = 17" for every u € N);

if two elements a and a’ of A are p-ancient, then their product

aa’ is p-ancient as well (1)

(since for every u € N, there exists some b € A such that V" = a (since a is p-
ancient), and there exists some b € A such that (0/)"" = o’ (since o’ is p-ancient),
and hence (b0/)"" = b"" (/)" = ad’, which shows that aa’ is p-ancient as well);



if p-14 =01in A, and if two elements a and @’ of A are p-ancient,

then their sum a 4 @’ is p-ancient as well (2)

(since for every u € N, there exists some b € A such that V" = a (since a is p-
ancient), and there exists some b € A such that (0/)"" = d’ (since o’ is p-ancient),

and hence
(b+)" =" + )" (by the Idiot’s Binomial Formula, since p-14 = 0 in A)
=a o
=a+ad,

which shows that a + o’ is p-ancient as well);
Now come the (corrected) main assertions of section 4 of [1]:

Theorem 1. Let A be a commutative ring with unity, and let m be an
ideall|of A. Let p € N be a prime such that p-1; = 0 in the ring k = A /m.
Assume that the ring homomorphism

o : k — k defined by o (z) = 2P for every x € k
is bijectiveﬂ. Suppose, further, that the ring A is complete and separated
in the m-adic topology.

For every element u of A, we let u denote the canonical projection of u onto
the factor ring A /m.

(a) For every = € k, there exists one and only one p-ancient element a of
A such that @ = z.

We will denote this element a by ¢ (x). Clearly, t (x) = z for every = € k.
Thus, we have defined a map ¢ : k — A.

(b) We have t(0) = 0, t(1) = 1 and t(z2') = t(z)t(2’) for any two
elements x and 2’ of k.

(c)Ifp-14=01in A, then ¢t (x + 2') =t (z) + t (2’) for any two elements x
and 2’ of k.

(d) If ¢’ : k — A is a map such that
(t' (xz") =t' (z) ¢’ (') for any two elements of z and 2’ of k)  (3)

and

(t’ (x) = x for every x € k) , (4)

then ¢’ = t.

not necessarily a maximal ideal, despite the label m being mostly used for maximal ideals in
literature

2This map o : k — k is indeed a ring homomorphism, since p - 1, = 0 in the ring k. It is the
so-called Frobenius endomorphism of the ring k.



(e) If ¢’ : k — A is a map such that
(¢ (z*) = (' (x))" for any = € k) (5)

and

(t’ (x) = x for every = € k:) ) (6)
then ¢ = t.

Note that for every = € k, the element ¢ (z) is called the Teichmiiller representative
of x in A. Theorem 1 (a) characterizes this Teichmiiller representative ¢ (z) as the
only p-ancient element of A whose residue class modulo m is . Theorem 1 (b) shows
that the Teichmiiller system of representatives is multiplicative and respects 0 and 1.
Roughly speaking, Theorem 1 (d) says that it is actually the only multiplicative system
of representatives, and Theorem 1 (e) says that it is the only system of representatives
that commutes with taking the p-th power.

Before we start proving Theorem 1, a lemma (generalizing Lemma 3 in [2]):

Lemma 2. Let A be a commutative ring with unity, and p € N be a
nonnegative integer’] Let m C A be an ideal such that p-1, € m. Let
k€ Nand ¢ € Nbesuch that k > 0. Leta € Aand b € A. If a = bmod m”,
then a” = b mod mF+.,

Proof of Lemma 2. Assume that @ = bmod m*. We need to show that every £ € N

. pZ — 4 k+/
satisfies a? = b mod m"**.

We will show this by induction over ¢. For ¢ = 0, the claim that a?' = b mod mk+t
is true (because it is equivalent to a = bmodm*). Now, for the induction step, we
assume that a?’ = b mod m*+* for some ¢ € N, and we want to show that =
o mod mFHHL In fact, we have a = bmodm (because a = bmodm* yields a — b €

mf C m (since k > 0)) and thus
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3Though we call it p, we do not require it to be a prime!
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so that @™ = 0*"™ mod m***+!, and the induction step is complete. Thus, Lemma 2
is proven.

Proof of Theorem 1. Before we start proving Theorem 1, we notice three trivial
things: First,

0=0, 1=1, Y =717, T+y=7T+7, " =7"
forany x € A,y € Aand n € N. This is all because the canonical projection A — A /m
is a ring homomorphism.
Besides,
yP =0t (y) for every y € k and s € N. (7)

(This follows by induction over s from the fact that 2? = o (x) for every x € k).

Finally, since the canonical projection A — A /m is a ring homomorphism, we have
p-la=p-1=0. Thus, p-14 € m.

(a) In order to prove Theorem 1 (a), we have two prove two assertions:

Assertion 1: For every x € k, there exists at least one p-ancient element a of A
such that a = x.

Assertion 2: For every x € k, there exists at most one p-ancient element a of A
such that a = x.

Once these two Assertions are proven, Theorem 1 (a) will immediately follow.

Proof of Assertion 1. Let © € k. For every r € N, let y, be an element of A
satisfying g, = o0~ (z). (Such a y, clearly exists.) First, we are going to prove that

for every u € N, the sequence (yff; u) is a Cauchy sequence
reN

with respect to the m-adic topology. (8)

In fact, this requires proving that for every v € N, there exists some N € N such
that yfjru = yﬁu modm” for every ¢ > N and every j > N. We will prove this for
N = max{v —1,0}. Namely, if ¢ > max{r —1,0} and j > max{r — 1,0}, then
i—(v—1)>0 (since i > max{r—1,0} >v—1) and j — (v — 1) > 0 (similarly), so
that

i—(v—1)
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(since Urn = o~ UH (z) by the definition of yj+u)

— i~ (Uf(jw) (@) — I w=D=(+n) (x) = o v=D—n (z),



“(v-1) pi—(—1) i—(v-1) pi—(=1)

so that yfiu( = Yju and thus y7, , = yj,, modm, so that Lemma 2
1—(v— i—(v— i (e pu—l
(applied to a = yf’ﬂ( 1), b= yﬁ-’iﬂ( 1), k=1and ¢ =v—1) yields (yfﬂ( U) =
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(— p . . i V—l) p
pi—(=1) Y . oo v pi=( _
(ij mod m”, what rewrites as y;, , = y;,, modm (since Yitp =
1
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Yir, and (yfi“( U) = yﬁu). Thus, the sequence (yf +#> is a Cauchy sequence
reN
with respect to the m-adic topology. This proves ({g]).

Since the ring A is complete in the m-adic topology, every Cauchy sequence with
respect to the m-adic topology has a limit in A. Thus, by , for every p € N, the

sequence (yf;» o has a limit 7ﬂli_glo yffw € A. In particular, for u = 0, this means
T
that the sequence (y{?T)T oy has a limit lim y?" € A. We denote this limit by a; thus,
r—00

a = lim y?".

r—r00

Now, we are going to prove that the element a € A is p-ancient and satisfies a = .
Once this is proven, Assertion 1 will immediately follow.

The element a is p-ancient, since for every u € N, there exists some b € A such that

V" = a (in fact, take b = lim yf:m; then,
r—00

r O\ P r \ P!
H _ . o _ . D . pH . .
W= (Thj& Yy +u> = Thj& <yr +u> (since the map A — A, u — v*" is continuous)
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(here we substituted r for r 4+ p in the limit)

). Besides, the canonical projection from A to A, m is continuous (where the ring A is
given the m-adic topology, and the ring A /m is given the discrete topology), so that

lim y? = lim  y = lim (o" (a:))pr = lim ¢ (07" (2)) = lim = = x.
r—00 r—00 N~ r—00 \ ,  T—00 r—00
= :a"<0’7ﬂ(w))
:(J*"(;v))p by

. . T . . — . .
Since lim y? = a, this rewrites as @ = x. Hence, we have shown that a is p-ancient
7—00

and satisfies @ = x. This proves Assertion 1.

Proof of Assertion 2. Let a; and as be two p-ancient elements of A such that a; = x
and ay = . We are going to prove that a; = as.

We will first prove that a; — as € m® for every s € N.

In fact, for every p € N, there exists some b € A such that " = a; (since a;
is p-ancient). Applied to g = s, this yields that there exists some b € A such that
b*" = a;. Denote this b by b;; thus we have found some b; € A such that b’f = qy.



Similarly, we can find some by € A such that 2 = ay. Now,
o’ (bl — bg) =c° (b_1 — E) =c° (E) —0o° (E) (since 0® is a ring homomorphism)
— =
:aps :gps
by by
=07 —b = W — W =0,
~ =~

=a1=x =as=x

so that by — by = 0 (since o : k — k is bijective, and thus ¢® : k — k is bijective
as well). Therefore, by — by € m and thus by = by modm. Consequently, Lemma 2
(applied to by, by, 1 and s instead of a, b, k and /) yields W= b modm*t! for every
s € N. Thus, for every s € N, we have b/ — b € m**! =m - m® C m® (since m® is an
ideal). Since b¥" = a; and b = ay, this rewrites as follows: For every s € N, we have

a; —ay € m*. Hence, a; —ag € [ m®. But (| m® = 0, since the ring A is separated in
seN seN
the m-adic topology. Thus, a; — as € 0. In other words, a; — ay = 0, so that a; = as.

Hence, for any two p-ancient elements a; and ay of A such that a7 = x and a3 = x,
we have proven that a; = ay. In other words, we have shown that any two p-ancient
elements a of A such that @ = x must be equal. Thus, Assertion 2 is proven.

Now that both Assertions 1 and 2 are proven, Theorem 1 (a) becomes obvious.

(b) The element ¢ (0) is defined as the only p-ancient element a of A such that
@ = 0. Hence, ¢ (0) = 0 (because 0 is a p-ancient element of A and satisfies 0 = 0).

The element ¢ (1) is defined as the only p-ancient element a of A such that @ = 1.
Hence, t (1) = 1 (because 1 is a p-ancient element of A and satisfies T = 1).

Now, let # and 2’ be two elements of k. We want to prove that ¢ (za') =t (z) ¢ (2').
We know that ¢ (x) is a p-ancient element of A and that ¢(x) = x. We also know
that ¢ (2') is a p-ancient element of A and that ¢ (2/) = 2’. Now, the element t (zz')
is defined as the only p-ancient element a of A such that @ = zz’. Hence, t (z2') =
t (x)t(2') (because t (z)t (z') is a p-ancient element of A and satisfies ¢ (x)t (2') =

t(z) t(z') =ax2).
—_———

Thus, Theorem 1 (b) is completely proven.

(c) Assume (for the duration of the proof of Theorem 1 (c)) that p-14 = 0 in A.
Let x and 2’ be two elements of k. We want to prove that ¢ (x 4+ 2') =t (z) +t (z/). We
know that ¢ (v) is a p-ancient element of A and that t (x) = =. We also know that (')
is a p-ancient element of A and that ¢ (z/) = 2’. Now, the element t (x 4 z’) is defined as
the only p-ancient element a of A such that @ = x+2’. Hence, t (x + ') =t (z) 4+t (2')
(because t(x) + t(2') is a p-ancient element of A and satisfies ¢ (z) +t(2/) =

t(r) + t(2') = +a’). This proves Theorem 1 (c).
—— \“,/_/

(e) We can easily see that

t (y"") = (' ()" for any y € k and any p € N (9)

4by (1)), since ¢ (z) and ¢ (2') are p-ancient
by [2), since ¢ (x) and ¢ (') are p-ancient



Pl Hence,
()=t (7" (:U)))pu for any y € k and any p € N (10)

|Z|' Thus, for every = € k, the element t' (x) € A is p-ancient (in fact, for every u € N,
there exists some b € A such that 0" = ' (z), namely b = ' (67 (z))). Besides, this
element ¢’ (x) satisfies ¢/ (z) = = (by @) On the other hand, we know that the only
p-ancient element a € A that satisfies @ = x is t (). Thus, ¢ (x) = t(z). We have
proven this for every = € k; hence, t' = ¢. Thus, Theorem 1 (e) is proven.

(d) By induction, yields (5). Also, clearly, () is equivalent to (). Thus,
and @ hold, and therefore, Theorem 1 (e) yields that ¢’ = ¢. This proves Theorem 1
(d).

Now, the proof of Theorem 1 is complete.
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8 Proof of @ by induction over u:
Induction base: For p = 0, the equation @[) is trivially true.
Induction step: Assume that some given p € N satisfies

t (ypu) =(t (y))pH for any y € k.
Then,
a1

v (y”;”l) = (t' (y))" for any y € k,

because

) ()N (@i
= ((t’ (y))p“)p (by the induction assumption)

pnt1

and the induction step is complete. Thus, @[) is proven.
7 .
since

n

(@)=t " (c7" ()| =t ((U_" (w))pu) =t (c7" (w)))p
—_——

:(o'_“' (I))p“

by
(by @, applied to y = o7 (2))



