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Sidenotes by Darij Grinberg

Witt#0: Teichmüller representatives
[not completed, not proofread]

The purpose of this note is to correct the results from section 4 of [1] and to give
detailed proofs for them.

First, section 4 of [1] has four mistakes. Let us correct them:

• ”The ring of power series k ((T ))” should be ”The ring of power series k [[T ]]”.

• The map σ is never defined. It should be defined by σ = fp.

• In the sentence directly following (4.1), the term σ−1 (x) should be σ−r (x) instead.

• We need to suppose that A is not only complete, but also separated (i. e.,
Hausdorff) in the m-adic topology. (Otherwise, at least some of the results stated
in section 4 of [1] become false.)

Now it is time to formulate the main results of section 4 of [1]. But first we introduce
a notation:

Definition. Let A be a ring, and p ∈ N a prime. An element a ∈ A is said to be
p-ancient if and only if(

for every µ ∈ N, there exists some b ∈ A such that bp
µ

= a
)
.

With this definition, we can notice that for any commutative ring A with unity,

•
the element 0 ∈ A is p-ancient

(since 0 = 0p
µ

for every µ ∈ N);

•
the element 1 ∈ A is p-ancient

(since 1 = 1p
µ

for every µ ∈ N);

•

if two elements a and a′ of A are p-ancient, then their product

aa′ is p-ancient as well (1)

(since for every µ ∈ N, there exists some b ∈ A such that bp
µ

= a (since a is p-
ancient), and there exists some b′ ∈ A such that (b′)p

µ

= a′ (since a′ is p-ancient),
and hence (bb′)p

µ

= bp
µ

(b′)p
µ

= aa′, which shows that aa′ is p-ancient as well);
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•

if p · 1A = 0 in A, and if two elements a and a′ of A are p-ancient,

then their sum a+ a′ is p-ancient as well (2)

(since for every µ ∈ N, there exists some b ∈ A such that bp
µ

= a (since a is p-
ancient), and there exists some b′ ∈ A such that (b′)p

µ

= a′ (since a′ is p-ancient),
and hence

(b+ b′)
pµ

= bp
µ︸︷︷︸

=a

+ (b′)
pµ︸ ︷︷ ︸

=a′

(by the Idiot’s Binomial Formula, since p · 1A = 0 in A)

= a+ a′,

which shows that a+ a′ is p-ancient as well);

Now come the (corrected) main assertions of section 4 of [1]:

Theorem 1. Let A be a commutative ring with unity, and let m be an
ideal1 of A. Let p ∈ N be a prime such that p ·1k = 0 in the ring k = A�m.
Assume that the ring homomorphism

σ : k → k defined by σ (x) = xp for every x ∈ k

is bijective2. Suppose, further, that the ring A is complete and separated
in the m-adic topology.

For every element u of A, we let u denote the canonical projection of u onto
the factor ring A�m.

(a) For every x ∈ k, there exists one and only one p-ancient element a of
A such that a = x.

We will denote this element a by t (x). Clearly, t (x) = x for every x ∈ k.

Thus, we have defined a map t : k → A.

(b) We have t (0) = 0, t (1) = 1 and t (xx′) = t (x) t (x′) for any two
elements x and x′ of k.

(c) If p · 1A = 0 in A, then t (x+ x′) = t (x) + t (x′) for any two elements x
and x′ of k.

(d) If t′ : k → A is a map such that

(t′ (xx′) = t′ (x) t′ (x′) for any two elements of x and x′ of k) (3)

and (
t′ (x) = x for every x ∈ k

)
, (4)

then t′ = t.

1not necessarily a maximal ideal, despite the label m being mostly used for maximal ideals in
literature

2This map σ : k → k is indeed a ring homomorphism, since p · 1k = 0 in the ring k. It is the
so-called Frobenius endomorphism of the ring k.
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(e) If t′ : k → A is a map such that(
t′ (xp) = (t′ (x))

p
for any x ∈ k

)
(5)

and (
t′ (x) = x for every x ∈ k

)
, (6)

then t′ = t.

Note that for every x ∈ k, the element t (x) is called the Teichmüller representative
of x in A. Theorem 1 (a) characterizes this Teichmüller representative t (x) as the
only p-ancient element of A whose residue class modulo m is x. Theorem 1 (b) shows
that the Teichmüller system of representatives is multiplicative and respects 0 and 1.
Roughly speaking, Theorem 1 (d) says that it is actually the only multiplicative system
of representatives, and Theorem 1 (e) says that it is the only system of representatives
that commutes with taking the p-th power.

Before we start proving Theorem 1, a lemma (generalizing Lemma 3 in [2]):

Lemma 2. Let A be a commutative ring with unity, and p ∈ N be a
nonnegative integer3. Let m ⊆ A be an ideal such that p · 1A ∈ m. Let
k ∈ N and ` ∈ N be such that k > 0. Let a ∈ A and b ∈ A. If a ≡ bmodmk,
then ap

` ≡ bp
`
modmk+`.

Proof of Lemma 2. Assume that a ≡ bmodmk. We need to show that every ` ∈ N
satisfies ap

` ≡ bp
`
modmk+`.

We will show this by induction over `. For ` = 0, the claim that ap
` ≡ bp

`
modmk+`

is true (because it is equivalent to a ≡ bmodmk). Now, for the induction step, we
assume that ap

` ≡ bp
`
modmk+` for some ` ∈ N, and we want to show that ap

`+1 ≡
bp
`+1

modmk+`+1. In fact, we have a ≡ bmodm (because a ≡ bmodmk yields a − b ∈
mk ⊆ m (since k > 0)) and thus

p−1∑
k=0

(
ap

`
)k (

bp
`
)p−1−k

≡
p−1∑
k=0

(
bp
`
)k (

bp
`
)p−1−k

︸ ︷︷ ︸
=(bp`)

p−1

=

p−1∑
k=0

(
bp
`
)p−1

= p
(
bp
`
)p−1

≡ 0 modm

(since p · 1A ∈ m yields p · 1A ≡ 0 modm), so that
p−1∑
k=0

(
ap

`
)k (

bp
`
)p−1−k

∈ m. Hence,

ap
`+1 − bp`+1

=
(
ap

`
)p
−
(
bp
`
)p

=
(
ap

` − bp`
)

︸ ︷︷ ︸
∈mk+`, since

ap
`≡bp` modmk+`

·
p−1∑
k=0

(
ap

`
)k (

bp
`
)p−1−k

︸ ︷︷ ︸
∈m(

since xq − yq = (x− y) ·
q−1∑
k=0

xkyq−1−k for any q ∈ N, any x ∈ A and any y ∈ A

)
∈ mk+` ·m = mk+`+1,

3Though we call it p, we do not require it to be a prime!
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so that ap
`+1 ≡ bp

`+1
modmk+`+1, and the induction step is complete. Thus, Lemma 2

is proven.
Proof of Theorem 1. Before we start proving Theorem 1, we notice three trivial

things: First,

0 = 0, 1 = 1, xy = x · y, x+ y = x+ y, xn = xn

for any x ∈ A, y ∈ A and n ∈ N. This is all because the canonical projection A→ A�m
is a ring homomorphism.

Besides,
yp

s

= σs (y) for every y ∈ k and s ∈ N. (7)

(This follows by induction over s from the fact that xp = σ (x) for every x ∈ k).
Finally, since the canonical projection A→ A�m is a ring homomorphism, we have

p · 1A = p · 1k = 0. Thus, p · 1A ∈ m.
(a) In order to prove Theorem 1 (a), we have two prove two assertions:
Assertion 1: For every x ∈ k, there exists at least one p-ancient element a of A

such that a = x.
Assertion 2: For every x ∈ k, there exists at most one p-ancient element a of A

such that a = x.
Once these two Assertions are proven, Theorem 1 (a) will immediately follow.
Proof of Assertion 1. Let x ∈ k. For every r ∈ N, let yr be an element of A

satisfying yr = σ−r (x). (Such a yr clearly exists.) First, we are going to prove that

for every µ ∈ N, the sequence
(
yp

r

r+µ

)
r∈N

is a Cauchy sequence

with respect to the m-adic topology. (8)

In fact, this requires proving that for every ν ∈ N, there exists some N ∈ N such

that yp
i

i+µ ≡ yp
j

j+µ modmν for every i ≥ N and every j ≥ N . We will prove this for
N = max {ν − 1, 0}. Namely, if i ≥ max {ν − 1, 0} and j ≥ max {ν − 1, 0}, then
i − (ν − 1) ≥ 0 (since i ≥ max {ν − 1, 0} ≥ ν − 1) and j − (ν − 1) ≥ 0 (similarly), so
that

yp
i−(ν−1)

i+µ = yi+µ
pi−(ν−1)

=
(
σ−(i+µ) (x)

)pi−(ν−1)︸ ︷︷ ︸
=σi−(v−1)(σ−(i+µ)(x))

by (7)(
since yi+µ = σ−(i+µ) (x) by the definition of yi+µ

)
= σi−(ν−1)

(
σ−(i+µ) (x)

)
= σi−(ν−1)−(i+µ) (x) = σ−(ν−1)−µ (x)

and

yp
j−(ν−1)

j+µ = yj+µ
pj−(ν−1)

=
(
σ−(j+µ) (x)

)pj−(ν−1)︸ ︷︷ ︸
=σj−(v−1)(σ−(j+µ)(x))

by (7)(
since yj+µ = σ−(j+µ) (x) by the definition of yj+µ

)
= σj−(v−1)

(
σ−(j+µ) (x)

)
= σj−(ν−1)−(j+µ) (x) = σ−(ν−1)−µ (x) ,
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so that yp
i−(ν−1)

i+µ = yp
j−(ν−1)

j+µ and thus yp
i−(ν−1)

i+µ ≡ yp
j−(ν−1)

j+µ modm, so that Lemma 2

(applied to a = yp
i−(ν−1)

i+µ , b = yp
j−(ν−1)

j+µ , k = 1 and ` = ν − 1) yields
(
yp

i−(ν−1)

i+µ

)pν−1

≡(
yp

j−(ν−1)

j+µ

)pν−1

modmν , what rewrites as yp
i

i+µ ≡ yp
j

j+µ modmν (since
(
yp

i−(ν−1)

i+µ

)pν−1

=

yp
i

i+µ and
(
yp

j−(ν−1)

j+µ

)pν−1

= yp
j

j+µ). Thus, the sequence
(
yp

r

r+µ

)
r∈N

is a Cauchy sequence

with respect to the m-adic topology. This proves (8).
Since the ring A is complete in the m-adic topology, every Cauchy sequence with

respect to the m-adic topology has a limit in A. Thus, by (8), for every µ ∈ N, the

sequence
(
yp

r

r+µ

)
r∈N

has a limit lim
r→∞

yp
r

r+µ ∈ A. In particular, for µ = 0, this means

that the sequence
(
yp

r

r

)
r∈N has a limit lim

r→∞
yp

r

r ∈ A. We denote this limit by a; thus,

a = lim
r→∞

yp
r

r .

Now, we are going to prove that the element a ∈ A is p-ancient and satisfies a = x.
Once this is proven, Assertion 1 will immediately follow.

The element a is p-ancient, since for every µ ∈ N, there exists some b ∈ A such that
bp
µ

= a (in fact, take b = lim
r→∞

yp
r

r+µ; then,

bp
µ

=
(

lim
r→∞

yp
r

r+µ

)pµ
= lim

r→∞

 (
yp

r

r+µ

)pµ
︸ ︷︷ ︸

=yp
rpµ

r+µ =yp
r+µ

r+µ

 (
since the map A→ A, u 7→ up

µ

is continuous
)

= lim
r→∞

yp
r+µ

r+µ = lim
r→∞

yp
r

r (here we substituted r for r + µ in the limit)

= a

). Besides, the canonical projection from A to A�m is continuous (where the ring A is
given the m-adic topology, and the ring A�m is given the discrete topology), so that

lim
r→∞

yp
r

r = lim
r→∞

yp
r

r︸︷︷︸
=yrp

r

=(σ−r(x))
pr

= lim
r→∞

(
σ−r (x)

)pr︸ ︷︷ ︸
=σr(σ−r(x))

by (7)

= lim
r→∞

σr
(
σ−r (x)

)
= lim

r→∞
x = x.

Since lim
r→∞

yp
r

r = a, this rewrites as a = x. Hence, we have shown that a is p-ancient

and satisfies a = x. This proves Assertion 1.
Proof of Assertion 2. Let a1 and a2 be two p-ancient elements of A such that a1 = x

and a2 = x. We are going to prove that a1 = a2.
We will first prove that a1 − a2 ∈ ms for every s ∈ N.
In fact, for every µ ∈ N, there exists some b ∈ A such that bp

µ
= a1 (since a1

is p-ancient). Applied to µ = s, this yields that there exists some b ∈ A such that
bp
s

= a1. Denote this b by b1; thus we have found some b1 ∈ A such that bp
s

1 = a1.
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Similarly, we can find some b2 ∈ A such that bp
s

2 = a2. Now,

σs
(
b1 − b2

)
= σs

(
b1 − b2

)
= σs

(
b1
)︸ ︷︷ ︸

=b1
ps

by (7)

−σs
(
b2
)︸ ︷︷ ︸

=b2
ps

by (7)

(since σs is a ring homomorphism)

= b1
ps − b2

ps

= bp
s

1︸︷︷︸
=a1=x

− bp
s

2︸︷︷︸
=a2=x

= 0,

so that b1 − b2 = 0 (since σ : k → k is bijective, and thus σs : k → k is bijective
as well). Therefore, b1 − b2 ∈ m and thus b1 ≡ b2 modm. Consequently, Lemma 2
(applied to b1, b2, 1 and s instead of a, b, k and `) yields bp

s

1 ≡ bp
s

2 modms+1 for every
s ∈ N. Thus, for every s ∈ N, we have bp

s

1 − b
ps

2 ∈ ms+1 = m ·ms ⊆ ms (since ms is an
ideal). Since bp

s

1 = a1 and bp
s

2 = a2, this rewrites as follows: For every s ∈ N, we have
a1− a2 ∈ ms. Hence, a1− a2 ∈

⋂
s∈N

ms. But
⋂
s∈N

ms = 0, since the ring A is separated in

the m-adic topology. Thus, a1 − a2 ∈ 0. In other words, a1 − a2 = 0, so that a1 = a2.
Hence, for any two p-ancient elements a1 and a2 of A such that a1 = x and a2 = x,

we have proven that a1 = a2. In other words, we have shown that any two p-ancient
elements a of A such that a = x must be equal. Thus, Assertion 2 is proven.

Now that both Assertions 1 and 2 are proven, Theorem 1 (a) becomes obvious.
(b) The element t (0) is defined as the only p-ancient element a of A such that

a = 0. Hence, t (0) = 0 (because 0 is a p-ancient element of A and satisfies 0 = 0).
The element t (1) is defined as the only p-ancient element a of A such that a = 1.

Hence, t (1) = 1 (because 1 is a p-ancient element of A and satisfies 1 = 1).
Now, let x and x′ be two elements of k. We want to prove that t (xx′) = t (x) t (x′).

We know that t (x) is a p-ancient element of A and that t (x) = x. We also know
that t (x′) is a p-ancient element of A and that t (x′) = x′. Now, the element t (xx′)
is defined as the only p-ancient element a of A such that a = xx′. Hence, t (xx′) =
t (x) t (x′) (because t (x) t (x′) is a p-ancient element of A 4 and satisfies t (x) t (x′) =
t (x)︸ ︷︷ ︸
=x

t (x′)︸ ︷︷ ︸
=x′

= xx′).

Thus, Theorem 1 (b) is completely proven.
(c) Assume (for the duration of the proof of Theorem 1 (c)) that p · 1A = 0 in A.

Let x and x′ be two elements of k. We want to prove that t (x+ x′) = t (x)+ t (x′). We
know that t (x) is a p-ancient element of A and that t (x) = x. We also know that t (x′)
is a p-ancient element of A and that t (x′) = x′. Now, the element t (x+ x′) is defined as
the only p-ancient element a of A such that a = x+x′. Hence, t (x+ x′) = t (x)+ t (x′)
(because t (x) + t (x′) is a p-ancient element of A 5 and satisfies t (x) + t (x′) =
t (x)︸ ︷︷ ︸
=x

+ t (x′)︸ ︷︷ ︸
=x′

= x+ x′). This proves Theorem 1 (c).

(e) We can easily see that

t′
(
yp

µ)
= (t′ (y))

pµ
for any y ∈ k and any µ ∈ N (9)

4by (1), since t (x) and t (x′) are p-ancient
5by (2), since t (x) and t (x′) are p-ancient
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6. Hence,

t′ (x) =
(
t′
(
σ−µ (x)

))pµ
for any y ∈ k and any µ ∈ N (10)

7. Thus, for every x ∈ k, the element t′ (x) ∈ A is p-ancient (in fact, for every µ ∈ N,
there exists some b ∈ A such that bp

µ
= t′ (x), namely b = t′ (σ−µ (x))). Besides, this

element t′ (x) satisfies t′ (x) = x (by (6)). On the other hand, we know that the only
p-ancient element a ∈ A that satisfies a = x is t (x). Thus, t′ (x) = t (x). We have
proven this for every x ∈ k; hence, t′ = t. Thus, Theorem 1 (e) is proven.

(d) By induction, (3) yields (5). Also, clearly, (4) is equivalent to (6). Thus, (5)
and (6) hold, and therefore, Theorem 1 (e) yields that t′ = t. This proves Theorem 1
(d).

Now, the proof of Theorem 1 is complete.
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6Proof of (9) by induction over µ:
Induction base: For µ = 0, the equation (9) is trivially true.
Induction step: Assume that some given µ ∈ N satisfies

t′
(
yp

µ
)

= (t′ (y))
pµ

for any y ∈ k.

Then,

t′
(
yp

µ+1
)

= (t′ (y))
pµ+1

for any y ∈ k,

because

t′
(
yp

µ+1
)

= t′
(
yp

µp
)

= t′
((
yp

µ
)p)

=
(
t′
(
yp

µ
))p (

by (5), applied to x = yp
µ
)

=
(

(t′ (y))
pµ
)p

(by the induction assumption)

= (t′ (y))
pµp

= (t′ (y))
pµ+1

,

and the induction step is complete. Thus, (9) is proven.
7since

t′ (x) = t′

σ
µ
(
σ−µ (x)

)︸ ︷︷ ︸
=(σ−µ(x))

pµ

by (7)

 = t′
((
σ−µ (x)

)pµ)
=
(
t′
(
σ−µ (x)

))pµ

(by (9), applied to y = σ−µ (x))
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