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In [1], section 9.93, Hazewinkel states that ”The (integrality aspects of the) theory
of Witt vectors can be developed solely on the basis of this lemma 9.93.”. The purpose
of this note is to point out how this is done (at least, by proving Theorem 9.73, even
slightly generalized), to prove and extend Lemma 9.93 in [1] and to show some more
of its applications.

First, let us introduce some notation:

Definition 1. Let P denote the set of all primes. (A prime means an
integer n > 1 such that the only divisors of n are n and 1. The word
”divisor” means ”positive divisor”.)

Definition 2. We denote the set {0, 1, 2, ...} by N, and we denote the set
{1, 2, 3, ...} by N+. (Note that our notations conflict with the notations
used by Hazewinkel in [1]; in fact, Hazewinkel uses the letter N for the set
{1, 2, 3, ...}, which we denote by N+.)

Definition 3. Let Ξ be a family of symbols. We consider the polynomial
ring Q [Ξ] (this is the polynomial ring over Q in the indeterminates Ξ; in
other words, we use the symbols from Ξ as variables for the polynomials)
and its subring Z [Ξ] (this is the polynomial ring over Z in the indetermi-
nates Ξ). 1. For any n ∈ N, let Ξn mean the family of the n-th powers of
all elements of our family Ξ (considered as elements of Z [Ξ]) 2. (There-
fore, whenever P ∈ Q [Ξ] is a polynomial, then P (Ξn) is the polynomial
obtained from P after replacing every indeterminate by its n-th power.3)

Note that if Ξ is the empty family, then Q [Ξ] simply is the ring Q, and
Z [Ξ] simply is the ring Z.

Definition 4. If m and n are two integers, then we write m ⊥ n if and
only if m is coprime to n. If m is an integer and S is a set, then we write
m ⊥ S if and only if (m ⊥ n for every n ∈ S).

Definition 5. A nest means a nonempty subset N of N+ such that for
every element d ∈ N , every divisor of d lies in N .

Here are some examples of nests: For instance, N+ itself is a nest. For every
prime p, the set {1, p, p2, p3, ...} is a nest; we denote this nest by pN. For

1For instance, Ξ can be (X0, X1, X2, ...), in which case Z [Ξ] means Z [X0, X1, X2, ...].
Or, Ξ can be (X0, X1, X2, ...;Y0, Y1, Y2, ...;Z0, Z1, Z2, ...), in which case Z [Ξ] means
Z [X0, X1, X2, ...;Y0, Y1, Y2, ...;Z0, Z1, Z2, ...].

2In other words, if Ξ = (ξi)i∈I , then we define Ξn as (ξni )i∈I . For instance, if Ξ = (X0, X1, X2, ...),
then Ξn = (Xn

0 , X
n
1 , X

n
2 , ...). If Ξ = (X0, X1, X2, ...;Y0, Y1, Y2, ...;Z0, Z1, Z2, ...), then Ξn =

(Xn
0 , X

n
1 , X

n
2 , ...;Y

n
0 , Y

n
1 , Y

n
2 , ...;Z

n
0 , Z

n
1 , Z

n
2 , ...).

3For instance, if Ξ = (X0, X1, X2, ...) and P (Ξ) = (X0 +X1)
2 − 2X3 + 1, then P (Ξn) =

(Xn
0 +Xn

1 )
2 − 2Xn

3 + 1.
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any integer m, the set {n ∈ N+ | n ⊥ m} is a nest; we denote this nest by
N⊥m. For any positive integer m, the set {n ∈ N+ | n ≤ m} is a nest; we
denote this nest by N≤m. For any integer m, the set {n ∈ N+ | (n | m)} is
a nest; we denote this nest by N|m. Another example of a nest is the set
{1, 2, 3, 5, 6, 10}.
Clearly, every nest N contains the element 1 4.

Definition 6. If N is a set5, we shall denote by XN the family (Xn)n∈N
of distinct symbols. Hence, Z [XN ] is the ring Z

[
(Xn)n∈N

]
(this is the

polynomial ring over Z in |N | indeterminates, where the indeterminates are
labelled Xn, where n runs through the elements of the set N). For instance,
Z
[
XN+

]
is the polynomial ring Z [X1, X2, X3, ...] (since N+ = {1, 2, 3, ...}),

and Z
[
X{1,2,3,5,6,10}

]
is the polynomial ring Z [X1, X2, X3, X5, X6, X10].

If A is a commutative ring with unity, if N is a set, if (xd)d∈N ∈ AN is a
family of elements of A indexed by elements of N , and if P ∈ Z [XN ], then
we denote by P

(
(xd)d∈N

)
the element of A that we obtain if we substitute xd

for Xd for every d ∈ N into the polynomial P . (For instance, if N = {1, 2, 5}
and P = X2

1 + X2X5 − X5, and if x1 = 13, x2 = 37 and x5 = 666, then
P
(
(xd)d∈N

)
= 132 + 37 · 666− 666.)

We notice that whenever N and M are two sets satisfying N ⊆ M , then
we canonically identify Z [XN ] with a subring of Z [XM ]. In particular,
when P ∈ Z [XN ] is a polynomial, and A is a commutative ring with
unity, and (xm)m∈M ∈ AM is a family of elements of A, then P

(
(xm)m∈M

)
means P

(
(xm)m∈N

)
. (Thus, the elements xm for m ∈ M \ N are simply

ignored when evaluating P
(
(xm)m∈M

)
.) In particular, if N ⊆ N+, and

(x1, x2, x3, ...) ∈ AN+ , then P (x1, x2, x3, ...) means P
(
(xm)m∈N

)
.

Definition 7. For any n ∈ N+, we define a polynomial wn ∈ Z
[
XN|n

]
by

wn =
∑
d|n

dXn�d
d .

Hence, for every commutative ringA with unity, and for any family (xk)k∈N|n ∈
AN|n of elements of A, we have

wn

(
(xk)k∈N|n

)
=
∑
d|n

dxn�dd .

As explained in Definition 6, if N is a set containing N|n, if A is a commu-
tative ring with unity, and (xk)k∈N ∈ AN is a family of elements of A, then

wn
(
(xk)k∈N

)
means wn

(
(xk)k∈N|n

)
; in other words,

wn
(
(xk)k∈N

)
=
∑
d|n

dxn�dd .

4In fact, there exists some n ∈ N (since N is a nest and thus nonempty), and thus 1 ∈ N (since 1
is a divisor of n, and every divisor of n must lie in N because N is a nest).

5We will use this notation only for the case of N being a nest. However, it equally makes sense for
any arbitrary set N .
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The polynomials w1, w2, w3, ... are called the big Witt polynomials or,
simply, the Witt polynomials.6

Definition 8. Let n ∈ Z \ {0}. Let p ∈ P. We denote by vp (n) the largest
nonnegative integer m satisfying pm | n. Clearly, pvp(n) | n and vp (n) ≥ 0.
Besides, vp (n) = 0 if and only if p - n.
We also set vp (0) = ∞; this way, our definition of vp (n) extends to all
n ∈ Z (and not only to n ∈ Z \ {0}).
Definition 9. Let n ∈ N+. We denote by PFn the set of all prime divisors
of n. By the unique factorization theorem, the set PFn is finite and satisfies
n =

∏
p∈PFn

pvp(n).

We start by recalling some properties of primes and commutative rings:

Theorem 1. Let A be a commutative ring with unity. Let M be an
A-module. Let N ∈ N. Let I1, I2, ..., IN be N ideals of A such that
Ii + Ij = A for any two elements i and j of {1, 2, ..., N} satisfying i < j.
Then, I1I2...IN ·M = I1M ∩ I2M ∩ ... ∩ INM .

This Theorem 1 is part of the (well-known) Chinese Remainder Theorem for mod-
ules, which is proven in every book on commutative algebra; however, let us also give
a quick proof of Theorem 1 here, in order for this note to be self-contained.

Proof of Theorem 1. We are going to prove Theorem 1 by induction over N .
First, the induction base: The case of N = 0 is obvious (in this case, the assertion of
Theorem 1 has to be interpreted as M = M , which is obviously true), and the case of
N = 1 is obvious as well (in this case, the assertion of Theorem 1 simply states that
I1 ·M = I1M , which is true). For the induction step, let us fix some m ∈ N+ such
that m > 1, and let us assume that Theorem 1 is proven for N = m− 1. We want to
prove that Theorem 1 holds for N = m as well. In other words, we want to prove that
I1I2...Im ·M = I1M ∩ I2M ∩ ...∩ ImM for any m ideals I1, I2, ..., Im of A which satisfy

(Ii + Ij = A for any two elements i and j of {1, 2, ...,m} satisfying i < j) . (1)

So let I1, I2, ..., Im be m such ideals. For every i ∈ {1, 2, ...,m− 1}, we have Ii+Im = A
(due to (1) (applied to j = m), since i < m); thus, there exist ai ∈ Ii and bi ∈ Im such
that ai + bi = 1, and thus 1 = ai + bi ≡ ai mod Im (since bi ∈ Im). Therefore,

1 =
m−1∏
i=1

1︸︷︷︸
≡ai mod Im

≡
m−1∏
i=1

ai mod Im,

6Caution: These polynomials are referred to as w1, w2, w3, ... most of the time in [1] (beginning
with Section 9). However, in Sections 5-8 of [1], Hazewinkel uses the notations w1, w2, w3, ... for some
different polynomials (the so-called p-adic Witt polynomials, defined by formula (5.1) in [1]), which
are not the same as our polynomials w1, w2, w3, ... (though they are related to them: namely, the
polynomial denoted by wk in Sections 5-8 of [1] is the polynomial that we are denoting by wpk here
after a renaming of variables; on the other hand, the polynomial that we call wk here is something
completely different).
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so that 1 ∈
m−1∏
i=1

ai + Im. But
m−1∏
i=1

ai ∈ I1I2...Im−1 (since ai ∈ Ii for every i ∈

{1, 2, ...,m− 1}). Hence, 1 ∈
m−1∏
i=1

ai+Im yields 1 ∈ I1I2...Im−1+Im. Thus, I1I2...Im−1+

Im = A.
But since Theorem 1 is proven for N = m − 1, we must have J1J2...Jm−1 ·M =

J1M ∩ J2M ∩ ... ∩ Jm−1M for any m− 1 ideals J1, J2, ..., Jm−1 of A which satisfy

(Ji + Jj = A for any two elements i and j of {1, 2, ...,m− 1} satisfying i < j) . (2)

In particular, applying this to the ideals J1 = I1, J2 = I2, ..., Jm−1 = Im−1 (which
satisfy (2) because of (1)), we obtain I1I2...Im−1 ·M = I1M ∩ I2M ∩ ...∩ Im−1M . Thus,

I1M ∩ I2M ∩ ... ∩ ImM = I1M ∩ I2M ∩ ... ∩ Im−1M︸ ︷︷ ︸
=I1I2...Im−1·M

∩ImM = I1I2...Im−1M ∩ ImM

= A︸︷︷︸
=I1I2...Im−1+Im

· (I1I2...Im−1M ∩ ImM)

= (I1I2...Im−1 + Im) · (I1I2...Im−1M ∩ ImM) ⊆ I1I2...Im−1 · Im ·M
since (U + V ) · (UM ∩ VM) ⊆ UV ·M for any two ideals U and V of A, because

(U + V ) · (UM ∩ VM) = U · (UM ∩ VM)︸ ︷︷ ︸
⊆VM

+V · (UM ∩ VM)︸ ︷︷ ︸
⊆UM

⊆ UVM + V UM

= UVM + UVM ⊆ UVM


= I1I2...Im ·M.

But clearly, I1I2...Im ·M ⊆ I1M ∩ I2M ∩ ... ∩ ImM (since I1I2...Im ·M ⊆ Ii ·M for
every i ∈ {1, 2, ...,m}). Thus, I1I2...Im ·M = I1M ∩ I2M ∩ ... ∩ ImM . This completes
the induction step, and thus Theorem 1 is verified.

A trivial corollary from Theorem 1 that we will use is:

Corollary 2. Let A be an Abelian group (written additively). Let n ∈ N+.
Then, nA =

⋂
p∈PFn

(
pvp(n)A

)
.

Proof of Corollary 2. Since PFn is a finite set, there exist N ∈ N and some pairwise

distinct primes p1, p2, ..., pN such that PFn = {p1, p2, ..., pN}. Thus,
N∏
i=1

p
vpi (n)

i =∏
p∈PFn

pvp(n) = n.

Define an ideal Ii of Z by Ii = p
vpi (n)

i Z for every i ∈ {1, 2, ..., N}. Then, Ii + Ij = Z
for any two elements i and j of {1, 2, ..., N} satisfying i < j (in fact, the integers p

vpi (n)

i

and p
vpj (n)

j are coprime7, and thus, by Bezout’s theorem, there exist integers α and β

such that 1 = p
vpi (n)

i α+p
vpj (n)

j β in Z, and therefore 1 = p
vpi (n)

i α︸ ︷︷ ︸
∈p

vpi (n)

i Z=Ii

+ p
vpj (n)

j β︸ ︷︷ ︸
∈p

vpj (n)

j Z=Ij

∈ Ii+Ij

7since pi and pj are distinct primes (because i < j and since the primes p1, p2, ..., pN are pairwise
distinct)
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in Z, and thus Ii + Ij = Z). Hence, Theorem 1 (applied to Z and A instead of A and
M , respectively) yields I1I2...IN · A = I1A ∩ I2A ∩ ... ∩ INA. Since

I1I2...IN · A =
N∏
i=1

Ii︸︷︷︸
=p

vpi (n)

i Z

·A =
N∏
i=1

(
p
vpi (n)

i Z
)
· A =

(
N∏
i=1

p
vpi (n)

i

)
︸ ︷︷ ︸

=n

Z · A = nZ · A = nA

and

I1A∩I2A∩...∩INA =
N⋂
i=1

 Ii︸︷︷︸
=p

vpi (n)

i Z

A

 =
N⋂
i=1

(
p
vpi (n)

i Z · A
)

=
N⋂
i=1

(
p
vpi (n)

i A
)

=
⋂

p∈PFn

(
pvp(n)A

)

(since PFn = {p1, p2, ..., pN}), this becomes nA =
⋂

p∈PFn

(
pvp(n)A

)
. Corollary 2 is thus

proven.
Another fact we will use:

Lemma 3. Let A be a commutative ring with unity, and p ∈ N be a
nonnegative integer8. Let k ∈ N and ` ∈ N be such that k > 0. Let a ∈ A
and b ∈ A. If a ≡ bmod pkA, then ap

` ≡ bp
`
mod pk+`A.

This lemma was proven in [3], Lemma 3.
Now we can start with the main theorem - an extension of Lemma 9.93 in [1]:

Theorem 4. Let N be a nest. Let A be a commutative ring with unity.
For every p ∈ P ∩ N , let ϕp : A → A be an endomorphism of the ring A
such that

(ϕp (a) ≡ ap mod pA holds for every a ∈ A and p ∈ P ∩N) . (3)

Let (bn)n∈N ∈ AN be a family of elements of A. Then, the following two
assertions C and D are equivalent:

Assertion C: Every n ∈ N and every p ∈ PFn satisfies

ϕp (bn�p) ≡ bn mod pvp(n)A. (4)

Assertion D: There exists a family (xn)n∈N ∈ AN of elements of A such
that (

bn = wn
(
(xk)k∈N

)
for every n ∈ N

)
.

This Theorem 4 is stronger than Lemma 9.93 in [1]. In fact, if we set N = N+ in
Theorem 4, and require the ring A to have characteristic zero, then we obtain Lemma
9.93 in [1] (in a slightly different formulation, however - for example, our Assertion C is
the congruence (9.94) in [1] with n replaced by n�p). None of the requirementsN = N+

and ”A has characteristic zero” is necessary for Theorem 4 to hold; however, requiring

8Though we call it p, we do not require it to be a prime in this lemma.
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A to have characteristic zero would make the family (xn)n∈N unique in Assertion D
(we will detail this later in Theorem 9).

Proof of Theorem 4. Our goal is to show that Assertion C is equivalent to Assertion
D. We will achieve this by proving the implications D =⇒ C and C =⇒ D.

Proof of the implication D =⇒ C: Assume that Assertion D holds. That is, there
exists a family (xn)n∈N ∈ AN of elements of A such that(

bn = wn
(
(xk)k∈N

)
for every n ∈ N

)
. (5)

We want to prove that Assertion C holds, i. e., that every n ∈ N and every
p ∈ PFn satisfies (4). Let n ∈ N and p ∈ PFn. Then, p | n, so that n�p ∈ N+, and
thus n�p ∈ N (since n�p is a divisor of n, and every divisor of n lies in N 9). Thus,
applying (5) to n�p instead of n yields bn�p = wn�p

(
(xk)k∈N

)
. But wn�p

(
(xk)k∈N

)
=∑

d|(n�p)
dx

(n�p)�d
d and wn

(
(xk)k∈N

)
=
∑
d|n
dxn�dd . Now, (5) yields

bn = wn
(
(xk)k∈N

)
=
∑
d|n

dxn�dd =
∑
d|n;

d|(n�p)

dxn�dd +
∑
d|n;

d-(n�p)

dxn�dd . (6)

But for any divisor d of n, the assertions d - (n�p) and pvp(n) | d are equivalent10.
Thus, ∑

d|n;
d-(n�p)

dxn�dd =
∑
d|n;

pvp(n)|d

d︸︷︷︸
≡0 mod pvp(n)A,

since pvp(n)|d

xn�dd ≡
∑
d|n;

pvp(n)|d

0xn�dd = 0 mod pvp(n)A.

Thus, (6) becomes

bn =
∑
d|n;

d|(n�p)

dxn�dd +
∑
d|n;

d-(n�p)

dxn�dd

︸ ︷︷ ︸
≡0 mod pvp(n)A

≡
∑
d|n;

d|(n�p)

dxn�dd +0 =
∑
d|n;

d|(n�p)

dxn�dd =
∑

d|(n�p)

dxn�dd mod pvp(n)A.

(7)
On the other hand,

bn�p = wn�p
(
(xk)k∈N

)
=
∑

d|(n�p)

dx
(n�p)�d
d yields

ϕp (bn�p) = ϕp

 ∑
d|(n�p)

dx
(n�p)�d
d

 =
∑

d|(n�p)

d (ϕp (xd))
(n�p)�d (8)

9because n ∈ N and because N is a nest
10In fact, we have the following chain of equivalences:

(d - (n�p)) ⇐⇒
(
n�p
d

/∈ Z
)
⇐⇒

(
n�d
p

/∈ Z
) (

since
n�p
d

=
n�d
p

)
⇐⇒ (p - (n�d)) (here we use that n�d ∈ Z, since d | n)

⇐⇒ (vp (n�d) = 0)⇐⇒ (vp (n�d) ≤ 0) (since vp (n�d) ≥ 0, because n�d ∈ Z)

⇐⇒ (vp (n)− vp (d) ≤ 0) (since vp (n�d) = vp (n)− vp (d))

⇐⇒ (vp (n) ≤ vp (d)) ⇐⇒
(
pvp(n) | d

)
.
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(since ϕp is a ring endomorphism).

Now, let d be a divisor of n�p. Then, d | (n�p) | n, so that
n

d
∈ Z and thus

vp

(n
d

)
≥ 0. Let α = vp ((n�p)�d) and β = vp (d). Then, α + β = vp ((n�p)�d) +

vp (d) = vp (n�p) = vp (n) − vp (p)︸ ︷︷ ︸
=1

= vp (n) − 1. Besides, α = vp ((n�p)�d) yields

pα | (n�p)�d, so that there exists some ν ∈ N such that (n�p)�d = pαν. Finally,
β = vp (d) yields pβ | d, so that there exists some κ ∈ N such that d = κpβ. Applying
Lemma 3 to the values k = 1, ` = α, a = ϕp (xd) and b = xpd (which satisfy a ≡
bmod pkA because of (3), applied to a = xd) yields (ϕp (xd))

pα ≡ (xpd)
pα mod p1+αA.

Using the equation (n�p)�d = pαν, we get

(ϕp (xd))
(n�p)�d = (ϕp (xd))

pαν =
(

(ϕp (xd))
pα
)ν

≡
(

(xpd)
pα
)ν (

since (ϕp (xd))
pα ≡ (xpd)

pα mod p1+αA
)

= (xpd)
pαν = (xpd)

(n�p)�d (since pαν = (n�p)�d)

= (xpd)
(n�d)�p = xn�dd mod p1+αA.

Multiplying this congruence with pβ, we obtain

pβ (ϕp (xd))
(n�p)�d ≡ pβxn�dd mod p1+α+βA.

In other words,
pβ (ϕp (xd))

(n�p)�d ≡ pβxn�dd mod pvp(n)A

(since 1 + α + β︸ ︷︷ ︸
=vp(n)−1

= vp (n)). Now, multiplying this congruence with κ, we get

κpβ (ϕp (xd))
(n�p)�d ≡ κpβxn�dd mod pvp(n)A,

which rewrites as
d (ϕp (xd))

(n�p)�d ≡ dxn�dd mod pvp(n)A

(since κpβ = d). Hence, (8) becomes

ϕp (bn�p) =
∑

d|(n�p)

d (ϕp (xd))
(n�p)�d︸ ︷︷ ︸

≡dxn�dd mod pvp(n)A

≡
∑

d|(n�p)

dxn�dd ≡ bn mod pvp(n)A

(by (7)). This proves (4), and thus Assertion C is proven. We have therefore shown
the implication D =⇒ C.

Proof of the implication C =⇒ D: Assume that Assertion C holds. That is, every
n ∈ N and every p ∈ PFn satisfies (4).

We will now recursively construct a family (xn)n∈N ∈ AN of elements of A which
satisfies the equation

bm =
∑
d|m

dxm�dd (9)

for every m ∈ N .

7



In fact, let n ∈ N , and assume that we have already constructed an element xm ∈ A
for every m ∈ N ∩ {1, 2, ..., n− 1} in such a way that (9) holds for every m ∈ N ∩
{1, 2, ..., n− 1}. Now, we must construct an element xn ∈ A such that (9) is also
satisfied for m = n.

Our assumption says that we have already constructed an element xm ∈ A for every
m ∈ N ∩ {1, 2, ..., n− 1}. In particular, this yields that we have already constructed
an element xd ∈ A for every divisor d of n satisfying d 6= n (in fact, every such
divisor d of n must lie in N 11 and in {1, 2, ..., n− 1} 12, and thus it satisfies
d ∈ N ∩ {1, 2, ..., n− 1}).

Let p ∈ PFn. Then, p | n, so that n�p ∈ N+, and thus n�p ∈ N (since n�p is
a divisor of n, and every divisor of n lies in N 13). Besides, n�p ∈ {1, 2, ..., n− 1}.
Hence, n�p ∈ N ∩ {1, 2, ..., n− 1}. Since (by our assumption) the equation (9) holds
for every m ∈ N ∩ {1, 2, ..., n− 1}, we can thus conclude that (9) holds for m = n�p.
In other words, bn�p =

∑
d|(n�p)

dx
(n�p)�d
d . From this equation, we can conclude (by the

same reasoning as in the proof of the implication D =⇒ C) that

ϕp (bn�p) ≡
∑

d|(n�p)

dxn�dd mod pvp(n)A.

Comparing this with (4), we obtain∑
d|(n�p)

dxn�dd ≡ bn mod pvp(n)A. (10)

Now, for any divisor d of n, the assertions d - (n�p) and pvp(n) | d are equivalent14.
Thus, ∑

d|n;
d-(n�p);
d6=n

dxn�dd =
∑
d|n;

pvp(n)|d;
d 6=n

d︸︷︷︸
≡0 mod pvp(n)A,

since pvp(n)|d

xn�dd ≡ 0 mod pvp(n)A.

Hence,∑
d|n;
d6=n

dxn�dd =
∑
d|n;

d-(n�p);
d 6=n

dxn�dd

︸ ︷︷ ︸
≡0 mod pvp(n)A

+
∑
d|n;

d|(n�p);
d 6=n

dxn�dd ≡
∑
d|n;

d|(n�p);
d6=n

dxn�dd =
∑
d|n;

d|(n�p)

dxn�dd

(
since for any divisor d of n, the assertions (d | (n�p) and d 6= n) and d | (n�p)

are equivalent, because if d | (n�p) , then d 6= n (since n - (n�p) )

)
=
∑

d|(n�p)

dxn�dd ≡ bn mod pvp(n)A (by (10)) .

In other words,

bn −
∑
d|n;
d6=n

dxn�dd ∈ pvp(n)A.

11because n ∈ N and because N is a nest
12because d is a divisor of n satisfying d 6= n
13because n ∈ N and because N is a nest
14This has already been proven during our proof of the implication D =⇒ C.
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This relation holds for every p ∈ PFn. Thus,

bn −
∑
d|n;
d6=n

dxn�dd ∈
⋂

p∈PFn

(
pvp(n)A

)
= nA (by Corollary 2) .

Hence, there exists an element xn of A that satisfies bn −
∑
d|n;
d6=n

dxn�dd = nxn. Fix such

an xn. We now claim that this element xn satisfies (9) for m = n. In fact,∑
d|n

dxn�dd =
∑
d|n;
d6=n

dxn�dd +
∑
d|n;
d=n

dxn�dd

︸ ︷︷ ︸
=nxn�nn =nx1n=nxn

=
∑
d|n;
d 6=n

dxn�dd + nxn = bn

(since bn −
∑
d|n;
d6=n

dxn�dd = nxn). Hence, (9) is satisfied for m = n. This shows that we

can recursively construct a family (xn)n∈N ∈ AN of elements of A which satisfies the
equation (9) for every m ∈ N . Therefore, this family satisfies

bn =
∑
d|n

dxn�dd (by (9), applied to m = n)

= wn
(
(xk)k∈N

)
for every n ∈ N . So we have proven that there exists a family (xn)n∈N ∈ AN which
satisfies bn = wn

(
(xk)k∈N

)
for every n ∈ N . In other words, we have proven Assertion

D. Thus, the implication C =⇒ D is proven.
Now that both implications D =⇒ C and C =⇒ D are verified, Theorem 4 is proven.
Next, we will show a result similar to Theorem 415:

Theorem 5. Let N be a nest. Let A be an Abelian group (written
additively). For every n ∈ N , let ϕn : A → A be an endomorphism of
the group A such that

(ϕ1 = id) and (11)

(ϕn ◦ ϕm = ϕnm for every n ∈ N and every m ∈ N satisfying nm ∈ N) .
(12)

Let (bn)n∈N ∈ AN be a family of elements of A. Then, the following five
assertions C, E , F , G and H are equivalent:

Assertion C: Every n ∈ N and every p ∈ PFn satisfies

ϕp (bn�p) ≡ bn mod pvp(n)A. (13)

Assertion E: There exists a family (yn)n∈N ∈ AN of elements of A such
that bn =

∑
d|n

dϕn�d (yd) for every n ∈ N

 .

15Later, we will unite it with Theorem 4 into one big theorem - whose conditions, however, will
include the conditions of both Theorems 4 and 5, so it does not replace Theorems 4 and 5.
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Assertion F : Every n ∈ N satisfies∑
d|n

µ (d)ϕd (bn�d) ∈ nA.

Assertion G: Every n ∈ N satisfies∑
d|n

φ (d)ϕd (bn�d) ∈ nA.

Assertion H: Every n ∈ N satisfies
n∑
i=1

ϕn� gcd(i,n)

(
bgcd(i,n)

)
∈ nA.

Remark: Here, µ denotes the Möbius function µ : N+ → Z defined by

µ (n) =

{
(−1)|PFn| , if (vp (n) ≤ 1 for every p ∈ PFn)

0, otherwise
. (14)

Besides, φ denotes the Euler phi function φ : N+ → Z defined by

φ (n) = |{m ∈ {1, 2, ..., n} | m ⊥ n}| .
We will need some basic properties of the functions µ and φ:

Theorem 6. Any n ∈ N+ satisfies the five identities

µ (n) =

{
(−1)|PFn| , if n =

∏
p∈PFn

p

0, otherwise
(15)∑

d|n

φ (d) = n; (16)

∑
d|n

µ (d) = [n = 1] ; (17)

∑
d|n

µ (d)
n

d
= φ (n) ; (18)

∑
d|n

dµ (d)φ
(n
d

)
= µ (n) . (19)

Here, for any assertion κ, we denote by [κ] the truth value of κ (defined

by [κ] =

{
1, if κ is true;
0, if κ is false

).

Proof of Theorem 6. First, let us prove the identity (15). In fact, for every n ∈ N+,
the assertions (vp (n) ≤ 1 for every p ∈ PFn) and n =

∏
p∈PFn

p are equivalent16; hence,

(15) follows directly from (14). This proves (15).

16In fact, if n =
∏

p∈PFn

p, then (vp (n) ≤ 1 for every p ∈ PFn) (because n equals the product
∏

p∈PFn

p,

and every prime occurs only once in this product), and conversely, if (vp (n) ≤ 1 for every p ∈ PFn),
then n =

∏
p∈PFn

p (because every p ∈ PFn satisfies vp (n) ≤ 1 and vp (n) ≥ 1 (since p ∈ PFn yields

p | n), so that vp (n) = 1, and consequently, n =
∏

p∈PFn

pvp(n)︸ ︷︷ ︸
=p1=p

=
∏

p∈PFn

p).
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Next, let us show (16). Let n ∈ N+. Then, for every m ∈ {1, 2, ..., n}, the number
gcd (m,n) is a divisor of n. Hence, for every m ∈ {1, 2, ..., n}, there exists one and only
one divisor d of n such that gcd (m,n) = d. Thus,

{1, 2, ..., n} =
⋃
d|n

{m ∈ {1, 2, ..., n} | gcd (m,n) = d} .

Since the sets {m ∈ {1, 2, ..., n} | gcd (m,n) = d} for varying d are pairwise disjoint
(because gcd (m,n) cannot equal two distinct numbers for one and the same m), this
yields that

|{1, 2, ..., n}| =
∑
d|n

|{m ∈ {1, 2, ..., n} | gcd (m,n) = d}| . (20)

For every divisor d of n, the map{
m ∈

{
1, 2, ...,

n

d

}
| m ⊥ n

d

}
→ {m ∈ {1, 2, ..., n} | gcd (m,n) = d} ,

x 7→ dx

is a bijection (because this map is well-defined17, injective18 and surjective19), so that∣∣∣{m ∈ {1, 2, ...,
n

d

}
| m ⊥ n

d

}∣∣∣ = |{m ∈ {1, 2, ..., n} | gcd (m,n) = d}| .

Since ∣∣∣{m ∈ {1, 2, ...,
n

d

}
| m ⊥ n

d

}∣∣∣ = φ
(n
d

)
(by the definition of φ), this becomes

φ
(n
d

)
= |{m ∈ {1, 2, ..., n} | gcd (m,n) = d}| . (21)

17Proof. Let d be a divisor of n. For every x ∈
{
m ∈

{
1, 2, ...,

n

d

}
| m ⊥ n

d

}
, we have

x ∈
{

1, 2, ...,
n

d

}
and x ⊥ n

d
, so that dx ∈ {1, 2, ..., n} (since x ∈

{
1, 2, ...,

n

d

}
) and gcd (dx, n) =

gcd
(
dx, d

n

d

)
= d gcd

(
x,
n

d

)
︸ ︷︷ ︸

=1 (since

x⊥
n

d
)

= d, and therefore dx ∈ {m ∈ {1, 2, ..., n} | gcd (m,n) = d}.

18since d 6= 0
19Proof. Let d be a divisor of n. Let y ∈ {m ∈ {1, 2, ..., n} | gcd (m,n) = d}. Then, y ∈ {1, 2, ..., n}

and gcd (y, n) = d. Hence,
y

d
∈ Z (since d = gcd (y, n) | y), so that

y

d
∈
{

1, 2, ...,
n

d

}
(since

y ∈ {1, 2, ..., n}) and
y

d
⊥ n

d
(since d gcd

(y
d
,
n

d

)
= gcd

(
d
y

d
, d
n

d

)
= gcd (y, n) = d yields gcd

(y
d
,
n

d

)
=

1). Thus,
y

d
∈
{
m ∈

{
1, 2, ...,

n

d

}
| m ⊥ n

d

}
. Of course, y = d

y

d
. Therefore, there exists some

x ∈
{
m ∈

{
1, 2, ...,

n

d

}
| m ⊥ n

d

}
such that y = dx (namely, x =

y

d
). In other words, y lies in the

image of our map.
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Now,

∑
d|n

φ (d) =
∑
d∈N|n

φ (d) =
∑
d∈N|n

φ
(n
d

)  here we substituted
n

d
for d in the sum, since the map

N|n → N|n, d 7→
n

d
is a bijection


=
∑
d|n

φ
(n
d

)
=
∑
d|n

|{m ∈ {1, 2, ..., n} | gcd (m,n) = d}| (by (21))

= |{1, 2, ..., n}| (by (20))

= n.

Thus, (16) is proven.
Let us now prove the remaining three identities. Let us denote by P (U) the power

set of any set U . We notice that for every finite set S of primes, we have

µ

(∏
p∈S

p

)
= (−1)|S| (22)

20.
Recall also that every finite set U and every k ∈ N satisfy

|{S ∈ P (U) | |S| = k}| =
(
|U |
k

)
. (23)

(This is a classical fact in elementary combinatorics, saying that the number of k-

element subsets of the finite set U is

(
|U |
k

)
.) Thus, it is easy to see that every finite

set U satisfies ∑
S∈P(U)

(−1)|S| = [|U | = 0] (24)

20Proof. Let S be a finite set of primes. Set N =
∏
p∈S

p. Then, PFN = PF

( ∏
p∈S

p

)
= S. We have

N =
∏
p∈S

p =
∏

p∈PFN

p (since S = PFN). Now, (15) yields

µ (N) =

 (−1)
|PFN |

, if N =
∏

p∈PFN

p

0, otherwise
= (−1)

|PFN |

since N =
∏

p∈PFN

p


= (−1)

|S|
(since PFN = S) .

This rewrites as µ

( ∏
p∈S

p

)
= (−1)

|S|
(since N =

∏
p∈S

p).
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21.
The map

L : P (PFn)→
{
d ∈ N|n | µ (d) 6= 0

}
defined by

(
L (S) =

∏
p∈S

p for every S ∈ P (PFn)

)

is well-defined22, surjective (since every element e of
{
d ∈ N|n | µ (d) 6= 0

}
satisfies

e = L (S) for some S ∈ P (PFn), namely for S = PF e 23) and injective24. Hence,

L is a bijection. Besides, every S ∈ P (PFn) satisfies µ (L (S)) = (−1)|S| (since (22)

21Proof of (24): Let U be a finite set. Then,∑
S∈P(U)

(−1)
|S|

=
∑
k∈N

∑
S∈P(U);
|S|=k

(−1)
k

︸ ︷︷ ︸
=|{S∈P(U) ||S|=k}|·(−1)k

=
∑
k∈N
|{S ∈ P (U) | |S| = k}|︸ ︷︷ ︸

=

(
|U |
k

)
(by (23))

· (−1)
k

=
∑
k∈N

(
|U |
k

)
(−1)

k
= (1 + (−1))

|U |
(by the binomial formula)

= 0|U | =

{
1, if |U | = 0;
0, otherwise

= [|U | = 0] .

This proves (24).
22Proof. Let S ∈ P (PFn). Then, S is a subset of PFn. Hence, each element p of S is a prime

divisor of n. Therefore, the product
∏
p∈S

p of these elements also divides n. In other words,
∏
p∈S

p ∈ N|n.

Hence, the formula (22) yields µ

( ∏
p∈S

p

)
= (−1)

|S| 6= 0.

Thus,
∏
p∈S

p ∈
{
d ∈ N|n | µ (d) 6= 0

}
(since

∏
p∈S

p ∈ N|n).

Now, forget that we fixed S. We have thus shown that
∏
p∈S

p ∈
{
d ∈ N|n | µ (d) 6= 0

}
for each

S ∈ P (PFn). Hence, the map L is well-defined.
23Proof. Let e ∈

{
d ∈ N|n | µ (d) 6= 0

}
. We must prove that e = L (S) for S = PF e. In other

words, we must prove that e = L (PF e).
From e ∈

{
d ∈ N|n | µ (d) 6= 0

}
, we obtain that µ (e) 6= 0. Hence, e =

∏
p∈PF e

p (because otherwise,

(15) would yield µ (e) =

 (−1)
|PF e|

, if e =
∏

p∈PF e

p

0, otherwise
= 0, which would contradict µ (e) 6= 0). On the

other hand, from e ∈
{
d ∈ N|n | µ (d) 6= 0

}
, we obtain e ∈ N|n, so that e | n and thus PF e ⊆ PFn.

In other words, PF e ∈ P (PFn). Hence, L (PF e) is well-defined. The definition of L (PF e) shows
that L (PF e) =

∏
p∈PF e

p.

Thus, e =
∏

p∈PF e

p = L (PF e).

24since for every S ∈ P (PFn), we have S = PF

( ∏
p∈S

p

)
= PF (L (S)), and thus S can be uniquely

reconstructed from L (S)
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yields µ (L (S)) = µ

(∏
p∈S

p

)
= (−1)|S|, because S is a finite set of primes). Now,

∑
d|n

µ (d) =
∑
d∈N|n

µ (d) =
∑
d∈N|n;

µ(d) 6=0

µ (d)

(
here, we have removed from the sum all addends with µ (d) = 0,

but these addends are all zero and thus don’t change the sum

)
=

∑
S∈P(PFn)

µ (L (S))︸ ︷︷ ︸
=(−1)|S|

(
since L : P (PFn)→

{
d ∈ N|n | µ (d) 6= 0

}
is a bijection

)
=

∑
S∈P(PFn)

(−1)|S| = [|PFn| = 0] (by (24), applied to U = PFn)

= [n = 1]

25. This proves (17).
It remains to prove the remaining two identities (18) and (19). First, let us show

(18):
For any p ∈ PFn, let us denote by Up the subset {m ∈ {1, 2, ..., n} | (p | m)} of the

set {1, 2, ..., n}. We have

{m ∈ {1, 2, ..., n} | m ⊥ n} = {1, 2, ..., n} \
⋃

p∈PFn

{m ∈ {1, 2, ..., n} | (p | m)}

(since an element m ∈ {1, 2, ..., n} satisfies m ⊥ n if and only if there is no p ∈ PFn
such that p | m). In other words,

{m ∈ {1, 2, ..., n} | m ⊥ n} = {1, 2, ..., n} \
⋃

p∈PFn

Up (25)

(since {m ∈ {1, 2, ..., n} | (p | m)} = Up for every p ∈ PFn). But by the principle
of inclusion and exclusion26 (applied to the family (Up)p∈PFn of subsets of the set
{1, 2, ..., n}), we have∣∣∣∣∣{1, 2, ..., n} \ ⋃

p∈PFn

Up

∣∣∣∣∣ =
∑

S⊆PFn

(−1)|S|

∣∣∣∣∣⋂
p∈S

Up

∣∣∣∣∣ ,
25because for an integer n ∈ N+, the assertion |PFn| = 0 is equivalent to n = 1, since we have the

following chain of equivalences:

(|PFn| = 0)⇐⇒ (PFn = ∅)⇐⇒ (n has no prime divisors)⇐⇒ (n = 1)

26The principle of inclusion and exclusion states that if X and U are finite sets, and (Ux)x∈X ∈

(P (U))
X

is a family of subsets of U , then

∣∣∣∣U \ ⋃
x∈X

Ux

∣∣∣∣ =
∑
S⊆X

(−1)
|S|
∣∣∣∣ ⋂
x∈S

Ux

∣∣∣∣, where
⋂
x∈∅

Ux denotes

the whole set U . We are applying this principle to the sets X = PFn and U = {1, 2, ..., n} and the

family (Ux)x∈X = (Up)p∈X ∈ (P (U))
X

here.
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where
⋂
p∈∅

Up denotes the whole set {1, 2, ..., n}. Now, the definition of φ yields

φ (n) = |{m ∈ {1, 2, ..., n} | m ⊥ n}| =

∣∣∣∣∣{1, 2, ..., n} \ ⋃
p∈PFn

Up

∣∣∣∣∣ (by (25))

=
∑

S⊆PFn

(−1)|S|

∣∣∣∣∣⋂
p∈S

Up

∣∣∣∣∣ . (26)

But for every S ⊆ PFn, we have

⋂
p∈S

Up =
⋂
p∈S

{m ∈ {1, 2, ..., n} | (p | m)} =


m ∈ {1, 2, ..., n} | (every p ∈ S satisfies p | m)︸ ︷︷ ︸

this assertion is equivalent to∏
p∈S

p|m, since p is prime for every p∈S


=

{
m ∈ {1, 2, ..., n} |

(∏
p∈S

p | m

)}

and thus ∣∣∣∣∣⋂
p∈S

Up

∣∣∣∣∣ =

∣∣∣∣∣
{
m ∈ {1, 2, ..., n} |

(∏
p∈S

p | m

)}∣∣∣∣∣ =
n∏

p∈S
p

27. Hence, (26) becomes

φ (n) =
∑

S⊆PFn

(−1)|S|

∣∣∣∣∣⋂
p∈S

Up

∣∣∣∣∣ =
∑

S⊆PFn︸ ︷︷ ︸
=

∑
S∈P(PFn)

(−1)|S|︸ ︷︷ ︸
=µ(L(S))

n∏
p∈S

p︸ ︷︷ ︸
=

n

L (S)
,

since L(S)=
∏
p∈S

p

=
∑

S∈P(PFn)

µ (L (S))
n

L (S)

=
∑
d∈N|n;

µ(d) 6=0

µ (d)
n

d

(
here, we have substituted d for L (S) in the sum,

since L : P (PFn)→
{
d ∈ N|n | µ (d) 6= 0

}
is a bijection

)

=
∑
d∈N|n

µ (d)
n

d

(
here, we have added to the sum some addends with µ (d) = 0,
but these addends are all zero and thus don’t change the sum

)
=
∑
d|n

µ (d)
n

d
.

Thus, (18) is proven.

27This is because
∏
p∈S

p is a divisor of n (since each p ∈ S is a prime divisor of n, and thus their

product
∏
p∈S

p is also a divisor of n), and each divisor d of n satisfies |{m ∈ {1, 2, ..., n} | (d | m)}| = n

d

(since there are exactly
n

d
elements of the set {1, 2, ..., n} divisible by d, namely d, 2d, 3d, ...,

n

d
d).
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Now, we are going to prove the identity (19) by strong induction over n. So let
m ∈ N be an integer, and assume that the identity (19) holds for every n ∈ N+

satisfying n < m. Then, we have to prove that (19) also holds for n = m.
In fact, we have ∑

d|e

dµ (d)φ
(e
d

)
= µ (e) (27)

for every divisor e of m satisfying e 6= m 28.
Now,∑

e|m

∑
d|e︸︷︷︸

=
∑
d|m;
d|e

dµ (d)φ
(e
d

)
=
∑
e|m

∑
d|m;
d|e︸ ︷︷ ︸

=
∑
d|m

∑
e|m;
d|e

dµ (d)φ
(e
d

)
=
∑
d|m

dµ (d)
∑
e|m;
d|e

φ
(e
d

)
.

Since every divisor d of m satisfies∑
e|m;
d|e

φ
(e
d

)
=
∑
e∈N|m;

d|e

φ
(e
d

)
=

∑
f∈N|(m�d)

φ (f)


here, we substituted f for

e

d
in the sum, since the map{

e ∈ N|m | (d | e)
}
→ N|(m�d), e 7→

e

d
is a bijection

(because d | m)


=

∑
f |(m�d)

φ (f) = m�d (by (16), with n and d replaced by m�d and f) ,

this becomes∑
e|m

∑
d|e

dµ (d)φ
(e
d

)
=
∑
d|m

dµ (d)
∑
e|m;
d|e

φ
(e
d

)
︸ ︷︷ ︸

=m/d

=
∑
d|m

d · (m�d)︸ ︷︷ ︸
=m

µ (d) = m
∑
d|m

µ (d)︸ ︷︷ ︸
=[m=1]

(by (17) (applied to m instead of n))

= m [m = 1] = m

{
1, if m = 1;
0, if m 6= 1

=

{
m, if m = 1;
0, if m 6= 1

=

{
1, if m = 1;
0, if m 6= 1

= [m = 1]

=
∑
d|m

µ (d) (by (17) (applied to m instead of n))

=
∑
d|m;
d 6=m

µ (d) +
∑
d|m;
d=m

µ (d)

︸ ︷︷ ︸
=µ(m)

=
∑
d|m;
d6=m

µ (d) + µ (m) .

28Proof of (27): Let e be a divisor of m satisfying e 6= m. Thus, e < m. Also, clearly, e ∈ N+.
But we have assumed that the identity (19) holds for every n ∈ N+ satisfying n < m. Applying

this to n = e, we conclude that (19) holds for n = e (sinc e ∈ N+ and e < m). In other words, we

have
∑
d|e
dµ (d)φ

( e
d

)
= µ (e). This proves (27).
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Thus,∑
d|m;
d6=m

µ (d) + µ (m) =
∑
e|m

∑
d|e

dµ (d)φ
(e
d

)

=
∑
e|m;
e 6=m

∑
d|e

dµ (d)φ
(e
d

)
︸ ︷︷ ︸

=µ(e)
(by (27))

+
∑
e|m;
e=m

∑
d|e

dµ (d)φ
(e
d

)
︸ ︷︷ ︸

=
∑
d|m

dµ(d)φ

(m
d

)

=
∑
e|m;
e 6=m

µ (e) +
∑
d|m

dµ (d)φ
(m
d

)
=
∑
d|m;
d6=m

µ (d) +
∑
d|m

dµ (d)φ
(m
d

)

(here, we substituted d for e in the first sum). Therefore,

µ (m) =
∑
d|m

dµ (d)φ
(m
d

)
.

In other words, (19) holds for n = m. This completes our induction, and thus (19) is
proven.

Hence, the proof of Theorem 6 is now complete.
Proof of Theorem 5. First, we are going to prove the equivalence of the assertions

C and E . In order to do this, we will prove the implications E =⇒ C and C =⇒ E .
Proof of the implication E =⇒ C: Assume that Assertion E holds. That is, there

exists a family (yn)n∈N ∈ AN of elements of A such thatbn =
∑
d|n

dϕn�d (yd) for every n ∈ N

 . (28)

We want to prove that Assertion C holds, i. e., that every n ∈ N and every p ∈ PFn
satisfies (13). Let n ∈ N and p ∈ PFn. Then, p | n, so that n�p ∈ N+, and thus
n�p ∈ N (since n�p is a divisor of n, and every divisor of n lies in N 29). Thus,
applying (28) to n�p instead of n yields bn�p =

∑
d|(n�p)

dϕ(n�p)�d (yd). Now, (28) yields

bn =
∑
d|n

dϕn�d (yd) =
∑
d|n;

d|(n�p)

dϕn�d (yd) +
∑
d|n;

d-(n�p)

dϕn�d (yd) . (29)

But for any divisor d of n, the assertions d - (n�p) and pvp(n) | d are equivalent30.
Thus,∑

d|n;
d-(n�p)

dϕn�d (yd) =
∑
d|n;

pvp(n)|d

d︸︷︷︸
≡0 mod pvp(n)A,

since pvp(n)|d

ϕn�d (yd) ≡
∑
d|n;

pvp(n)|d

0ϕn�d (yd) = 0 mod pvp(n)A.

29because n ∈ N and because N is a nest
30This has already been proven during our proof of Theorem 4.
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Thus, (29) becomes

bn =
∑
d|n;

d|(n�p)

dϕn�d (yd) +
∑
d|n;

d-(n�p)

dϕn�d (yd)

︸ ︷︷ ︸
≡0 mod pvp(n)A

≡
∑
d|n;

d|(n�p)

dϕn�d (yd) + 0 =
∑
d|n;

d|(n�p)

dϕn�d (yd)

=
∑

d|(n�p)

dϕn�d (yd) mod pvp(n)A. (30)

On the other hand, bn�p =
∑

d|(n�p)
dϕ(n�p)�d (yd) yields

ϕp (bn�p) = ϕp

 ∑
d|(n�p)

dϕ(n�p)�d (yd)


=
∑

d|(n�p)

dϕp
(
ϕ(n�p)�d (yd)

)︸ ︷︷ ︸
=(ϕp◦ϕ(n�p)�d)(yd)

(since ϕp is a group endomorphism)

=
∑

d|(n�p)

d
(
ϕp ◦ ϕ(n�p)�d

)︸ ︷︷ ︸
=ϕp·(n�p)�d (due to (12))

(yd)

=
∑

d|(n�p)

dϕp·(n�p)�d︸ ︷︷ ︸
=ϕn�d

(yd) =
∑

d|(n�p)

dϕn�d (yd) ≡ bn mod pvp(n)A

(by (30)). In other words, (13) is satisfied, and thus Assertion C is proven. We have
therefore shown the implication E =⇒ C.

Proof of the implication C =⇒ E: Assume that Assertion C holds. That is, every
n ∈ N and every p ∈ PFn satisfies (13).

We will now recursively construct a family (yn)n∈N ∈ AN of elements of A which
satisfies the equation

bm =
∑
d|m

dϕm�d (yd) (31)

for every m ∈ N .
In fact, let n ∈ N , and assume that we have already constructed an element ym ∈ A

for every m ∈ N ∩ {1, 2, ..., n− 1} in such a way that (31) holds for every m ∈ N ∩
{1, 2, ..., n− 1}. Now, we must construct an element yn ∈ A such that (31) is also
satisfied for m = n.

Our assumption says that we have already constructed an element ym ∈ A for every
m ∈ N ∩ {1, 2, ..., n− 1}. In particular, this yields that we have already constructed
an element yd ∈ A for every divisor d of n satisfying d 6= n (in fact, every such
divisor d of n must lie in N 31 and in {1, 2, ..., n− 1} 32, and thus it satisfies
d ∈ N ∩ {1, 2, ..., n− 1}).

Let p ∈ PFn. Then, p | n, so that n�p ∈ N+, and thus n�p ∈ N (since n�p is
a divisor of n, and every divisor of n lies in N 33). Besides, n�p ∈ {1, 2, ..., n− 1}.

31because n ∈ N and because N is a nest
32because d is a divisor of n satisfying d 6= n
33because n ∈ N and because N is a nest
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Hence, n�p ∈ N ∩{1, 2, ..., n− 1}. Since (by our assumption) the equation (31) holds
for every m ∈ N ∩{1, 2, ..., n− 1}, we can thus conclude that (31) holds for m = n�p.
In other words, bn�p =

∑
d|(m�p)

dϕ(m�p)�d (yd). From this equation, we can conclude (by

the same reasoning as in the proof of the implication E =⇒ C) that

ϕp (bn�p) =
∑

d|(n�p)

dϕn�d (yd) .

Comparing this with (13), we obtain∑
d|(n�p)

dϕn�d (yd) ≡ bn mod pvp(n)A. (32)

Now, for any divisor d of n, the assertions d - (n�p) and pvp(n) | d are equivalent34.
Thus, ∑

d|n;
d-(n�p);
d6=n

dϕn�d (yd) =
∑
d|n;

pvp(n)|d;
d 6=n

d︸︷︷︸
≡0 mod pvp(n)A,

since pvp(n)|d

ϕn�d (yd) ≡ 0 mod pvp(n)A.

Hence,∑
d|n;
d6=n

dϕn�d (yd)

=
∑
d|n;

d-(n�p);
d 6=n

dϕn�d (yd)

︸ ︷︷ ︸
≡0 mod pvp(n)A

+
∑
d|n;

d|(n�p);
d6=n

dϕn�d (yd) ≡
∑
d|n;

d|(n�p);
d6=n

dϕn�d (yd) =
∑
d|n;

d|(n�p)

dϕn�d (yd)

(
since for any divisor d of n, the assertions (d | (n�p) and d 6= n) and d | (n�p)

are equivalent, because if (d | (n�p)) , then d 6= n (since n - (n�p) )

)
=
∑

d|(n�p)

dϕn�d (yd) ≡ bn mod pvp(n)A (by (32)) .

In other words,

bn −
∑
d|n;
d 6=n

dϕn�d (yd) ∈ pvp(n)A.

This relation holds for every p ∈ PFn. Thus,

bn −
∑
d|n;
d 6=n

dϕn�d (yd) ∈
⋂

p∈PFn

(
pvp(n)A

)
= nA (by Corollary 2) .

Hence, there exists an element yn of A that satisfies bn −
∑
d|n;
d6=n

dϕn�d (yd) = nyn. Fix

34This has already been proven during our proof of Theorem 4.
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such a yn. We now claim that this element yn satisfies (31) for m = n. In fact,∑
d|n

dϕn�d (yd) =
∑
d|n;
d6=n

dϕn�d (yd) +
∑
d|n;
d=n

dϕn�d (yd)

︸ ︷︷ ︸
=nϕn�n(yn)=nϕ1(yn)=nyn,

due to (11)

=
∑
d|n;
d6=n

dϕn�d (yd) + nyn = bn

(since bn −
∑
d|n;
d6=n

dϕn�d (yd) = nyn). Hence, (31) is satisfied for m = n. This shows that

we can recursively construct a family (yn)n∈N ∈ AN of elements of A which satisfies
the equation (31) for every m ∈ N . Therefore, this family satisfies bn =

∑
d|n
dϕn�d (yd)

for every n ∈ N (by (31), applied to m = n). So we have proven that there exists
a family (yn)n∈N ∈ AN which satisfies bn =

∑
d|n
dϕn�d (yd) for every n ∈ N . In other

words, we have proven Assertion E . Thus, the implication C =⇒ E is proven.
Since both implications C =⇒ E and E =⇒ C are proven now, we can conclude that

C ⇐⇒ E . Next we are going to show that E ⇐⇒ F .
Proof of the implication E =⇒ F : Assume that Assertion E holds. That is, there

exists a family (yn)n∈N ∈ AN of elements of A such that (28) holds. Then, every n ∈ N
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satisfies∑
d|n

µ (d)ϕd (bn�d) =
∑
e|n

µ (e)ϕe (bn�e) (here we substituted e for d in the sum)

=
∑
e|n

µ (e)ϕe

 ∑
d|(n�e)

dϕ(n�e)�d (yd)


︸ ︷︷ ︸

=
∑

d|(n�e)
dϕe(ϕ(n�e)�d(yd))

(since ϕe is a group endomorphism)

(
since bn�e =

∑
d|(n�e)

dϕ(n�e)�d (yd)

by (28) (applied to n�e instead of n)

)

=
∑
e|n

µ (e)
∑

d|(n�e)︸ ︷︷ ︸
=

∑
d|n;

d|(n�e)

dϕe
(
ϕ(n�e)�d (yd)

)︸ ︷︷ ︸
=(ϕe◦ϕ(n�e)�d)(yd)

=
∑
e|n

µ (e)
∑
d|n;

d|(n�e)

d
(
ϕe ◦ ϕ(n�e)�d

)
(yd)

=
∑
e|n

∑
d|n;

d|(n�e)︸ ︷︷ ︸
=
∑
d|n

∑
e|n;

d|(n�e)

µ (e) d

ϕe ◦ ϕ(n�e)�d︸ ︷︷ ︸
=ϕe·(n�e)�d

(by (12))

 (yd) =
∑
d|n

∑
e|n;

d|(n�e)

µ (e) dϕe·(n�e)�d︸ ︷︷ ︸
=ϕn�d

(yd)

=
∑
d|n

∑
e|n;

d|(n�e)

µ (e) dϕn�d (yd) =
∑
d|n

∑
e|n;

e|(n�d)︸ ︷︷ ︸
=

∑
e|(n�d)

µ (e) dϕn�d (yd)

(since for any d | n and any integer e, the assertion d | (n�e) is equivalent to e | (n�d))

=
∑
d|n

∑
e|(n�d)

µ (e) dϕn�d (yd) =
∑
d|n

[n = d] dϕn�d (yd)since (17) (with n and d replaced by n�d and e) yields
∑

e|(n�d)

µ (e) = [n�d = 1] = [n = d]


=
∑
d|n;
d6=n

[n = d]︸ ︷︷ ︸
=0 (since d6=n)

dϕn�d (yd) +
∑
d|n;
d=n

[n = d] dϕn�d (yd)

︸ ︷︷ ︸
=[n=n]nϕn�n(yn)

(since any divisor d of n satisfies either d 6= n or d = n)

=
∑
d|n;
d6=n

0dϕn�d (yd)

︸ ︷︷ ︸
=0

+ [n = n]nϕn�n (yn) = [n = n]︸ ︷︷ ︸
=1

nϕn�n (yn) = nϕn�n (yn) ∈ nA.

Thus, Assertion F is satisfied. Consequently, the implication E =⇒ F is proven.
Proof of the implication F =⇒ E: Assume that Assertion F holds. That is, every
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n ∈ N satisfies ∑
d|n

µ (d)ϕd (bn�d) ∈ nA.

Thus, for every n ∈ N , there exists some yn ∈ A such that

nyn =
∑
d|n

µ (d)ϕd (bn�d) . (33)

Fix such a yn for every n ∈ N . Then, every n ∈ N satisfies∑
d|n

dϕn�d (yd) =
∑
e|n

eϕn�e (ye)︸ ︷︷ ︸
=ϕn�e(eye), since ϕn�e
is a group endomorphism

(here we substituted e for d in the sum)

=
∑
e|n

ϕn�e (eye) =
∑
e|n

ϕn�e

∑
d|e

µ (d)ϕd (be�d)


︸ ︷︷ ︸

=
∑
d|e
µ(d)ϕn�e(ϕd(be�d)), since ϕn�e

is a group endomorphismsince eye =
∑
d|e

µ (d)ϕd (be�d) by (33) (applied to e instead of n)



=
∑
e|n

∑
d|e︸︷︷︸

=
∑
d|n;
d|e

µ (d)ϕn�e (ϕd (be�d))︸ ︷︷ ︸
=(ϕn�e◦ϕd)(be�d)

=
∑
e|n

∑
d|n;
d|e︸ ︷︷ ︸

=
∑
d|n

∑
e|n;
d|e

µ (d)

ϕn�e ◦ ϕd︸ ︷︷ ︸
=ϕ(n�e)·d
(by (12))

 (be�d) =
∑
d|n

∑
e|n;
d|e

µ (d)ϕ(n�e)·d (be�d)

=
∑
d|n

µ (d)
∑
e|n;
d|e

ϕ(n�e)·d (be�d) . (34)

Now, for any divisor d of n, we have∑
e|n;
d|e︸︷︷︸

=
∑

e∈N|n;

d|e

ϕ(n�e)·d︸ ︷︷ ︸
=ϕn�(e�d)

(be�d) =
∑
e∈N|n;

d|e

ϕn�(e�d) (be�d) =
∑

h∈N|(n�d)

ϕn�h (bh)

(here we substituted h for e�d in the sum, since the map{
e ∈ N|n | (d | e)

}
→ N|(n�d), e 7→ e�d
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is a bijection). Thus, (34) becomes∑
d|n

dϕn�d (yd) =
∑
d|n

µ (d)
∑
e|n;
d|e

ϕ(n�e)·d (be�d)

︸ ︷︷ ︸
=

∑
h∈N|(n�d)

ϕn�h(bh)

=
∑
d|n

µ (d)
∑

h∈N|(n�d)︸ ︷︷ ︸
=

∑
h|(n�d)

=
∑
h|n;

h|(n�d)

ϕn�h (bh)

=
∑
d|n

µ (d)
∑
h|n;

h|(n�d)

ϕn�h (bh) =
∑
d|n

∑
h|n;

h|(n�d)︸ ︷︷ ︸
=
∑
h|n

∑
d|n;

h|(n�d)

µ (d)ϕn�h (bh) =
∑
h|n

∑
d|n;

h|(n�d)

µ (d)ϕn�h (bh)

=
∑
h|n

∑
d|n;

d|(n�h)︸ ︷︷ ︸
=

∑
d|(n�h)

µ (d)ϕn�h (bh)

(
since for any integer d, the assertion h | (n�d) is

equivalent to d | (n�h)

)

=
∑
h|n

∑
d|(n�h)

µ (d)ϕn�h (bh) =
∑
h|n

[n = h]ϕn�h (bh)since (17) (applied to n�h instead of n) yields
∑

d|(n�h)

µ (d) = [n�h = 1] = [n = h]


=
∑
h|n;
h6=n

[n = h]︸ ︷︷ ︸
=0 (since h6=n)

ϕn�h (bh) +
∑
h|n;
h=n

[n = h]ϕn�h (bh)

︸ ︷︷ ︸
=[n=n]ϕn�n(bn)

(since any divisor h of n satisfies either h 6= n or h = n)

=
∑
h|n;
h6=n

0ϕn�h (bh)

︸ ︷︷ ︸
=0

+ [n = n]︸ ︷︷ ︸
=1

ϕn�n︸ ︷︷ ︸
=ϕ1=id
(by (11))

(bn) = 0 + 1 id (bn) = id (bn) = bn.

Therefore, Assertion E is satisfied. We have thus shown the implication F =⇒ E .
Now we have proven both implications E =⇒ F and F =⇒ E . As a consequence,

we now know that E ⇐⇒ F . Our next step will be to prove that E ⇐⇒ G.
Proof of the implication E =⇒ G: Assume that Assertion E holds. Then, we can

prove that every n ∈ N satisfies∑
d|n

φ (d)ϕd (bn�d) =
∑
d|n

∑
e|(n�d)

φ (e) dϕn�d (yd)

(this equation is proven in exactly the same way as we have shown the equation∑
d|n
µ (d)ϕd (bn�d) =

∑
d|n

∑
e|(n�d)

µ (e) dϕn�d (yd) in the proof of the implication E =⇒ F ,

only with µ replaced by φ throughout the proof). Since every divisor d of n satisfies
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∑
e|(n�d)

φ (e) = n�d (by (16), with n and d replaced by n�d and e), this becomes

∑
d|n

φ (d)ϕd (bn�d) =
∑
d|n

∑
e|(n�d)

φ (e)︸ ︷︷ ︸
=n�d

dϕn�d (yd) =
∑
d|n

(n�d) d︸ ︷︷ ︸
=n

ϕn�d (yd) = n
∑
d|n

ϕn�d (yd) ∈ nA.

Thus, Assertion G is satisfied. Consequently, the implication E =⇒ G is proven.
Proof of the implication G =⇒ E: Assume that Assertion G holds. That is, every

n ∈ N satisfies ∑
d|n

φ (d)ϕd (bn�d) ∈ nA.

Thus, for every n ∈ N , there exists some zn ∈ A such that

nzn =
∑
d|n

φ (d)ϕd (bn�d) . (35)

Fix such a zn for every n ∈ N . For every n ∈ N , we define an element yn ∈ A by

yn =
∑
h|n

µ (h)ϕh (zn�h) .
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Thus,

nyn = n
∑
h|n

µ (h)ϕh (zn�h) =
∑
h|n

n︸︷︷︸
=h·n�h

µ (h)ϕh (zn�h)

=
∑
h|n

hµ (h) (n�h)ϕh (zn�h)︸ ︷︷ ︸
=ϕh((n�h)zn�h)

(since
n�h∈Z and since ϕh is
a group endomorphism)

=
∑
h|n

hµ (h)ϕh ((n�h) zn�h)

=
∑
h|n

hµ (h)ϕh

 ∑
d|(n�h)

φ (d)ϕd
(
b(n�h)�d

)
︸ ︷︷ ︸

=
∑

d|(n�h)
φ(d)ϕh(ϕd(b(n�h)�d))

(since ϕh is a group endomorphism)(
since the equation (35), applied to n�h instead of n,

yields (n�h) zn�h =
∑

d|(n�h)

φ (d)ϕd
(
b(n�h)�d

) )
=
∑
h|n

hµ (h)
∑

d|(n�h)

φ (d)ϕh
(
ϕd
(
b(n�h)�d

))︸ ︷︷ ︸
=(ϕh◦ϕd)(b(n�h)�d)

=
∑
h|n

hµ (h)
∑

d|(n�h)︸ ︷︷ ︸
=

∑
d∈N|(n�h)

φ

 d︸︷︷︸
=
hd

h


ϕh ◦ ϕd︸ ︷︷ ︸

=ϕhd
(by (12))


b(n�h)�d︸ ︷︷ ︸

=bn�(hd)



=
∑
h|n

hµ (h)
∑

d∈N|(n�h)

φ

(
hd

h

)
ϕhd

(
bn�(hd)

)
.

Since every divisor h of n satisfies∑
d∈N|(n�h)

φ

(
hd

h

)
ϕhd

(
bn�(hd)

)
=
∑
e∈N|n;

h|e

φ
( e
h

)
ϕe (bn�e)

(here, we have substituted e for hd in the sum, since the map

N|(n�h) →
{
e ∈ N|n | (h | e)

}
, d 7→ hd
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is a bijection, because h | n), this becomes

nyn =
∑
h|n

hµ (h)
∑

d∈N|(n�h)

φ

(
hd

h

)
ϕhd

(
bn�(hd)

)
︸ ︷︷ ︸

=
∑

e∈N|n;

h|e

φ

( e
h

)
ϕe(bn�e)

=
∑
h|n

hµ (h)
∑
e∈N|n;

h|e︸ ︷︷ ︸
=
∑
e|n;
h|e

φ
( e
h

)
ϕe (bn�e)

=
∑
h|n

∑
e|n;
h|e︸ ︷︷ ︸

=
∑
e|n

∑
h|n;
h|e

hµ (h)φ
( e
h

)
ϕe (bn�e) =

∑
e|n

∑
h|n;
h|e︸︷︷︸

=
∑
h|e

hµ (h)φ
( e
h

)
ϕe (bn�e)

=
∑
e|n

∑
h|e

hµ (h)φ
( e
h

)
︸ ︷︷ ︸
=µ(e) (by (19), with

d and n replaced by h and e)

ϕe (bn�e) =
∑
e|n

µ (e)ϕe (bn�e)

=
∑
d|n

µ (d)ϕd (bn�d) (here we substituted d for e in the sum) .

In other words, we have proven (33). From this point, we can proceed as in the proof
of the implication F =⇒ E , and we arrive at Assertion E . Hence, we have shown the
implication G =⇒ E .

Now we have shown both implications E =⇒ G and G =⇒ E . Thus, the equivalence
E ⇐⇒ G must hold.

Finally, let us prove the equivalence between the assertions G and H. This is very
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easy, since every n ∈ N satisfies

∑
d|n

φ (d)ϕd (bn�d) =
∑
d∈N|n

φ (d)ϕd (bn�d) =
∑
d∈N|n

φ (n�d)ϕn�d

bn�(n�d)︸ ︷︷ ︸
=bd


 here we substituted

n

d
for d in the sum, since the map

N|n → N|n, d 7→
n

d
is a bijection


=
∑
d∈N|n

φ
(n
d

)
ϕn�d (bd) =

∑
d|n

φ
(n
d

)
ϕn�d (bd)

=
∑
d|n

|{m ∈ {1, 2, ..., n} | gcd (m,n) = d}|ϕn�d (bd)︸ ︷︷ ︸
=

∑
m∈{1,2,...,n};
gcd(m,n)=d

ϕn�d(bd)

(because of (21))

=
∑
d|n

∑
m∈{1,2,...,n};
gcd(m,n)=d

ϕn�d (bd)︸ ︷︷ ︸
=ϕn� gcd(m,n)(bgcd(m,n))

(since d=gcd(m,n))

=
∑
d|n

∑
m∈{1,2,...,n};
gcd(m,n)=d

ϕn� gcd(m,n)

(
bgcd(m,n)

)

=
∑

m∈{1,2,...,n};
gcd(m,n)|n

ϕn� gcd(m,n)

(
bgcd(m,n)

)
=

∑
m∈{1,2,...,n}

ϕn� gcd(m,n)

(
bgcd(m,n)

)
(since every m ∈ {1, 2, ..., n} satisfies gcd (m,n) | n)

=
n∑

m=1

ϕn� gcd(m,n)

(
bgcd(m,n)

)
=

n∑
i=1

ϕn� gcd(i,n)

(
bgcd(i,n)

)
(here we substituted i for m in the sum) .

Therefore, it is clear that G ⇐⇒ H.
Altogether, we have now proven the equivalences C ⇐⇒ E , E ⇐⇒ F , E ⇐⇒ G,

and G ⇐⇒ H. Thus, the five assertions C, E , F , G and H are equivalent. This proves
Theorem 5.

We can slightly extend Theorem 5 if we require our group A to be torsionfree. First,
the definition:

Definition 10. An Abelian group A is called torsionfree if and only if
every element a ∈ A and every n ∈ N+ such that na = 0 satisfy a = 0.

A ring R is called torsionfree if and only if the Abelian group (R,+) is
torsionfree.

(Note that in [1], Hazewinkel calls torsionfree rings ”rings of characteristic zero” -
at least, if I understand him right, because he never defines what he means by ”ring of
characteristic zero”.)

Now, here comes the extension of Theorem 5:

Theorem 7. Let N be a nest. Let A be a torsionfree Abelian group
(written additively). For every n ∈ N , let ϕn : A→ A be an endomorphism
of the group A such that (11) and (12) hold.
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Let (bn)n∈N ∈ AN be a family of elements of A. Then, the six assertions C,
E , E ′, F , G and H are equivalent, where the assertions C, E , F , G and H
are the ones stated in Theorem 5, and the assertion E ′ is the following one:

Assertion E ′: There exists one and only one family (yn)n∈N ∈ AN of ele-
ments of A such thatbn =

∑
d|n

dϕn�d (yd) for every n ∈ N

 . (36)

Obviously, most of Theorem 7 is already proven. The only thing we have to add is
the following easy observation:

Lemma 8. Under the conditions of Theorem 7, there exists at most one
family (yn)n∈N ∈ AN of elements of A satisfying (36).

Proof of Lemma 8. In order to prove Lemma 8, it is enough to show that if (yn)n∈N ∈
AN and (y′n)n∈N ∈ AN are two families of elements of A satisfyingbn =

∑
d|n

dϕn�d (yd) for every n ∈ N

 and (37)

bn =
∑
d|n

dϕn�d (y′d) for every n ∈ N

 , (38)

then (yn)n∈N = (y′n)n∈N . So let us show this. Actually, let us prove that ym = y′m for
everym ∈ N . We will prove this by strong induction overm; so, we fix some n ∈ N , and
try to prove that yn = y′n, assuming that ym = y′m is already proven for every m ∈ N
such that m < n. But this is easy to do: We have

∑
d|n;
d6=n

dϕn�d (yd) =
∑
d|n;
d6=n

dϕn�d (y′d)

(because yd = y′d holds for every divisor d of n satisfying d 6= n 35). But (37) yields

bn =
∑
d|n

dϕn�d (yd) =
∑
d|n;
d6=n

dϕn�d (yd) +
∑
d|n;
d=n

dϕn�d (yd)

︸ ︷︷ ︸
=nϕn�n(yn)

=nϕ1(yn)=nyn
(due to (11))

=
∑
d|n;
d 6=n

dϕn�d (yd) + nyn

and similarly (38) leads to

bn =
∑
d|n;
d 6=n

dϕn�d (y′d) + ny′n.

35Proof. Let d be a divisor of n satisfying d 6= n. Then, d < n. Moreover, every divisor of n lies in
N (since n ∈ N and since N is a nest), so that d ∈ N (since d is a divisor of n).

Now recall our assumption that ym = y′m is already proven for every m ∈ N such that m < n.
Applied to m = d, this yields yd = y′d (since d ∈ N and d < n).
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Thus,
∑
d|n;
d 6=n

dϕn�d (yd) + nyn = bn =
∑
d|n;
d6=n

dϕn�d (y′d) + ny′n. Subtracting the equality

∑
d|n;
d 6=n

dϕn�d (yd) =
∑
d|n;
d 6=n

dϕn�d (y′d) from this equality, we obtain nyn = ny′n, so that

n (yn − y′n) = nyn︸︷︷︸
=ny′n

−ny′n = 0 and thus yn − y′n = 0 (since the group A is torsion-

free), so that yn = y′n. This completes our induction. Thus, we have proven that
ym = y′m for every m ∈ N . In other words, (yn)n∈N = (y′n)n∈N . This completes the
proof of Lemma 8.

Now the proof of Theorem 7 is trivial:
Proof of Theorem 7. Theorem 5 yields that the five assertions C, E , F , G and H

are equivalent. In other words, C ⇐⇒ E ⇐⇒ F ⇐⇒ G ⇐⇒ H. Besides, it is obvious
that E ′ =⇒ E . It remains to prove the implication E =⇒ E ′.

Assume that Assertion E holds. In other words, assume that there exists a family
(yn)n∈N ∈ AN of elements of A satisfying (36). According to Lemma 8, there exists
at most one such family. Hence, there exists one and only one family (yn)n∈N ∈ AN
of elements of A satisfying (36). In other words, Assertion E ′ holds. Hence, we have
proven the implication E =⇒ E ′. Together with E ′ =⇒ E , this yields E ⇐⇒ E ′.
Combining this with C ⇐⇒ E ⇐⇒ F ⇐⇒ G ⇐⇒ H, we see that all six assertions C,
E , E ′, F , G and H are equivalent. This proves Theorem 7.

Just as Theorem 7 strengthened Theorem 5 in the case of a torsionfree A, we can
strengthen Theorem 4 in this case as well:

Theorem 9. Let N be a nest. Let A be a torsionfree commutative ring
with unity. For every p ∈ P ∩ N , let ϕp : A → A be an endomorphism of
the ring A such that (3) holds.

Let (bn)n∈N ∈ AN be a family of elements of A. Then, the three assertions
C, D and D′ are equivalent, where the assertions C and D are the ones
stated in Theorem 4, and the assertion D′ is the following one:

Assertion D′: There exists one and only one family (xn)n∈N ∈ AN of
elements of A such that(

bn = wn
(
(xk)k∈N

)
for every n ∈ N

)
. (39)

Again, having proven Theorem 4, the only thing we need to do here is checking the
following fact:

Lemma 10. Let N be a nest. Let A be a torsionfree commutative ring
with unity. Let (bn)n∈N ∈ AN be a family of elements of A. Then, there
exists at most one family (xn)n∈N ∈ AN of elements of A satisfying (39).

Proof of Lemma 10. In order to prove Lemma 10, it is enough to show that if
(xn)n∈N ∈ AN and (x′n)n∈N ∈ AN are two families of elements of A satisfying(

bn = wn
(
(xk)k∈N

)
for every n ∈ N

)
and (40)(

bn = wn
(
(x′k)k∈N

)
for every n ∈ N

)
, (41)
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then (xn)n∈N = (x′n)n∈N . So let us show this. Actually, let us prove that xm = x′m for
every m ∈ N . We will prove this by strong induction over m; so, we fix some n ∈ N ,
and try to prove that xn = x′n, assuming that xm = x′m is already proven for every
m ∈ N such that m < n. But this is easy to prove: We have

∑
d|n;
d 6=n

dxn�dd =
∑
d|n;
d6=n

d (x′d)
n�d

(because xd = x′d holds for every divisor d of n satisfying d 6= n 36). But (40) yields

bn = wn
(
(xk)k∈N

)
=
∑
d|n

dxn�dd =
∑
d|n;
d 6=n

dxn�dd +
∑
d|n;
d=n

dxn�dd

︸ ︷︷ ︸
=nxn�nn

=nx1n=nxn

=
∑
d|n;
d6=n

dxn�dd + nxn

and similarly (41) leads to

bn =
∑
d|n;
d6=n

d (x′d)
n�d

+ nx′n.

Thus,
∑
d|n;
d6=n

dxn�dd +nxn = dn =
∑
d|n;
d6=n

d (x′d)
n�d+nx′n. Subtracting the equality

∑
d|n;
d6=n

dxn�dd =

∑
d|n;
d6=n

d (x′d)
n�d from this equality, we obtain nxn = nx′n, so that n (xn − x′n) = nxn︸︷︷︸

=nx′n

−nx′n =

0 and thus xn−x′n = 0 (since the ring A is torsionfree), so that xn = x′n. This completes
our induction. Thus, we have proven that xm = x′m for every m ∈ N . In other words,
(xn)n∈N = (x′n)n∈N . This completes the proof of Lemma 10.

Proving Theorem 9 now is immediate:
Proof of Theorem 9. Theorem 4 yields that the two assertions C and D are equiv-

alent. In other words, C ⇐⇒ D. Besides, it is obvious that D′ =⇒ D. It remains to
prove the implication D =⇒ D′.

Assume that Assertion D holds. In other words, assume that there exists a family
(xn)n∈N ∈ AN of elements of A satisfying (39). According to Lemma 10, there exists
at most one such family. Hence, there exists one and only one family (xn)n∈N ∈ AN
of elements of A satisfying (39). In other words, Assertion D′ holds. Hence, we have
proven the implication D =⇒ D′. Together with D′ =⇒ D, this yields D ⇐⇒ D′.
Combining this with C ⇐⇒ D, we see that all three assertions C, D and D′ are
equivalent. This proves Theorem 9.

Let us record, for the sake of application, the following result, which is a trivial
consequence of Theorems 4 and 5:

Theorem 11. Let N be a nest. Let A be a commutative ring with unity.
For every n ∈ N , let ϕn : A → A be an endomorphism of the ring A such
that the conditions (3), (11) and (12) are satisfied.

36Proof. Let d be a divisor of n satisfying d 6= n. Then, d < n. Moreover, every divisor of n lies in
N (since n ∈ N and since N is a nest), so that d ∈ N (since d is a divisor of n).

Now recall our assumption that xm = x′m is already proven for every m ∈ N such that m < n.
Applied to m = d, this yields xd = x′d (since d ∈ N and d < n).
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Let (bn)n∈N ∈ AN be a family of elements of A. Then, the assertions C, D,
E , F , G and H are equivalent, where the assertions C and D are the ones
stated in Theorem 4, and the assertions E , F , G and H are the ones stated
in Theorem 5.

Proof of Theorem 11. According to Theorem 4, the assertions C and D are equiv-
alent. According to Theorem 5, the assertions C, E , F , G and H are equivalent.
Combining these two observations, we conclude that the assertions C, D, E , F , G and
H are equivalent37, and thus Theorem 11 is proven.

And here comes the strengthening of Theorem 11 for torsionfree rings A:

Theorem 12. Let N be a nest. Let A be a torsionfree commutative ring
with unity. For every n ∈ N , let ϕn : A → A be an endomorphism of the
ring A such that the conditions (3), (11) and (12) are satisfied.

Let (bn)n∈N ∈ AN be a family of elements of A. Then, the assertions C, D,
D′, E , E ′, F , G and H are equivalent, where:

• the assertions C and D are the ones stated in Theorem 4,

• the assertions E , F , G and H are the ones stated in Theorem 5,

• the assertion D′ is the one stated in Theorem 9, and

• the assertion E ′ is the one stated in Theorem 7.

Proof of Theorem 12. According to Theorem 9, the assertions C, D and D′ are
equivalent. According to Theorem 7, the assertions C, E , E ′, F , G andH are equivalent.
Combining these two observations, we conclude that the assertions C, D, D′, E , E ′, F ,
G and H are equivalent38, and thus Theorem 12 is proven.

We are now going to formulate the most important particular case of Theorem 12,
namely the one where A is a ring of polynomials over Z:

Theorem 13. Let Ξ be a family of symbols. Let N be a nest, and let
(bn)n∈N ∈ (Z [Ξ])N be a family of polynomials in the indeterminates Ξ.
Then, the following assertions CΞ, DΞ, D′Ξ, EΞ, E ′Ξ, FΞ, GΞ and HΞ are
equivalent:

Assertion CΞ: Every n ∈ N and every p ∈ PFn satisfies

bn�p (Ξp) ≡ bn mod pvp(n)Z [Ξ] .

Assertion DΞ: There exists a family (xn)n∈N ∈ (Z [Ξ])N of elements of Z [Ξ]
such that (

bn = wn
(
(xk)k∈N

)
for every n ∈ N

)
.

37Here, of course, we have used that the assertion C from Theorem 5 is identic with the assertion C
from Theorem 4.

38Here, of course, we have used that the assertion C from Theorem 5 is identic with the assertion C
from Theorem 4.
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Assertion D′Ξ: There exists one and only one family (xn)n∈N ∈ (Z [Ξ])N of
elements of Z [Ξ] such that(

bn = wn
(
(xk)k∈N

)
for every n ∈ N

)
.

Assertion EΞ: There exists a family (yn)n∈N ∈ (Z [Ξ])N of elements of Z [Ξ]
such that bn =

∑
d|n

dyd
(
Ξn�d) for every n ∈ N

 .

Assertion E ′Ξ: There exists one and only one family (yn)n∈N ∈ (Z [Ξ])N of
elements of Z [Ξ] such thatbn =

∑
d|n

dyd
(
Ξn�d) for every n ∈ N

 .

Assertion FΞ: Every n ∈ N satisfies∑
d|n

µ (d) bn�d
(
Ξd
)
∈ nZ [Ξ] .

Assertion GΞ: Every n ∈ N satisfies∑
d|n

φ (d) bn�d
(
Ξd
)
∈ nZ [Ξ] .

Assertion HΞ: Every n ∈ N satisfies

n∑
i=1

bgcd(i,n)

(
Ξn� gcd(i,n)

)
∈ nZ [Ξ] .

Before we prove this result, we need a lemma:

Lemma 14. Let a ∈ Z [Ξ] be a polynomial. Let p be a prime. Then,
a (Ξp) ≡ ap mod pZ [Ξ].

This lemma is Lemma 4 (a) in [3] (with ψ renamed as a), so we don’t need to prove
this lemma here.

Proof of Theorem 13. Let A be the ring Z [Ξ] (this is the ring of all polynomials
over Z in the indeterminates Ξ). Then, A is a torsionfree commutative ring with unity
(torsionfree because every element a ∈ Z [Ξ] and every n ∈ N+ such that na = 0 satisfy
a = 0).

For every n ∈ N , define a map ϕn : Z [Ξ] → Z [Ξ] by ϕn (P ) = P (Ξn) for every
polynomial P ∈ Z [Ξ]. It is clear that ϕn is an endomorphism of the ring Z [Ξ] 39. The

39because ϕn (0) = 0 (Ξn) = 0, ϕn (1) = 1 (Ξn) = 1, and any two polynomials P ∈ Z [Ξ] and
Q ∈ Z [Ξ] satisfy

ϕn (P +Q) = (P +Q) (Ξn) = P (Ξn) +Q (Ξn) = ϕn (P ) + ϕn (Q) and

ϕn (P ·Q) = (P ·Q) (Ξn) = P (Ξn) ·Q (Ξn) = ϕn (P ) · ϕn (Q) .
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condition (3) is satisfied, since ϕp (a) = a (Ξp) ≡ ap mod pZ [Ξ] (by Lemma 14) holds for
every a ∈ A. The condition (11) is satisfied as well (since ϕ1 (P ) = P (Ξ1) = P (Ξ) = P
for every P ∈ Z [Ξ]), and the condition (12) is also satisfied (since ϕn ◦ ϕm = ϕnm for
every n ∈ N and every m ∈ N satisfying nm ∈ N 40). Hence, the three conditions
(3), (11) and (12) are satisfied. Therefore, Theorem 12 yields that the assertions C, D,
D′, E , E ′, F , G and H are equivalent, where:

• the assertions C and D are the ones stated in Theorem 4,

• the assertions E , F , G and H are the ones stated in Theorem 5,

• the assertion D′ is the one stated in Theorem 9, and

• the assertion E ′ is the one stated in Theorem 7.

Now, comparing the assertions C, D, D′, E , E ′, F , G and H with the respective
assertions CΞ, DΞ, D′Ξ, EΞ, E ′Ξ, FΞ, GΞ and HΞ, we notice that:

• we have C ⇐⇒ CΞ (since A = Z [Ξ] and ϕp (bn�p) = bn�p (Ξp));

• we have D ⇐⇒ DΞ (since A = Z [Ξ]);

• we have D′ ⇐⇒ D′Ξ (since A = Z [Ξ]);

• we have E ⇐⇒ EΞ (since A = Z [Ξ] and ϕn�d (yd) = yd
(
Ξn�d

)
);

• we have E ′ ⇐⇒ E ′Ξ (since A = Z [Ξ] and ϕn�d (yd) = yd
(
Ξn�d

)
);

• we have F ⇐⇒ FΞ (since A = Z [Ξ] and ϕd (bn�d) = bn�d
(
Ξd
)
);

• we have G ⇐⇒ GΞ (since A = Z [Ξ] and ϕd (bn�d) = bn�d
(
Ξd
)
);

• we haveH ⇐⇒ HΞ (sinceA = Z [Ξ] and ϕn� gcd(i,n)

(
bgcd(i,n)

)
= bgcd(i,n)

(
Ξn� gcd(i,n)

)
).

Hence, the equivalence of the assertions C, D, D′, E , E ′, F , G and H yields the
equivalence of the assertions CΞ, DΞ, D′Ξ, EΞ, E ′Ξ, FΞ, GΞ and HΞ. Thus, Theorem 13
is proven.

Theorem 13 has a number of applications, including the existence of the Witt
addition and multiplication polynomials. But first we notice the simplest particular
case of Theorem 13:

40Proof. Let n ∈ N and m ∈ N be such that nm ∈ N . Then, every P ∈ Z [Ξ] satisfies

(ϕn ◦ ϕm) (P ) = ϕn

ϕm (P )︸ ︷︷ ︸
=P (Ξm)

 = ϕn (P (Ξm)) = P

(Ξn)
m︸ ︷︷ ︸

=Ξnm


(

here, (Ξn)
m

means the family of the m-th powers of all elements of
the family Ξn (considered as elements of Z [Ξ] )

)
= P (Ξnm) = ϕnm (P ) .

Thus, ϕn ◦ ϕm = ϕnm, qed.
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Theorem 15. Let N be a nest, and let (bn)n∈N ∈ ZN be a family of
integers. Then, the following assertions C∅, D∅, D′∅, E∅, E ′∅, F∅, G∅ and
H∅ are equivalent:

Assertion C∅: Every n ∈ N and every p ∈ PFn satisfies

bn�p ≡ bn mod pvp(n)Z.

Assertion D∅: There exists a family (xn)n∈N ∈ ZN of integers such that(
bn = wn

(
(xk)k∈N

)
for every n ∈ N

)
.

Assertion D′∅: There exists one and only one family (xn)n∈N ∈ ZN of
integers such that(

bn = wn
(
(xk)k∈N

)
for every n ∈ N

)
.

Assertion E∅: There exists a family (yn)n∈N ∈ ZN of integers such thatbn =
∑
d|n

dyd for every n ∈ N

 .

Assertion E ′∅: There exists one and only one family (yn)n∈N ∈ ZN of
integers such that bn =

∑
d|n

dyd for every n ∈ N

 .

Assertion F∅: Every n ∈ N satisfies∑
d|n

µ (d) bn�d ∈ nZ.

Assertion G∅: Every n ∈ N satisfies∑
d|n

φ (d) bn�d ∈ nZ.

Assertion H∅: Every n ∈ N satisfies

n∑
i=1

bgcd(i,n) ∈ nZ.

Proof of Theorem 15. We let Ξ be the empty family. Then, Z [Ξ] = Z (because
the ring of polynomials in an empty set of indeterminates over Z is simply the ring Z
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itself). Every ”polynomial” a ∈ Z satisfies a (Ξn) = a for every n ∈ N 41. Theorem
13 yields that the assertions CΞ, DΞ, D′Ξ, EΞ, E ′Ξ, FΞ, GΞ and HΞ are equivalent (these
assertions were stated in Theorem 13).

Now, comparing the assertions CΞ, DΞ, D′Ξ, EΞ, E ′Ξ, FΞ, GΞ and HΞ with the respec-
tive assertions C∅, D∅, D′∅, E∅, E ′∅, F∅, G∅ and H∅, we notice that:

• we have CΞ ⇐⇒ C∅ (since Z [Ξ] = Z and bn�p (Ξp) = bn�p);

• we have DΞ ⇐⇒ D∅ (since Z [Ξ] = Z);

• we have D′Ξ ⇐⇒ D′∅ (since Z [Ξ] = Z);

• we have EΞ ⇐⇒ E∅ (since Z [Ξ] = Z and yd
(
Ξn�d

)
= yd);

• we have E ′Ξ ⇐⇒ E ′∅ (since Z [Ξ] = Z and yd
(
Ξn�d

)
= yd);

• we have FΞ ⇐⇒ F∅ (since Z [Ξ] = Z and bn�d
(
Ξd
)

= bn�d);

• we have GΞ ⇐⇒ G∅ (since Z [Ξ] = Z and bn�d
(
Ξd
)

= bn�d);

• we have HΞ ⇐⇒ H∅ (since Z [Ξ] = Z and bgcd(i,n)

(
Ξn� gcd(i,n)

)
= bgcd(i,n)).

Hence, the equivalence of the assertions CΞ, DΞ, D′Ξ, EΞ, E ′Ξ, FΞ, GΞ and HΞ yields
the equivalence of the assertions C∅, D∅, D′∅, E∅, E ′∅, F∅, G∅ and H∅. Thus, Theorem
15 is proven.

We notice a simple corollary of Theorem 15:

Theorem 16. Let q ∈ Z be an integer. Then:

(a) There exists one and only one family (xn)n∈N+
∈ ZN+ of integers such

that (
qn = wn

(
(xk)k∈N+

)
for every n ∈ N+

)
.

(b) There exists one and only one family (yn)n∈N+
∈ ZN+ of integers such

that qn =
∑
d|n

dyd for every n ∈ N+

 .

(c) Every n ∈ N+ satisfies ∑
d|n

µ (d) qn�d ∈ nZ.

(d) Every n ∈ N+ satisfies ∑
d|n

φ (d) qn�d ∈ nZ.

41In fact, a (Ξn) is defined as the result of replacing every indeterminate by its n-th power in the
polynomial a. But since there are no indeterminates, ”replacing” them by their n-th powers doesn’t
change anything, and thus a (Ξn) = a.
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(e) Every n ∈ N+ satisfies

n∑
i=1

qgcd(i,n) ∈ nZ.

Proof of Theorem 16. First we note that every n ∈ N+ and every p ∈ PFn satisfies

qn�p ≡ qn mod pvp(n)Z. (42)

42.
Now let N be the nest N+. Define a family (bn)n∈N ∈ ZN by bn = qn for every

n ∈ N . According to Theorem 15, the assertions C∅, D∅, D′∅, E∅, E ′∅, F∅, G∅ and H∅
are equivalent (these assertions were stated in Theorem 15). Since the assertion C∅ is
true for our family (bn)n∈N ∈ ZN (because every n ∈ N and every p ∈ PFn satisfies

bn�p = qn�p ≡ qn (by (42))

= bn mod pvp(n)Z

), this yields that the assertions D∅, D′∅, E∅, E ′∅, F∅, G∅ and H∅ must also be true for
our family (bn)n∈N ∈ ZN . But for the family (bn)n∈N ∈ ZN ,

• assertion D′∅ is equivalent to Theorem 16 (a) (since N = N+ and bn = qn);

• assertion E ′∅ is equivalent to Theorem 16 (b) (since N = N+ and bn = qn);

• assertion F∅ is equivalent to Theorem 16 (c) (since N = N+ and bn�d = qn�d);

• assertion G∅ is equivalent to Theorem 16 (d) (since N = N+ and bn�d = qn�d);

• assertion H∅ is equivalent to Theorem 16 (e) (since N = N+ and bgcd(i,n) =
qgcd(i,n)).

Hence, Theorem 16 (a), Theorem 16 (b), Theorem 16 (c), Theorem 16 (d) and
Theorem 16 (e) must be true (since the assertions D′∅, E ′∅, F∅, G∅ and H∅ are true
for the family (bn)n∈N ∈ ZN). This proves Theorem 16.

The different parts of Theorem 16 - particularly, parts (b), (c), (d) and (e) (of
course, (e) is just a simple restatement of (d)) appear fairly often in literature about
number theory and combinatorics. For instance, Theorem 16 (d) appears as (4.64) in
the book [4], which gives a number-theoretical proof for every q ∈ Z and a combinatorial

proof for the case q ≥ 0. The latter proof shows that, if q ≥ 0, then
1

n

∑
d|n
φ (d) qn�d

42In fact, pvp(n) | n, and thus there exists some u ∈ N+ such that n = pvp(n)u. Since vp (n) ≥ 1
(because p ∈ PFn), we have vp (n)− 1 ∈ N, and thus can define an element ` ∈ N by ` = vp (n)− 1.

Now, Fermat’s little theorem yields qu ≡ (qu)
p

= qup mod pZ, and thus (qu)
p` ≡ (qup)

p`
mod p1+`Z

(by Lemma 3, applied to k = 1, a = qu, b = qup and A = Z). But n�p = pvp(n)u�p = pvp(n)−1u =

p`u = up` yields qn�p = qup
`

= (qu)
p`

, and n = n�p︸︷︷︸
=up`

·p = up · p` yields qn = qup·p
`

= (qup)
p`

. Finally,

1 + ` = 1 + (vp (n)− 1) = vp (n). Hence, (qu)
p` ≡ (qup)

p`
mod p1+`Z becomes qn�p ≡ qn mod pvp(n)Z

(since qn�p = (qu)
p`

, qn = (qup)
p`

and 1 + ` = vp (n)). Thus, (42) is proven.
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is the number of all colored necklaces consisting of n beads, where there are q colors
that one can use (of course, one is not forced to use them all!) and one considers two
necklaces equal if they differ from each other only in a cyclic rotation (not an axial
reflection!). Of course, the number of such necklaces must be an integer, and thus∑
d|n
φ (d) qn�d ∈ nZ, proving Theorem 16 (d) in the case q ≥ 0. One can also derive

Theorem 16 (c) in the case q ≥ 0 from a similar observation: Count necklaces again
(identifying any two necklaces which differ from each other only in a cyclic rotation),
but this time count only the aperiodic necklaces (these are the necklaces whose coloring
is not invariant under any cyclic rotation, except of the trivial rotation). This time,

there are
1

n

∑
d|n
µ (d) qn�d of them, and this leads to Theorem 16 (c). However, in the

case q < 0, these proofs of Theorems 16 (d) and (c) make no sense, and I don’t know
whether there exist combinatorial proofs for them in this case.

Note also that applying Theorem 16 (c) to a prime number n yields Fermat’s Little
Theorem (in fact, if n is prime, then the only divisors of n are 1 and n, and thus∑
d|n
µ (d) qn�d = µ (1)︸︷︷︸

=1

qn�1︸︷︷︸
=qn

+µ (n)︸ ︷︷ ︸
=−1

qn�n︸︷︷︸
=q1=q

= qn − q, so that Theorem 16 (c) becomes

qn − q ∈ nZ, which is Fermat’s Little Theorem).
Now here is a less-known analogue of Theorem 16:

Theorem 17. In the following, for any u ∈ Z and any r ∈ Q, we define

the binomial coefficient

(
u

r

)
by

(
u

r

)
=


1

r!

r−1∏
k=0

(u− k) , if r ∈ N;

0, if r /∈ N
.

In particular, if r ∈ Q \ Z, then

(
u

r

)
is supposed to mean 0.

Let q ∈ Z and r ∈ Q. Then:

(a) There exists one and only one family (xn)n∈N+
∈ ZN+ of integers such

that ((
qn

rn

)
= wn

(
(xk)k∈N+

)
for every n ∈ N+

)
.

(b) There exists one and only one family (yn)n∈N+
∈ ZN+ of integers such

that (qn
rn

)
=
∑
d|n

dyd for every n ∈ N+

 .

(c) Every n ∈ N+ satisfies∑
d|n

µ (d)

(
qn�d
rn�d

)
∈ nZ.
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(d) Every n ∈ N+ satisfies∑
d|n

φ (d)

(
qn�d
rn�d

)
∈ nZ.

(e) Every n ∈ N+ satisfies

n∑
i=1

(
q gcd (i, n)

r gcd (i, n)

)
∈ nZ.

The proof is similar, but verifying Assertion C∅ turns out harder than in Theorem
16. To simplify this step as far as possible, we will have to apply an analogue of Lemma
4 (b) from [3] for power series instead of polynomials:

Lemma 18. Let Ξ be a family of symbols. Let a ∈ Z [Ξ] be a polynomial.
Let p be a prime.

(a) For every ` ∈ N, we have (a (Ξp))p
`

≡ ap
`+1

mod p`+1Z [Ξ].

(b) For everym ∈ N+ satisfying p | m, we have (a (Ξp))m�p ≡ am mod pvp(m)Z [Ξ].

(c) Let Z [[Ξ]] denote the ring of all power series over Z in the indetermi-
nates Ξ. If a is a polynomial with constant term 1, then for everym ∈ Z\{0}
satisfying p | m, we have (a (Ξp))m�p ≡ am mod pvp(m)Z [[Ξ]]. (Note that it
makes sense to speak of (a (Ξp))m�p and am even for negative m since we
have supposed that a is a polynomial with constant term 1 and therefore
invertible in Z [[Ξ]]).

Proof of Lemma 18. (a) Lemma 18 (a) is Lemma 4 (b) in [3], and we refer to [3]
for its proof.

(b) We have m�p ∈ N+ (since p | m). Let ` = vp (m�p). Then, vp (m) =
vp ((m�p) · p) = vp (m�p)︸ ︷︷ ︸

=`

+ vp (p)︸ ︷︷ ︸
=1

= ` + 1. Thus, pvp(m) = p`+1, so that pvp(m) | m

becomes p`+1 | m. Thus, there exists s ∈ N+ such that m = sp`+1. Hence, m�p =
sp`+1�p = sp`. Thus,

(a (Ξp))m�p = (a (Ξp))sp
`

=
(

(a (Ξp))p
`
)s
≡
(
ap

`+1
)s

(by Lemma 18 (a))

= asp
`+1

= am mod p`+1Z [Ξ]
(
since sp`+1 = m

)
.

In other words, (a (Ξp))m�p ≡ am mod pvp(m)Z [Ξ] (since vp (m) = ` + 1). This proves
Lemma 18 (b).

(c) Since a is a polynomial with constant term 1, there exists a multiplicative inverse
a−1 of a in the ring Z [[Ξ]]. Clearly, a−1 (Ξp) is the multiplicative inverse of a (Ξp) in
the ring Z [[Ξ]] (because a−1 (Ξp) · a (Ξp) =

(
a−1 · a

)︸ ︷︷ ︸
=1

(Ξp) = 1 (Ξp) = 1). Hence, both

power series (a (Ξp))m�p and am are well-defined elements of Z [[Ξ]] (since m�p and m
are integers).
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Since m ∈ Z \ {0}, we have either m > 0 or m < 0. In the case m > 0,
we have m ∈ N+, so that Lemma 18 (b) yields (a (Ξp))m�p ≡ am mod pvp(m)Z [Ξ],
and thus (a (Ξp))m�p ≡ am mod pvp(m)Z [[Ξ]] (since pvp(m)Z [Ξ] ⊆ pvp(m)Z [[Ξ]]), and
therefore Lemma 18 (c) is proven in the case m > 0. In the case m < 0, we have
−m ∈ N+, so that Lemma 18 (b) (applied to −m instead of m) yields (a (Ξp))−m�p ≡
a−m mod pvp(−m)Z [Ξ], and thus (a (Ξp))−m�p ≡ a−m mod pvp(−m)Z [[Ξ]] (since pvp(−m)Z [Ξ] ⊆
pvp(−m)Z [[Ξ]]), which becomes (a (Ξp))−m�p ≡ a−m mod pvp(m)Z [[Ξ]] (since vp (−m) =

vp (m)), and multiplying this congruence by am (a (Ξp))m�p yields

am ≡ (a (Ξp))m�p mod pvp(m)Z [[Ξ]], which rewrites as (a (Ξp))m�p ≡ am mod pvp(m)Z [[Ξ]],
and therefore Lemma 18 (c) is proven in the case m < 0. Hence, Lemma 18 (c) is
proven in each of the cases m > 0 and m < 0. Consequently, Lemma 18 (c) must
always hold, and our proof of Lemma 18 is complete.

A consequence from Lemma 18 is the following congruence between binomial coef-
ficients:

Lemma 19. Let n ∈ N+ and let p ∈ PFn. Let q ∈ Z and r ∈ Q. Then,(
qn�p
rn�p

)
≡
(
qn

rn

)
mod pvp(n)Z. (43)

Proof of Lemma 19. Since p ∈ PFn, we know that p is a prime and satisfies p | n.
If rn /∈ N, then Lemma 19 is easily seen to be true.43 Hence, in the case when

rn /∈ N, we have proven Lemma 19. Therefore, we can WLOG assume that rn ∈ N for
the rest of the proof. Assume this.

Since rn ∈ N, we have rn ≥ 0. Combined with n > 0, this yields r ≥ 0.
Let m = qn. Then, p | m (since p | n). As an easy consequence from Lemma 18,

we have (1 +Xp)m�p ≡ (1 +X)m mod pvp(m)Z [[X]]. 44 Hence, for every λ ∈ N, we

43Proof. Assume that rn /∈ N. Then, rn�p /∈ N (because otherwise, we would have rn�p ∈ N,

hence rn = p︸︷︷︸
∈N

· rn�p︸ ︷︷ ︸
∈N

∈ N · N ⊆ N, contradicting rn /∈ N). By the definition of

(
qn�p
rn�p

)
, we have

(
qn�p
rn�p

)
=


1

(rn�p)!

rn�p−1∏
k=0

(qn�p− k) , if rn�p ∈ N;

0, if rn�p /∈ N
= 0 (since rn�p /∈ N) .

By the definition of

(
qn

rn

)
, we have

(
qn

rn

)
=


1

(rn)!

rn−1∏
k=0

(qn− k) , if rn ∈ N;

0, if rn /∈ N
= 0 (since rn /∈ N) .

Since

(
qn�p
rn�p

)
= 0 and

(
qn

rn

)
= 0, both sides of the equality (43) are 0. Thus, the equality (43)

holds. In other words, Lemma 19 is true, qed.
44Proof. Applying Lemma 18 (c) to the family Ξ = (X) and the polynomial a = 1+X ∈ Z [Ξ] (which

has constant term 1), we obtain (a (Ξp))
m�p ≡ am mod pvp(m)Z [[Ξ]]. Since a = 1 + X and therefore

a (Ξp) = 1 +Xp (because a (Ξp) is the result of replacing every indeterminate in the polynomial a by

its p-th power), this becomes (1 +Xp)
m�p ≡ (1 +X)

m
mod pvp(m)Z [[X]], qed.
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have(
the coefficient of the power series (1 +Xp)m�p before Xλ

)
≡
(
the coefficient of the power series (1 +X)m before Xλ

)
mod pvp(m)Z. (44)

But the binomial formula yields

(1 +Xp)m�p =
∑
κ∈N

(
m�p
κ

)
︸ ︷︷ ︸

=

(
m�p
pκ�p

) (Xp)κ︸ ︷︷ ︸
=Xpκ

=
∑
κ∈N

(
m�p
pκ�p

)
Xpκ =

∑
λ∈pN

(
m�p
λ�p

)
Xλ

(here we substituted λ for pκ, since the map N→ pN, κ 7→ pκ is a bijection)

=
∑
λ∈N

(
m�p
λ�p

)
Xλ −

∑
λ∈N\pN

(
m�p
λ�p

)
︸ ︷︷ ︸

=0, since
λ�p/∈N,

since λ/∈pN

Xλ

=
∑
λ∈N

(
m�p
λ�p

)
Xλ −

∑
λ∈N\pN

0Xλ

︸ ︷︷ ︸
=0

=
∑
λ∈N

(
m�p
λ�p

)
Xλ,

and thus every λ ∈ N satisfies(
the coefficient of the power series (1 +Xp)m�p before Xλ

)
=

(
m�p
λ�p

)
. (45)

Besides, the binomial formula yields

(1 +X)m =
∑
λ∈N

(
m

λ

)
Xλ.

Hence, every λ ∈ N satisfies

(
the coefficient of the power series (1 +X)m before Xλ

)
=

(
m

λ

)
. (46)

Thus, every λ ∈ N satisfies(
m�p
λ�p

)
=
(

the coefficient of the power series (1 +Xp)m�p before Xλ
)

(by (45))

≡
(
the coefficient of the power series (1 +X)m before Xλ

)
(by (44))

=

(
m

λ

)
mod pvp(m)Z (by (46)) .

Since m = qn, this becomes(
qn�p
λ�p

)
≡
(
qn

λ

)
mod pvp(qn)Z.
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Hence, (
qn�p
λ�p

)
≡
(
qn

λ

)
mod pvp(n)Z

(since vp (qn) = vp (q)︸ ︷︷ ︸
≥0

+vp (n) ≥ vp (n) yields pvp(n) | pvp(qn) and thus pvp(qn)Z ⊆

pvp(n)Z). Applying this to λ = rn, we obtain (43), and thus Lemma 19 is proven.
Proof of Theorem 17. Let N be the nest N+. Define a family (bn)n∈N ∈ ZN by

bn =

(
qn

rn

)
for every n ∈ N . According to Theorem 15, the assertions C∅, D∅, D′∅, E∅,

E ′∅, F∅, G∅ and H∅ are equivalent (these assertions were stated in Theorem 15). Since
the assertion C∅ is true for our family (bn)n∈N ∈ ZN (because every n ∈ N and every
p ∈ PFn satisfies

bn�p =

(
qn�p
rn�p

)
≡
(
qn

rn

)
(by (43))

= bn mod pvp(n)Z

), this yields that the assertions D∅, D′∅, E∅, E ′∅, F∅, G∅ and H∅ must also be true for
our family (bn)n∈N ∈ ZN . But for the family (bn)n∈N ∈ ZN ,

• assertion D′∅ is equivalent to Theorem 17 (a) (since N = N+ and bn =

(
qn

rn

)
);

• assertion E ′∅ is equivalent to Theorem 17 (b) (since N = N+ and bn =

(
qn

rn

)
);

• assertion F∅ is equivalent to Theorem 17 (c) (since N = N+ and bn�d =(
qn�d
rn�d

)
);

• assertion G∅ is equivalent to Theorem 17 (d) (since N = N+ and bn�d =(
qn�d
rn�d

)
);

• assertion H∅ is equivalent to Theorem 17 (e) (since N = N+ and bgcd(i,n) =(
q gcd (i, n)

r gcd (i, n)

)
).

Hence, Theorem 17 (a), Theorem 17 (b), Theorem 17 (c), Theorem 17 (d) and
Theorem 17 (e) must be true (since the assertions D′∅, E ′∅, F∅, G∅ and H∅ are true
for the family (bn)n∈N ∈ ZN). This proves Theorem 17.

Actually, we can do better than Theorem 17 in the case when r is an integer:

Theorem 20. In the following, for any u ∈ Z and any r ∈ Q, we define

the binomial coefficient

(
u

r

)
by

(
u

r

)
=


1

r!

r−1∏
k=0

(u− k) , if r ∈ N;

0, if r /∈ N
.
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In particular, if r ∈ Z \ N, then

(
u

r

)
is supposed to mean 0.

Let q ∈ Z and r ∈ Z. Then:

(a) There exists one and only one family (xn)n∈N+
∈ ZN+ of integers such

that ((
qn− 1

rn− 1

)
= wn

(
(xk)k∈N+

)
for every n ∈ N+

)
.

(b) There exists one and only one family (yn)n∈N+
∈ ZN+ of integers such

that (qn− 1

rn− 1

)
=
∑
d|n

dyd for every n ∈ N+

 .

(c) Every n ∈ N+ satisfies∑
d|n

µ (d)

(
qn�d− 1

rn�d− 1

)
∈ nZ.

(d) Every n ∈ N+ satisfies∑
d|n

φ (d)

(
qn�d− 1

rn�d− 1

)
∈ nZ.

(e) Every n ∈ N+ satisfies

n∑
i=1

(
q gcd (i, n)− 1

r gcd (i, n)− 1

)
∈ nZ.

(f) If r 6= 0, then every n ∈ N+ satisfies∑
d|n

µ (d)

(
qn�d
rn�d

)
∈ q
r
nZ.

(g) If r 6= 0, then every n ∈ N+ satisfies∑
d|n

φ (d)

(
qn�d
rn�d

)
∈ q
r
nZ.

(h) If r 6= 0, then every n ∈ N+ satisfies

n∑
i=1

(
q gcd (i, n)

r gcd (i, n)

)
∈ q
r
nZ.

The proof of this fact will use an analogue (and corollary) of Lemma 19:
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Lemma 21. Let n ∈ N+ and let p ∈ PFn. Let q ∈ Z and r ∈ Q. Assume

that there exist two integers α and β with vp (α) ≥ vp (β) and r =
α

β
. Then,

(
qn�p− 1

rn�p− 1

)
≡
(
qn− 1

rn− 1

)
mod pvp(n)Z. (47)

Proof of Lemma 21. Since p ∈ PFn, we know that p is a prime and satisfies p | n.

If r ≤ 0, then

(
qn�p− 1

rn�p− 1

)
= 0 (since r ≤ 0 yields rn�p ≤ 0 and thus rn�p−1 <

0) and

(
qn− 1

rn− 1

)
= 0 (since r ≤ 0 yields rn ≤ 0 and thus rn − 1 < 0), and thus (47)

becomes trivial. Hence, in the case r ≤ 0 we have proven Lemma 21. Therefore, we
can WLOG assume that r > 0 for the rest of the proof. Assume this.

If rn /∈ N, then

(
qn�p− 1

rn�p− 1

)
= 0 (since rn /∈ N yields rn�p /∈ N and thus

rn�p − 1 /∈ N) and

(
qn− 1

rn− 1

)
= 0 (since rn /∈ N yields rn − 1 /∈ N), and thus (47)

becomes trivial. Hence, in the case rn /∈ N we have proven Lemma 21. Therefore, we
can WLOG assume that rn ∈ N for the rest of the proof. Assume this.

It is also easy to prove Lemma 21 in the case when q = 0 45. Hence, for the
rest of this proof, we can WLOG assume that q 6= 0. Assume this. Then, vp (q) is a
well-defined nonnegative integer (not ∞).

45Proof. Assume that q = 0. Recall that(
−1

τ

)
= (−1)

τ
for every τ ∈ N. (48)

But since rn ∈ N and

vp (rn) = vp

 r︸︷︷︸
=
α

β

+ vp (n) = vp

(
α

β

)
︸ ︷︷ ︸

=vp(α)−vp(β)≥0
(since vp(α)≥vp(β))

+vp (n) ≥ vp (n) ≥ 1

(since p | n), we have p | rn. Thus, p ∈ PF (rn) (since p is a prime) and rn�p ∈ Z. On the other
hand, rn�p > 0 (since r > 0 and n > 0). Combined with rn�p ∈ Z, this yields rn�p ∈ N+. Hence,
rn�p− 1 ∈ N.

On the other hand, rn > 0 (since r > 0 and n > 0). Combining this with rn ∈ N, this yields
rn ∈ N+. Thus, rn− 1 ∈ N.

Now, applying (42) to −1 and rn instead of q and n, we obtain (−1)
rn�p ≡ (−1)

rn
mod pvp(rn)Z.

Since pvp(rn)Z ⊆ pvp(n)Z (because vp (rn) ≥ vp (n)), this yields (−1)
rn�p ≡ (−1)

rn
mod pvp(n)Z.

But since q = 0, we have(
qn�p− 1

rn�p− 1

)
=

(
0n�p− 1

rn�p− 1

)
=

(
−1

rn�p− 1

)
= (−1)

rn�p−1

(by (48), applied to τ = rn�p− 1 (since rn�p− 1 ∈ N))

= − (−1)
rn�p ≡ − (−1)

rn
mod pvp(n)Z

(
since (−1)

rn�p ≡ (−1)
rn

mod pvp(n)Z
)
.
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In the proof of Lemma 19, we have shown that(
qn�p
λ�p

)
≡
(
qn

λ

)
mod pvp(qn)Z for every λ ∈ N.

In other words, pvp(qn) |
(
qn�p
λ�p

)
−
(
qn

λ

)
, so that

vp

((
qn�p
λ�p

)
−
(
qn

λ

))
≥ vp (qn) . (49)

But any a ∈ Q and b ∈ Q \ {0} satisfy(
a

b

)
=
a

b

(
a− 1

b− 1

)
(50)

Also, since q = 0, we have(
qn− 1

rn− 1

)
=

(
0n− 1

rn− 1

)
=

(
−1

rn− 1

)
= (−1)

rn−1

(by (48), applied to τ = rn− 1 (since rn− 1 ∈ N))

= − (−1)
rn ≡

(
qn�p− 1

rn�p− 1

)
mod pvp(n)Z.

Thus, Lemma 21 is proven in the case when q = 0.
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46. Thus,

vp



(
qn�p
λ�p

)
︸ ︷︷ ︸

=
qn�p
λ�p

(
qn�p− 1

λ�p− 1

)
(by (50), applied to
a=qn�p and b=λ�p)

−
(
qn

λ

)
︸ ︷︷ ︸

=
qn

λ

(
qn− 1

λ− 1

)
(by (50), applied to
a=qn and b=λ)


= vp


qn�p
λ�p︸ ︷︷ ︸
=
qn

λ

(
qn�p− 1

λ�p− 1

)
− qn

λ

(
qn− 1

λ− 1

)


= vp

(
qn

λ

(
qn�p− 1

λ�p− 1

)
− qn

λ

(
qn− 1

λ− 1

))
= vp

(
qn

λ

((
qn�p− 1

λ�p− 1

)
−
(
qn− 1

λ− 1

)))
= vp

(qn
λ

)
︸ ︷︷ ︸

=vp(qn)−vp(λ)

+vp

((
qn�p− 1

λ�p− 1

)
−
(
qn− 1

λ− 1

))
= vp (qn)− vp (λ) + vp

((
qn�p− 1

λ�p− 1

)
−
(
qn− 1

λ− 1

))
.

Hence, (49) becomes

vp (qn)− vp (λ) + vp

((
qn�p− 1

λ�p− 1

)
−
(
qn− 1

λ− 1

))
≥ vp (qn) .

This simplifies to

vp

((
qn�p− 1

λ�p− 1

)
−
(
qn− 1

λ− 1

))
≥ vp (λ) .

46Proof. Since b ∈ Q \ {0} = (Q \ N) ∪ (N \ {0}), we must have either b ∈ Q \ N or b ∈ N \ {0}.

If b ∈ Q\N, then b /∈ N and thus

(
a

b

)
=
a

b

(
a− 1

b− 1

)
, because

(
a

b

)
= 0 (since b /∈ N) and

(
a− 1

b− 1

)
= 0

(since b /∈ N yields b− 1 /∈ N).
If b ∈ N \ {0}, then b− 1 ∈ N and thus

(
a

b

)
=

b−1∏
k=0

(a− k)

b!
=

a
b−1∏
k=1

(a− k)

b · (b− 1)!

(
since

b−1∏
k=0

(a− k) = a

b−1∏
k=1

(a− k) and b! = b · (b− 1)!

)

=
a

b
·

b−1∏
k=1

(a− k)

(b− 1)!
=
a

b
·

(b−1)−1∏
k=0

(a− (k + 1))

(b− 1)!
(here we substituted k for k − 1 in the product)

=
a

b
·

(b−1)−1∏
k=0

((a− 1)− k)

(b− 1)!︸ ︷︷ ︸
=

(
a− 1

b− 1

)
(since b−1∈N)

=
a

b

(
a− 1

b− 1

)
.

Hence, in each of the two cases b ∈ Q \ N and b ∈ N \ {0}, we have

(
a

b

)
=
a

b

(
a− 1

b− 1

)
. Since these

two cases cover all possibilities, we have thus proven that

(
a

b

)
=
a

b

(
a− 1

b− 1

)
for any a ∈ Q and any

b ∈ Q \ {0}.
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In other words, pvp(λ) |
(
qn�p− 1

λ�p− 1

)
−
(
qn− 1

λ− 1

)
, so that

(
qn�p− 1

λ�p− 1

)
≡
(
qn− 1

λ− 1

)
mod pvp(λ)Z.

Applying this to λ = rn, we obtain(
qn�p− 1

rn�p− 1

)
≡
(
qn− 1

rn− 1

)
mod pvp(rn)Z.

This yields (47) (since r =
α

β
yields vp (rn) = vp

(
α

β
n

)
= vp

(
α

β

)
︸ ︷︷ ︸

=vp(α)−vp(β)≥0
(since vp(α)≥vp(β))

+vp (n) ≥

vp (n), so that pvp(rn)Z ⊆ pvp(n)Z). Thus, Lemma 21 is proven.
Proof of Theorem 20. We know that r is an integer. Thus, there exist two integers

α and β with vp (α) ≥ vp (β) and r =
α

β
(namely, α = r and β = 1 (since

r

1
= 1 and

vp (r) ≥ 0 = vp (1))). Hence, (47) yields that every n ∈ N+ and every p ∈ PFn satisfy(
qn�p− 1

rn�p− 1

)
≡
(
qn− 1

rn− 1

)
mod pvp(n)Z. (51)

Let N be the nest N+. Define a family (bn)n∈N ∈ ZN by bn =

(
qn− 1

rn− 1

)
for every

n ∈ N . According to Theorem 15, the assertions C∅, D∅, D′∅, E∅, E ′∅, F∅, G∅ and H∅
are equivalent (these assertions were stated in Theorem 15). Since the assertion C∅ is
true for our family (bn)n∈N ∈ ZN (because every n ∈ N and every p ∈ PFn satisfies

bn�p =

(
qn�p− 1

rn�p− 1

)
≡
(
qn− 1

rn− 1

)
(by (51))

= bn mod pvp(n)Z

), this yields that the assertions D∅, D′∅, E∅, E ′∅, F∅, G∅ and H∅ must also be true for
our family (bn)n∈N ∈ ZN . But for the family (bn)n∈N ∈ ZN ,

• assertionD′∅ is equivalent to Theorem 20 (a) (sinceN = N+ and bn =

(
qn− 1

rn− 1

)
);

• assertion E ′∅ is equivalent to Theorem 20 (b) (since N = N+ and bn =

(
qn− 1

rn− 1

)
);

• assertion F∅ is equivalent to Theorem 20 (c) (since N = N+ and bn�d =(
qn�d− 1

rn�d− 1

)
);

• assertion G∅ is equivalent to Theorem 20 (d) (since N = N+ and bn�d =(
qn�d− 1

rn�d− 1

)
);
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• assertion H∅ is equivalent to Theorem 20 (e) (since N = N+ and bgcd(i,n) =(
q gcd (i, n)− 1

r gcd (i, n)− 1

)
).

Hence, Theorem 20 (a), Theorem 20 (b), Theorem 20 (c), Theorem 20 (d) and
Theorem 20 (e) must be true (since the assertions D′∅, E ′∅, F∅, G∅ and H∅ are true
for the family (bn)n∈N ∈ ZN).

Now it remains to prove Theorem 20 (f), Theorem 20 (g) and Theorem 20 (h).
To this end, let us assume that r 6= 0.

Theorem 20 (f) follows from Theorem 20 (c), since∑
d|n

µ (d)

(
qn�d
rn�d

)
︸ ︷︷ ︸

=
qn�d
rn�d

(
qn�d− 1

rn�d− 1

)
(by (50), applied to

a=qn�d and b=rn�d)

=
∑
d|n

µ (d)
qn�d
rn�d︸ ︷︷ ︸

=
q

r

(
qn�d− 1

rn�d− 1

)
=
q

r

∑
d|n

µ (d)

(
qn�d− 1

rn�d− 1

)
︸ ︷︷ ︸

∈nZ
(by Theorem 20 (c))

∈ q
r
nZ.

Theorem 20 (g) follows from Theorem 20 (d), because∑
d|n

φ (d)

(
qn�d
rn�d

)
︸ ︷︷ ︸

=
qn�d
rn�d

(
qn�d− 1

rn�d− 1

)
(by (50), applied to

a=qn�d and b=rn�d)

=
∑
d|n

φ (d)
qn�d
rn�d︸ ︷︷ ︸

=
q

r

(
qn�d− 1

rn�d− 1

)
=
q

r

∑
d|n

φ (d)

(
qn�d− 1

rn�d− 1

)
︸ ︷︷ ︸

∈nZ
(by Theorem 20 (d))

∈ q
r
nZ.

Theorem 20 (h) follows from Theorem 20 (e), since

n∑
i=1

(
q gcd (i, n)

r gcd (i, n)

)
︸ ︷︷ ︸

=
q gcd (i, n)

r gcd (i, n)

(
q gcd (i, n)− 1

r gcd (i, n)− 1

)
(by (50), applied to

a=q gcd(i,n) and b=r gcd(i,n))

=
n∑
i=1

q gcd (i, n)

r gcd (i, n)︸ ︷︷ ︸
=
q

r

(
q gcd (i, n)− 1

r gcd (i, n)− 1

)

=
q

r

n∑
i=1

(
q gcd (i, n)− 1

r gcd (i, n)− 1

)
︸ ︷︷ ︸

∈nZ
(by Theorem 20 (e))

∈ q
r
nZ.

Thus, altogether we have now proven Theorem 20 completely.
Note that Theorem 20 (h) is a generalization of the problem proposed in [5] (in

fact, the problem proposed in [5] follows from Theorem 20 (h) for r = 1).
So much for applications of Theorem 13 for the case when Ξ is the empty family (i.

e. for polynomials in zero variables). We now aim to apply Theorem 13 to nonempty
Ξ. However, at first, let us make a part of Theorem 13 stronger.
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Theorem 22. Let Ξ be a family of symbols. Let N be a nest, and let
(bn)n∈N ∈ (Q [Ξ])N be a family of polynomials in the indeterminates Ξ.

(a) There exists one and only one family (xn)n∈N ∈ (Q [Ξ])N of elements
of Q [Ξ] such that (

bn = wn
(
(xk)k∈N

)
for every n ∈ N

)
.

We denote this family (xn)n∈N by (x̃n)n∈N . Then, we have (x̃n)n∈N ∈
(Q [Ξ])N and (

bn = wn
(
(x̃k)k∈N

)
for every n ∈ N

)
.

(b) The family (x̃n)n∈N ∈ (Q [Ξ])N defined in Theorem 22 (a) satisfies

x̃n ∈ Q
[
bN|n

]
(where Q

[
bN|n

]
means the sub-Q-algebra of Q [Ξ] generated

by the polynomials bd for all d ∈ N|n) for every n ∈ N .

(c) Assume that (bn)n∈N ∈ (Z [Ξ])N . Then, the family (x̃n)n∈N ∈ (Q [Ξ])N

defined in Theorem 22 (a) satisfies (x̃n)n∈N ∈ (Z [Ξ])N if and only if every
n ∈ N and every p ∈ PFn satisfies

bn�p (Ξp) ≡ bn mod pvp(n)Z [Ξ] . (52)

The proof of Theorem 22 is easy using Theorem 13; in order to formulate it, we
will use a trick:

Let us replace Z by Q throughout Theorem 13. We obtain the following result47:

Lemma 23. Let Ξ be a family of symbols. Let N be a nest, and let
(bn)n∈N ∈ (Q [Ξ])N be a family of polynomials in the indeterminates Ξ.

Then, the following assertions CQΞ , DQΞ , D′QΞ , EQΞ , E ′QΞ , FQΞ , GQΞ and HQΞ are
equivalent:

Assertion CQΞ : Every n ∈ N and every p ∈ PFn satisfies

bn�p (Ξp) ≡ bn mod pvp(n)Q [Ξ] .

Assertion DQΞ : There exists a family (xn)n∈N ∈ (Q [Ξ])N of elements of
Q [Ξ] such that (

bn = wn
(
(xk)k∈N

)
for every n ∈ N

)
.

Assertion D′QΞ : There exists one and only one family (xn)n∈N ∈ (Q [Ξ])N

of elements of Q [Ξ] such that(
bn = wn

(
(xk)k∈N

)
for every n ∈ N

)
.

47Don’t be surprised that the assertions CQΞ , FQΞ , GQΞ and HQΞ are always fulfilled. I have only
included them to make the similarity between Lemma 23 and Theorem 13 more evident.
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Assertion EQΞ : There exists a family (yn)n∈N ∈ (Q [Ξ])N of elements of Q [Ξ]
such that bn =

∑
d|n

dyd
(
Ξn�d) for every n ∈ N

 .

Assertion E ′QΞ : There exists one and only one family (yn)n∈N ∈ (Q [Ξ])N of
elements of Q [Ξ] such thatbn =

∑
d|n

dyd
(
Ξn�d) for every n ∈ N

 .

Assertion FQΞ : Every n ∈ N satisfies∑
d|n

µ (d) bn�d
(
Ξd
)
∈ nQ [Ξ] .

Assertion GQΞ : Every n ∈ N satisfies∑
d|n

φ (d) bn�d
(
Ξd
)
∈ nQ [Ξ] .

Assertion HQΞ : Every n ∈ N satisfies

n∑
i=1

bgcd(i,n)

(
Ξn� gcd(i,n)

)
∈ nQ [Ξ] .

Of course, it is obvious that the assertions CQΞ , FQΞ , GQΞ and HQΞ are always fulfilled
(since pvp(n)Q [Ξ] = Q [Ξ] for every n ∈ N and every p ∈ PFn, and nQ [Ξ] = Q [Ξ] for
every n ∈ N), so the actual meaning of Lemma 23 is that the assertions DQΞ , D′QΞ , EQΞ
and E ′QΞ are always fulfilled as well.

Proof of Lemma 23. In order to prove Lemma 23, it is almost enough to replace
every appearance of Z by Q (and, of course, every appearance of CΞ, DΞ, D′Ξ, EΞ, E ′Ξ,
FΞ, GΞ and HΞ by CQΞ , DQΞ , D′QΞ , EQΞ , E ′QΞ , FQΞ , GQΞ and HQΞ , respectively) in the proof
of Theorem 13. The only difference is that now, instead of Lemma 14, we need the
following fact:

Lemma 24. Let a ∈ Q [Ξ] be a polynomial. Let p be a prime. Then,
a (Ξp) ≡ ap mod pQ [Ξ].

But this lemma is trivial, since pQ [Ξ] = Q [Ξ]. Hence, Lemma 23 is proven.
Proof of Theorem 22. (a) The family (bn)n∈N ∈ (Q [Ξ])N satisfies the Asser-

tion CQΞ of Lemma 23 (since every n ∈ N and every p ∈ PFn satisfies bn�p (Ξp) ≡
bn mod pvp(n)Q [Ξ], because pvp(n)Q [Ξ] = Q [Ξ]). Thus, it also satisfies the Assertion
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D′QΞ of Lemma 23 (since Lemma 23 yields that the assertions CQΞ and D′QΞ are equiv-

alent). In other words, there exists one and only one family (xn)n∈N ∈ (Q [Ξ])N of
elements of Q [Ξ] such that(

bn = wn
(
(xk)k∈N

)
for every n ∈ N

)
.

This proves Theorem 22 (a).

(b) We want to prove that x̃n ∈ Q
[
bN|n

]
for every n ∈ N .

We are going to prove this by strong induction over n: Fix some m ∈ N . Assume
that

x̃n ∈ Q
[
bN|n

]
is already proven for every n ∈ N satisfying n < m. (53)

We want to show that x̃n ∈ Q
[
bN|n

]
also holds for n = m.

According to Theorem 22 (a), we have bn = wn
(
(x̃k)k∈N

)
for every n ∈ N . In

particular, for n = m, this yields

bm = wm
(
(x̃k)k∈N

)
=
∑
d|m

dx̃m�dd =
∑
d|m;
d 6=m

dx̃m�dd +
∑
d|m;
d=m

dx̃m�dd

︸ ︷︷ ︸
=mx̃m�mm =mx̃m

=
∑
d|m;
d 6=m

dx̃m�dd +mx̃m,

so that x̃m =
1

m

bm − ∑
d|m;
d6=m

dx̃m�dd

 . Now, every divisor d of m satisfying d 6= m must

satisfy dx̃m�dd ∈ Q
[
bN|m

]
(in fact, d | m and d 6= m yield d < m, and thus (53) (applied

to n = d) yields x̃d ∈ Q
[
bN|d

]
and thus x̃d ∈ Q

[
bN|m

]
(since d | m yields N|d ⊆ N|m

and thus Q
[
bN|d

]
⊆ Q

[
bN|m

]
), so that dx̃m�dd ∈ Q

[
bN|m

]
), and clearly bm ∈ Q

[
bN|m

]
.

Hence, x̃m =
1

m

 bm︸︷︷︸
∈Q
[
bN|m

]−
∑
d|m;
d6=m

dx̃m�dd︸ ︷︷ ︸
∈Q
[
bN|m

]

 ∈ Q [bN|m]. Thus, x̃n ∈ Q
[
bN|n

]
holds for

n = m. This completes the induction step, and thus we have proven that x̃n ∈ Q
[
bN|n

]
for every n ∈ N . This completes the proof of Theorem 22 (b).

(c) Assume that (bn)n∈N ∈ (Z [Ξ])N . Then, we must prove that the family (x̃n)n∈N ∈
(Q [Ξ])N defined in Theorem 22 (a) satisfies (x̃n)n∈N ∈ (Z [Ξ])N if and only if every
n ∈ N and every p ∈ PFn satisfies (52).

In order to prove this, we must show the following two assertions:
Assertion 1: If the family (x̃n)n∈N ∈ (Q [Ξ])N defined in Theorem 22 (a) satisfies

(x̃n)n∈N ∈ (Z [Ξ])N , then every n ∈ N and every p ∈ PFn satisfies (52).
Assertion 2: If every n ∈ N and every p ∈ PFn satisfies (52), then the family

(x̃n)n∈N ∈ (Q [Ξ])N defined in Theorem 22 (a) satisfies (x̃n)n∈N ∈ (Z [Ξ])N .

Proof of Assertion 1: Assume that the family (x̃n)n∈N ∈ (Q [Ξ])N defined in The-

orem 22 (a) satisfies (x̃n)n∈N ∈ (Z [Ξ])N . Remember that the family (x̃n)n∈N satis-
fies

(
bn = wn

(
(x̃k)k∈N

)
for every n ∈ N

)
(according to Theorem 22 (a)). Thus, there
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exists a family (xn)n∈N ∈ (Z [Ξ])N satisfying
(
bn = wn

(
(xk)k∈N

)
for every n ∈ N

)
(namely, the family (xn)n∈N = (x̃n)n∈N). In other words, the assertion DΞ of The-
orem 13 is satisfied. Hence, the assertion CΞ of Theorem 13 is also satisfied (since the
assertions CΞ and DΞ are equivalent, according to Theorem 13). In other words, every
n ∈ N and every p ∈ PFn satisfies (52). Thus, Assertion 1 is proven.

Proof of Assertion 2: Assume that every n ∈ N and every p ∈ PFn satisfies (52).
Then, the assertion CΞ of Theorem 13 is fulfilled. Hence, the assertion DΞ of Theorem
13 is satisfied as well (since the assertions CΞ and DΞ are equivalent, according to
Theorem 13). In other words, there exists a family (xn)n∈N ∈ (Z [Ξ])N of elements of
Z [Ξ] such that (

bn = wn
(
(xk)k∈N

)
for every n ∈ N

)
.

This family (xn)n∈N obviously satisfies (xn)n∈N ∈ (Q [Ξ])N (since it satisfies (xn)n∈N ∈
(Z [Ξ])N ⊆ (Q [Ξ])N) and(

bn = wn
(
(xk)k∈N

)
for every n ∈ N

)
.

Hence, this family (xn)n∈N must be equal to the family (x̃n)n∈N (because, according to

Theorem 22 (a), the only family (xn)n∈N ∈ (Q [Ξ])N of elements of Q [Ξ] such that(
bn = wn

(
(xk)k∈N

)
for every n ∈ N

)
is the family (x̃n)n∈N). Since this family (xn)n∈N satisfies (xn)n∈N ∈ (Z [Ξ])N , this

yields that (x̃n)n∈N ∈ (Z [Ξ])N . This proves Assertion 2.
Thus, both assertions 1 and 2 are proven, and consequently the proof of Theorem

22 (c) is complete.
Now we come to the main application of Theorem 13:

Theorem 25. Let N be a nest. Let m ∈ N. Let Ξ denote the family
(Xk,n)(k,n)∈{1,2,...,m}×N of symbols. This family is clearly the union

⋃
k∈{1,2,...,m}

Xk,N

of the families Xk,N defined by Xk,N = (Xk,n)n∈N for each k ∈ {1, 2, ...,m}.
For each k ∈ {1, 2, ...,m}, the family Xk,N = (Xk,n)n∈N consists of |N | sym-
bols; their union Ξ is a family consisting of m · |N | symbols. (Consequently,

Z [Ξ] = Z
[
(Xk,n)(k,n)∈{1,2,...,m}×N

]
is a polynomial ring over Z in m · |N |

indeterminates which are labelled Xk,n for (k, n) ∈ {1, 2, ...,m} ×N .)

Let f ∈ Z [α1, α2, ..., αm] be a polynomial in m variables.

(a) Then, there exists one and only one family (xn)n∈N ∈ (Q [Ξ])N of
polynomials such that(
wn
(
(xk)k∈N

)
= f (wn (X1,N) , wn (X2,N) , ..., wn (Xm,N)) for every n ∈ N

)
.

(54)
We denote this family (xn)n∈N by (fn)n∈N . Then, we have (fn)n∈N ∈
(Q [Ξ])N and(
wn
(
(fk)k∈N

)
= f (wn (X1,N) , wn (X2,N) , ..., wn (Xm,N)) for every n ∈ N

)
.

(b) This family (fn)n∈N ∈ (Q [Ξ])N satisfies fn ∈ Z
[
ΞN|n

]
(where Z

[
ΞN|n

]
means the sub-Z-algebra of Z [Ξ] generated by the polynomials Xk,d for
k ∈ {1, 2, ...,m} and d ∈ N|n) for every n ∈ N .
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Proof of Theorem 25. Define a family (bn)n∈N ∈ (Q [Ξ])N of polynomials in the
indeterminates Ξ by

bn = f (wn (X1,N) , wn (X2,N) , ..., wn (Xm,N)) for every n ∈ N. (55)

Then, Theorem 22 (a) yields that there exists one and only one family (xn)n∈N ∈
(Q [Ξ])N of elements of Q [Ξ] such that(

bn = wn
(
(xk)k∈N

)
for every n ∈ N

)
.

Since the assertion
(
bn = wn

(
(xk)k∈N

)
for every n ∈ N

)
is equivalent to (54)48, this

rewrites as follows: There exists one and only one family (xn)n∈N ∈ (Q [Ξ])N of ele-
ments of Q [Ξ] such that(

wn
(
(xk)k∈N

)
= f (wn (X1,N) , wn (X2,N) , ..., wn (Xm,N)) for every n ∈ N

)
.

Thus, Theorem 25 (a) is proven.
Next, we are going to prove Theorem 25 (b).
First, notice that every k ∈ {1, 2, ...,m} satisfies

wn (Xk,N) ∈ Z
[
ΞN|n

]
for every n ∈ N (56)

(because wn (Xk,N) = wn
(
(Xk,m)m∈N

)
=
∑
d|n
dXn�d

k,d =
∑
d∈N|n

dXn�d
k,d ∈ Z

[
ΞN|n

]
, since

Xk,d ∈ Z
[
ΞN|n

]
for every d ∈ N|n). Hence,

wd (Xk,N) ∈ Z
[
ΞN|n

]
for every n ∈ N and every d ∈ N|n (57)

(because (56), applied to d instead of n, yields wd (Xk,N) ∈ Z
[
ΞN|d

]
⊆ Z

[
ΞN|n

]
,

because ΞN|d ⊆ ΞN|n , because N|d ⊆ N|n, since d ∈ N|n).
Further, notice that every n ∈ N satisfies

Q
[
ΞN|n

]
∩ Z [Ξ] = Z

[
ΞN|n

]
. (58)

In fact, this follows from a general rule: If U and V are two sets of symbols such that
U ⊆ V , then Q [U ] ∩ Z [V ] = Z [U ]. 49

48In fact, we have got the following chain of equivalences:(
bn = wn

(
(xk)k∈N

)
for every n ∈ N

)
⇐⇒

(
f (wn (X1,N ) , wn (X2,N ) , ..., wn (Xm,N )) = wn

(
(xk)k∈N

)
for every n ∈ N

)
(because of (55))

⇐⇒ ((54) holds) .

49Proof. In order to verify this, we need to show that any polynomial P ∈ Q [V ] satisfies
(P ∈ Q [U ] and P ∈ Z [V ]) if and only if it satisfies P ∈ Z [U ].

In fact, any polynomial P ∈ Q [V ] has the form P =
∑

α∈V N
fin

λα
∏
v∈V

vα(v), where λα ∈ Q for every
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Now, the family (x̃n)n∈N defined in Theorem 22 (a) is the same as the family
(fn)n∈N defined in Theorem 25 (a) 50.

Theorem 22 (b) yields that the family (x̃n)n∈N ∈ (Q [Ξ])N defined in Theorem

22 (a) satisfies x̃n ∈ Q
[
bN|n

]
for every n ∈ N . Since the family (x̃n)n∈N defined in

Theorem 22 (a) is the same as the family (fn)n∈N defined in Theorem 25 (a), this

yields that the family (fn)n∈N defined in Theorem 25 (a) satisfies fn ∈ Q
[
bN|n

]
for

every n ∈ N . Hence, fn ∈ Q
[
ΞN|n

]
(where Q

[
ΞN|n

]
means the sub-Q-algebra of

Q [Ξ] generated by the polynomials Xk,d for k ∈ {1, 2, ...,m} and d ∈ N|n), because

Q
[
bN|n

]
⊆ Q

[
ΞN|n

]
(since Q

[
bN|n

]
is the sub-Q-algebra of Q [Ξ] generated by the

polynomials bd for all d ∈ N|n, and every of these polynomials bd lies in Q
[
ΞN|n

]
because the definition of bd states

bd = f (wd (X1,N) , wd (X2,N) , ..., wd (Xm,N)) ∈ Z
[
ΞN|n

]
(by (57), since f ∈ Z [α1, α2, ..., αm])

⊆ Q
[
ΞN|n

]
).

Now we are going to prove that fn ∈ Z [Ξ]. In fact, for every k ∈ {1, 2, ...,m}, let
Xp
k,N denote the family of the p-th powers of all elements of the family Xk,N (considered

as elements of Z [Xk,N ]). In other words, we let Xp
k,N =

(
Xp
k,n

)
n∈N . Clearly, Ξ =⋃

k∈{1,2,...,m}
Xk,N yields Ξp =

⋃
k∈{1,2,...,m}

Xp
k,N .

Obviously,

wn�p
(
Xp
k,N

)
= wn�p

((
Xp
k,n

)
n∈N

)
=
∑

d|(n�p)

d
(
Xp
k,d

)(n�p)�d︸ ︷︷ ︸
=X

p·(n�p)�d
k,d =Xn�d

k,d

since wn�p =
∑

d|(n�p)

dX
(n�p)�d
d


=
∑

d|(n�p)

dXn�d
k,d

α ∈ V Nfin.

• This polynomial P satisfies P ∈ Q [U ] if and only if λα = 0 for every α ∈ V Nfin \ UNfin.

• This polynomial P satisfies P ∈ Z [V ] if and only if λα ∈ Z for every α ∈ V Nfin.

• This polynomial P satisfies P ∈ Z [U ] if and only if λα ∈ Z for every α ∈ UNfin and λα = 0 for
every α ∈ V Nfin \ UNfin.

Hence, this polynomial P satisfies (P ∈ Q [U ] and P ∈ Z [V ]) if and only if it satisfies P ∈ Z [U ],
qed.

50In fact, the family (x̃n)n∈N defined in Theorem 22 (a) is the only family (xn)n∈N ∈ (Q [Ξ])
N

satisfying
(
bn = wn

(
(xk)k∈N

)
for every n ∈ N

)
, while the family (fn)n∈N defined in Theorem 25 (a)

is the only family (xn)n∈N ∈ (Q [Ξ])
N

satisfying (54). Since
(
bn = wn

(
(xk)k∈N

)
for every n ∈ N

)
is

equivalent to (54), this yields that the family (x̃n)n∈N defined in Theorem 22 (a) is the same as the
family (fn)n∈N defined in Theorem 25 (a).
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and

wn (Xk,N) = wn
(
(Xk,n)n∈N

)
=
∑
d|n

dXn�d
k,d

since wn =
∑
d|n

dXn�d
d


=
∑
d|n;

d|(n�p)

dXn�d
k,d +

∑
d|n;

d-(n�p)

dXn�d
k,d =

∑
d|n;

d|(n�p)︸ ︷︷ ︸
=

∑
d|(n�p)

dXn�d
k,d +

∑
d|n;

pvp(n)|d

d︸︷︷︸
≡0 mod pvp(n)Z[Ξ],

since pvp(n)|d

Xn�d
k,d

(
since for any divisor d of n, the assertions d - (n�p) and pvp(n) | d are equivalent,

as we saw during the proof of Theorem 4

)
≡
∑

d|(n�p)

dXn�d
k,d +

∑
d|n;

pvp(n)|d

0Xn�d
k,d =

∑
d|(n�p)

dXn�d
k,d mod pvp(n)Z [Ξ] ,

so that
wn�p

(
Xp
k,N

)
≡ wn (Xk,N) mod pvp(n)Z [Ξ] . (59)

On the other hand, (bn)n∈N ∈ (Z [Ξ])N . Hence, Theorem 22 (c) yields that the

family (x̃n)n∈N ∈ (Q [Ξ])N defined in Theorem 22 (a) satisfies (x̃n)n∈N ∈ (Z [Ξ])N if
and only if every n ∈ N and every p ∈ PFn satisfies (52). Since the family (x̃n)n∈N
defined in Theorem 22 (a) is the same as the family (fn)n∈N defined in Theorem 25
(a), this rewrites as follows: The family (fn)n∈N defined in Theorem 25 (a) satisfies

(fn)n∈N ∈ (Z [Ξ])N if and only if every n ∈ N and every p ∈ PFn satisfies (52). But
since every n ∈ N and every p ∈ PFn satisfies (52) (because the definition of bn�p
yields

bn�p = f (wn�p (X1,N) , wn�p (X2,N) , ..., wn�p (Xm,N))

and thus

bn�p (Ξp) = f
(
wn�p

(
Xp

1,N

)
, wn�p

(
Xp

2,N

)
, ..., wn�p

(
Xp
m,N

))
≡ f (wn (X1,N) , wn (X2,N) , ..., wn (Xm,N))

(because of (59))

= bn mod pvp(n)Z [Ξ]

(by the definition of bn)), this yields that the family (fn)n∈N defined in Theorem 25

(a) satisfies (fn)n∈N ∈ (Z [Ξ])N . Hence, fn ∈ Z [Ξ] for every n ∈ N . Combining this

with fn ∈ Q
[
ΞN|n

]
(which also holds for every n ∈ N), we obtain

fn ∈ Q
[
ΞN|n

]
∩ Z [Ξ] = Z

[
ΞN|n

]
(by (58)). This proves Theorem 25 (b).

Theorem 25 is a very powerful result. Applied to N = N+ and m = 3, it yields
Theorem 9.73 in [1]51. Applied to N = {1, p, p2, p3, ...} (where p is a prime) and m = 3,

51Keep in mind that the notations in our Theorem 25 are slightly different from the notations in
Theorem 9.73 in [1]:
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Theorem 25 yields Theorem 5.2 in [1]52. Besides, the m = 3 and N = {1, p, p2, p3, ...}
particular case of our Theorem 25 is equivalent to Theorem 5 in [3]53. We can also
apply Theorem 25 to various other nests N and to m > 3 (though in the applications
known to me, only the m ≤ 3 case is ever used, and this is the reason why in [1] our
theorem is only formulated for m = 3).

Let us also remark that Theorem 22, applied to N = {1, p, p2, p3, ...} (where p is a
prime), is only a little bit weaker than Theorem 3 in [3]54 (weaker because our Theorem
22 (c) requires the assumption (bn)n∈N ∈ (Z [Ξ])N , while Theorem 3 (c) in [3] doesn’t
require the corresponding assumption; however, the difference is irrelevant).

[...]
[define +W and ·W maybe]
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