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Witt#5: Around the integrality criterion 9.93
[version 1.1 (21 April 2013), not completed, not proofread]

In [1], section 9.93, Hazewinkel states that "The (integrality aspects of the) theory
of Witt vectors can be developed solely on the basis of this lemma 9.93.”. The purpose
of this note is to point out how this is done (at least, by proving Theorem 9.73, even
slightly generalized), to prove and extend Lemma 9.93 in [1] and to show some more
of its applications.

First, let us introduce some notation:

Definition 1. Let P denote the set of all primes. (A prime means an
integer n > 1 such that the only divisors of n are n and 1. The word
”divisor” means ”positive divisor”.)

Definition 2. We denote the set {0,1,2,...} by N, and we denote the set
{1,2,3,...} by N;. (Note that our notations conflict with the notations
used by Hazewinkel in [1]; in fact, Hazewinkel uses the letter N for the set
{1,2,3, ...}, which we denote by N,.)

Definition 3. Let = be a family of symbols. We consider the polynomial
ring Q [Z] (this is the polynomial ring over Q in the indeterminates Z; in
other words, we use the symbols from = as variables for the polynomials)
and its subring 7Z [Z] (this is the polynomial ring over Z in the indetermi-
nates =). E] For any n € N, let =" mean the family of the n-th powers of
all elements of our family = (considered as elements of Z[Z]) P} (There-
fore, whenever P € Q=] is a polynomial, then P (2") is the polynomial
obtained from P after replacing every indeterminate by its n-th powerE[)
Note that if = is the empty family, then Q [Z] simply is the ring @, and
Z =] simply is the ring Z.

Definition 4. If m and n are two integers, then we write m 1 n if and

only if m is coprime to n. If m is an integer and S is a set, then we write
m L S if and only if (m L n for every n € S).

Definition 5. A nest means a nonempty subset N of N, such that for
every element d € N, every divisor of d lies in V.

Here are some examples of nests: For instance, N itself is a nest. For every
prime p, the set {1,p,p? p? ...} is a nest; we denote this nest by p". For

For instance, = can be (Xo,X1,X2,...), in which case Z[Z] means Z[Xo, X1, Xa,...].
Or, Z can be (Xo,X1,Xo2,..5Y0,Y1,Y5,...520,7Z1,Z5,...), in which case Z[Z] means
Z[X07X1>X2a"';}/anlv}/Q7“';Z0aZ1722a"']'

*In other words, if 2 = (&;),c;, then we define " as (£]"), ;. For instance, if 2 = (X, X1, X5, ...),
then 2" = (Xg,X?,XS,) If = = (Xo,Xl,Xg,...;Y(),Yl,YQ,...;Zo,Zl,ZQ,...), then =Z" =
(X2, XD X, s YO Y Y o 20, 20, 25,

3For instance, if = = (Xo, X1, Xo,...) and P(Z) = (X0+X1)2 — 2X3 4+ 1, then P(E™) =
(X + X7)° —2X7 + 1.



any integer m, the set {n € N, | n L m} is a nest; we denote this nest by
N,,,. For any positive integer m, the set {n € Ny | n < m} is a nest; we
denote this nest by N.,,. For any integer m, the set {n € Ny | (n | m)} is
a nest; we denote this nest by Nj,,. Another example of a nest is the set
{1,2,3,5,6,10}.

Clearly, every nest N contains the element 1 ﬁ

Definition 6. If N is a setﬂ, we shall denote by Xy the family (X,), .y
of distinct symbols. Hence, Z[Xy] is the ring Z [(X,),cy] (this is the
polynomial ring over Z in |N| indeterminates, where the indeterminates are
labelled X,,, where n runs through the elements of the set V). For instance,
Z [XN+ is the polynomial ring Z [ X1, Xo, X3, ...] (since Ny = {1,2,3,...}),
and Z HX{1,2,3,5,6,10}} is the polynomial ring Z [ X, Xo, X3, X5, Xg, Xi0].

If A is a commutative ring with unity, if N is a set, if (zq),cy € AY is a
family of elements of A indexed by elements of N, and if P € Z [Xy], then
we denote by P ((z4) ;e ) the element of A that we obtain if we substitute 24
for X, for every d € N into the polynomial P. (For instance, if N = {1,2,5}
and P = X? + XpX5 — X5, and if 7y = 13, x5 = 37 and x5 = 666, then
P (%) gen) = 13% + 37 - 666 — 666.)

We notice that whenever N and M are two sets satisfying N C M, then
we canonically identify Z [Xy] with a subring of Z[X|. In particular,
when P € Z[Xy]| is a polynomial, and A is a commutative ring with
unity, and (z,,),,c,s € A is a family of elements of A, then P ((z),,cas)
means P ((z,),,cn). (Thus, the elements z,, for m € M \ N are simply
ignored when evaluating P ((2m),,c);).) In particular, if N C Ny, and
(21,22, 33,...) € AN+ then P (21,22, 23,...) means P ((z),,cy)-

Definition 7. For any n € N, we define a polynomial w,, € Z [XNM} by
w, =y _dX;7?
dn

Hence, for every commutative ring A with unity, and for any family (zy,) ke, €

ANim of elements of A, we have

W, < xk keN), ) den/d.

dln

As explained in Definition 6, if IV is a set containing Ny,, if A is a commu-
tative ring with unity, and (z,),.y € AV is a family of elements of A, then

Wy, ((21)ey) means wy, ((mk)keN‘n); in other words,

d
Wy, CCk keN E dx"/.

din

4In fact, there exists some n € N (since N is a nest and thus nonempty), and thus 1 € N (since 1
is a divisor of n, and every divisor of n must lie in N because N is a nest).

®We will use this notation only for the case of N being a nest. However, it equally makes sense for
any arbitrary set N.



The polynomials wy, wsy, ws, ... are called the big Witt polynomials or,
simply, the Witt polynommlsﬁ

Definition 8. Let n € Z\ {0}. Let p € P. We denote by v, (n) the largest
nonnegative integer m satisfying p™ | n. Clearly, p*»™ | n and v, (n) > 0.
Besides, v, (n) = 0 if and only if p { n.

We also set v, (0) = oo; this way, our definition of v, (n) extends to all
n € Z (and not only to n € Z\ {0}).

Definition 9. Let n € N,. We denote by PF n the set of all prime divisors
of n. By the unique factorization theorem, the set PF n is finite and satisfies

n = H p”p(n)‘
pePFn

We start by recalling some properties of primes and commutative rings:

Theorem 1. Let A be a commutative ring with unity. Let M be an
A-module. Let N € N. Let I, I, ..., Iny be N ideals of A such that
I; + I; = A for any two elements i and j of {1,2,..., N} satisfying i < j.
Then, [1Io..In - M =1Ii1MNLMNO..NIxyM.

This Theorem 1 is part of the (well-known) Chinese Remainder Theorem for mod-
ules, which is proven in every book on commutative algebra; however, let us also give
a quick proof of Theorem 1 here, in order for this note to be self-contained.

Proof of Theorem 1. We are going to prove Theorem 1 by induction over N.
First, the induction base: The case of N = 0 is obvious (in this case, the assertion of
Theorem 1 has to be interpreted as M = M, which is obviously true), and the case of
N =1 is obvious as well (in this case, the assertion of Theorem 1 simply states that
I, - M = I1 M, which is true). For the induction step, let us fix some m € N, such
that m > 1, and let us assume that Theorem 1 is proven for N = m — 1. We want to
prove that Theorem 1 holds for N = m as well. In other words, we want to prove that
L. I, - M=I1MNILMnN..NI,M for any m ideals Iy, I, ..., I, of A which satisfy

(I; + I; = A for any two elements ¢ and j of {1,2,...,m} satisfyingi <j). (1)

Solet Iy, I, ..., I, be m such ideals. Foreveryi € {1,2,...,m — 1}, we have I,+1,, = A
(due to (applied to j = m), since ¢ < m); thus, there exist a; € I; and b; € I,,, such
that a; + b; = 1, and thus 1 = a; + b; = a; mod I,,, (since b; € I,,,). Therefore,

m—1

m—1
1= H \1,_/ = Haimodlm,
i=1

=1 =a; mod I,

8 Caution: These polynomials are referred to as wy, wa, w3, ... most of the time in [1] (beginning
with Section 9). However, in Sections 5-8 of [1], Hazewinkel uses the notations wy, wa, ws, ... for some
different polynomials (the so-called p-adic Witt polynomials, defined by formula (5.1) in [1]), which
are not the same as our polynomials wy, wa, ws, ... (though they are related to them: namely, the
polynomial denoted by wy, in Sections 5-8 of [1] is the polynomial that we are denoting by w,« here
after a renaming of variables; on the other hand, the polynomial that we call wy here is something
completely different).



m—1 m—1
so that 1 € [ a; + I,. But [] a; € L15... D, (since a; € I; for every i €
i=1 i=1

m—1
{1,2,....,m —1}). Hence, 1 € [] a;+ I, yields1 € I115...0;,_1+1,,. Thus, I1I5...0,,_1+

=1
I, = A.
But since Theorem 1 is proven for N = m — 1, we must have JiJ...J,,_1 - M =
JIMNO M. N Jy,_ 1M for any m — 1 ideals Jy, Js, ..., J,,—1 of A which satisfy

(J; + J; = A for any two elements 7 and j of {1,2,...,m — 1} satisfying i < j). (2)

In particular, applying this to the ideals J; = I, Jy = Iy, ..., Jyu—1 = IL,_1 (which
satisfy (2)) because of (1)), we obtain I1[...I,,—y - M = LM NI,MN...N 1,1 M. Thus,

hmnbhbMn.NL,M=IKMNLMn...NIL,_«MnNlL,M=15LIs...1, «+MnNI,M
“LDpodp 1M
- A ([1[2[m,1Mﬂ[mM)
=hilz..Im 1+Im
= (Ilyedyr + 1) - (I LoDy s M OV L M) C LoDy - Iy - M
since (U+V)-(UMNVM)CUV-M for any two ideals U and V of A, because
U+V)-(UMNVM)=U-(UMNVM)+V - (UMNVM) CUVM+VUM
— —_—

VM CUM
=UVM+UVM CUVM

=011, - M.

But clearly, ]1]2---]777, - M g ]1M N IQM N...N ]mM (SiIlCG Illglm - M Q Iz - M for
every i € {1,2,...,m}). Thus, I1I5...I,, - M = LM NI,MnN..NI,M. This completes
the induction step, and thus Theorem 1 is verified.

A trivial corollary from Theorem 1 that we will use is:

Corollary 2. Let A be an Abelian group (written additively). Let n € N,.
Then, nA= ) (pvp(")A).

pePFn

Proof of Corollary 2. Since PF n is a finite set, there exist N € N and some pairwise

vp, (1) _

N
distinct primes py, pa, ..., py such that PFn = {p1,ps,...,pn}. Thus, []p;
i=1
H pvp(n) = n.
pePFn
Define an ideal I; of Z by I; = p;)pi(n)Z for every i € {1,2,..., N}. Then, I, +[; = Z
for any two elements i and j of {1,2, ..., N'} satisfying i < j (in fact, the integers p," ()

and p;pj ") are coprimd’|, and thus, by Bezout’s theorem, there exist integers o and 3

such that 1 = p,” (n)oz—i-pij [ in Z, and therefore 1 = p;}p’(n)a + pij B8 € Li+1;
(n)
ep,t " z=1, ep;fpj (”)Z:]j
since p; and p; are distinct primes (because ¢ < j and since the primes p1, pa, ..., py are pairwise

distinct)



in Z, and thus I; + I; = Z). Hence, Theorem 1 (applied to Z and A instead of A and
M, respectively) yields I1[5..In - A= L AN LAN..NIyA. Since

N N
L. Iy - :H AzH(””’(" ) (Hp”’% )Z-A:nZ-A:nA
.

=1 pvpz ('n) =1

=N

and

I
)=

N
[1Am12Am...m[NA:ﬂ I, A

i=1

N
(ﬁpi(”)z . A) =N (pf”i(")A) = ) (@*"™4)
=1

1 pePFn

_ i
=p, " ™y

(since PEn = {p1,pa, ..., pn}), this becomes nA = ) (p“P(”)A). Corollary 2 is thus

pePFn
proven.

Another fact we will use:

Lemma 3. Let A be a commutative ring with unity, and p € N be a
nonnegative integeif} Let k € N and £ € N be such that k& > 0. Let a € A
and b € A. If @ = bmod p* A, then a?' = b mod pF+ A.

This lemma was proven in [3], Lemma 3.
Now we can start with the main theorem - an extension of Lemma 9.93 in [1]:

Theorem 4. Let N be a nest. Let A be a commutative ring with unity.
For every p € PN N, let ¢, : A — A be an endomorphism of the ring A
such that

(pp (@) = a? mod pA holds for every a € Aand p e PN N). (3)

Let (by),cny € AN be a family of elements of A. Then, the following two
assertions C and D are equivalent:

Assertion C: Every n € N and every p € PF n satisfies
©p (b p) = b, mod p**™ A, (4)

Assertion D: There exists a family (z,),.y € AV of elements of A such
that

(bn =w, ((xk)keN) for every n € N) )

This Theorem 4 is stronger than Lemma 9.93 in [1]. In fact, if we set N = N, in
Theorem 4, and require the ring A to have characteristic zero, then we obtain Lemma
9.93 in [1] (in a slightly different formulation, however - for example, our Assertion C is
the congruence (9.94) in [1] with n replaced by np). None of the requirements N = N
and ” A has characteristic zero” is necessary for Theorem 4 to hold; however, requiring

8Though we call it p, we do not require it to be a prime in this lemma.



A to have characteristic zero would make the family (), 5 unique in Assertion D
(we will detail this later in Theorem 9).

Proof of Theorem 4. Our goal is to show that Assertion C is equivalent to Assertion
D. We will achieve this by proving the implications D = C and C = D.

Proof of the implication D = C: Assume that Assertion D holds. That is, there
exists a family (z,), .y € A" of elements of A such that

(bn =w, ((xk)keN) for every n € N) . (5)

We want to prove that Assertion C holds, i. e., that every n € N and every
p € PF n satisfies . Let n € N and p € PFn. Then, p | n, so that n/p € N, and
thus n,/p € N (since n/p is a divisor of n, and every divisor of n lies in N E[) Thus,
applying (5) to n/p instead of n yields by, = wn p ((#1)gen)- But wip ((@1)4en) =
S dz P and w, (k) pen) = de"/d Now, () yields

dl(n./p)
b= wn (@h)gey) = Y _daly = > day "+ > daly. (6)

d|n d|n; d|n;
d|(n/p) di(n,/p)

But for any divisor d of n, the assertions d 1 (n,/p) and p*»™ | d are equivalen.

Thus,
n/d _ n/d . vp (1)
Z dx, Z &/ Z Ox = 0mod p*'"™ A.
dln; dln; =g mod p?P (M) A, dln;
dt(n./p) p? ™| gince pr(M|d pr(M|d

Thus, (@ becomes

Z dxn/d—l— Z dxn/d Z dxn/d—i—(]— Z dmn/d Z dxd/dmodp”p ) A.

d|n; d|n; d|n; dln; d|(n/p)
dl(n/p) df(n,/p) d|(n,/p) dl(n/p)
—_——
=0mod p?»(™ A

(7)
On the other hand,

bn,p = wn/p (Th) e N = Z dm (n/2)/ yields
d|(n,/p)
(n/ n d
©p (bn,p) = ¥p Z dr, Pt Z d (¢p (xd))( v/ (8)
d|(n/p) d|(n/p)

9because n € N and because N is a nest
10T fact, we have the following chain of equivalences:

atosm = ("Fez) = (rez) (et =)

— (pt(n/d) (here we use that n/d € Z, since d | n)
= (vp(n/d) =0) <= (v, (n/d) <0) (since v, (n,/d) > 0, because n,/d € Z)
< (vp (n) —vp (d) <0) (since vy, (n,/d) = vy, (n) — vp (d))

= W) <ud) = (p0]d).




(since ¢, is a ring endomorphism).
Now, let d be a divisor of n,/p. Then, d | (n/p) | n, so that g € Z and thus

v, (%) > 0. Let a = v, ((n/p) /d) and § = v, (d). Then, a+ 8 = v, (n/p) /d) +
v, (d) = v, (n/p) = v,(n) — v, (p) = v, (n) — 1. Besides, a = v, ((np) /d) yields

=1
p* | (n/p) /d, so that there exists some v € N such that (np) /d = p®v. Finally,
B = v, (d) yields p’ | d, so that there exists some k € N such that d = xp”. Applying
Lemma 3 to the values £k = 1, { = = ¢p(zq) and b = :L‘d (Whlch satisfy a =

bmod p*A because of . applied to a = :Bd) yields (¢, (z4))"" = ()" modp1+°‘A.
Using the equation (n,/p) /d = p*v, we get

(90 (@) ™77 = (2 (@)™ = ({0 (@)"")”

= <(:z:§)pa> (since (o (20))7" = (2B)”" modeaA)
= ()" = (ap)" P (since pv = (n,/p) /d)
_ (IZ)(n/d)/p _ xZ/d mod pl T A.

Multiplying this congruence with p®, we obtain

pﬁ (SOp (xd»(n/p)/d = pﬁxg/d modp1+a+5A.

In other words,
P’ (gp ()™ P = pPaly mod p ™ A
(since 1 + oo+ =v,(n)). Now, multiplying this congruence with x, we get
——

=vp(n)—1
P’ (¥p (xd))(n/p)/d = /ipﬁxs/d mod p*r™M A,

which rewrites as
d (g, (24)) ™" = da"”* mod pr™ A

(since kp” = d). Hence, becomes

p(bp) = D dlpy (@)™ = 3" daly" = by mod M A

d|(n/p) Edzg/d mOdep(n)A d|(n/p)

(by (7). This proves (4)), and thus Assertion C is proven. We have therefore shown
the implication D = C.

Proof of the implication C = D: Assume that Assertion C holds. That is, every
n € N and every p € PF n satisfies .

We will now recursively construct a family (z,),.y € A" of elements of A which

satisfies the equation
=Y )
d|lm

for every m € N.



In fact, let n € N, and assume that we have already constructed an element z,, € A
for every m € NN {1,2,...,n — 1} in such a way that @D holds for every m € N N
{1,2,..,n —1}. Now, we must construct an element z, € A such that (9 is also
satisfied for m = n.

Our assumption says that we have already constructed an element z,, € A for every
m € NN{L1,2,...,n—1}. In particular, this yields that we have already constructed
an element x, € A for every divisor d of n satisfying d # n (in fact, every such
divisor d of n must lie in N [ and in {1,2,...,n —1} [ and thus it satisfies
de Nn{l,2,...,n—1}).

Let p € PFn. Then, p | n, so that n,/p € N, and thus n/p € N (since np is
a divisor of n, and every divisor of n lies in N E[) Besides, n/p € {1,2,...,n — 1}.
Hence, n/p € NN{1,2,....,n — 1}. Since (by our assumption) the equation @D holds
for every m € NN{1,2,...,n — 1}, we can thus conclude that @D holds for m = n_/p.
In other words, b,,, = > d:vgln/ P7% From this equation, we can conclude (by the

d|(n,/p)
same reasoning as in the proof of the implication D = C) that

©p (bnp) = Z dz’"“ mod p*™ A,

dl(n,p)
Comparing this with , we obtain
Y daly! = by modp*™ A. (10)
dl(n/p)
Now, for any divisor d of n, the assertions d { (n,/p) and p»™ | d are equivalen.
Thus,
Z dxn/d Z d "/d = Omod p*™ A.
dln; dln; =0 mod pvr(™ 4,
df(n/p); pP™|d;  gince p*r(™)|d
d#n d#n
Hence,
S ari= Y d iy Y d = Y di= Y ey
dln; d|n; d|n; d|n; d|n;
d#n df(n,/p); dl(n/p); dl(n/p); dl(n/p)
d#n d#n d#n
—_———
=0mod p??(™ A

since for any divisor d of n, the assertions (d | (n,/p) and d # n) and d | (n,/p)
are equivalent, because if d | (n,/p), then d # n (since n{ (n,p))

Z dz"* = b, mod p»™ A (by (10)).
d|(n/p)
In other words,
by = day € prW A,

d|n;
d#n

Hhecause n € N and because N is a nest

2hecause d is a divisor of n satisfying d # n

Bhecause n € N and because N is a nest

14This has already been proven during our proof of the implication D = C.



This relation holds for every p € PF n. Thus,

by, — Z dxz/ = ﬂ (pvp(”)A) =nA (by Corollary 2).
d|n; pEPFn
d#n
Hence, there exists an element z,, of A that satisfies b, — > dacg/ 4 — nx,. Fix such
d|n;

d#n
an x,. We now claim that this element z,, satisfies @ for m = n. In fact,

de;‘/d:z:dxz/d—ir Zd:cz/d :Zd:cz/djLn:cn:bn
dln

d|n; d|n; dln;
d#n d=n d#n
—
:nxz/n:n:c%:n:cn
} d . . )
(since b, — 3 dz"’* = nx,). Hence, is satisfied for m = n. This shows that we

d|n;
d#n

can recursively construct a family (z,,),cy € A" of elements of A which satisfies the
equation @D for every m € N. Therefore, this family satisfies

b, = Z dxz/d (by (), applied to m = n)

din
= Wn ((wk>keN)

for every n € N. So we have proven that there exists a family (z,),.5 € AN which
satisfies b, = w, ((mk) ke N) for every n € N. In other words, we have proven Assertion
D. Thus, the implication C = D is proven.
Now that both implications D = C and C = D are verified, Theorem 4 is proven.
Next, we will show a result similar to Theorem 4}

Theorem 5. Let N be a nest. Let A be an Abelian group (written
additively). For every n € N, let ¢, : A — A be an endomorphism of
the group A such that

(p1 =id) and (11)
(00 © ©m = @nm for every n € N and every m € N satisfying nm € N).
(12)

Let (bn)n€ N € AN be a family of elements of A. Then, the following five
assertions C, £, F, G and H are equivalent:

Assertion C: Every n € N and every p € PF n satisfies
©p (b p) = b, mod p**™ A. (13)

Assertion £: There exists a family (y,),cy € AV of elements of A such
that

b, = Z don a(ya) for every n € N
dln

5Later, we will unite it with Theorem 4 into one big theorem - whose conditions, however, will
include the conditions of both Theorems 4 and 5, so it does not replace Theorems 4 and 5.



Assertion F: Every n € N satisfies

Zu n/d) € nA.

dn
Assertion G: Every n € N satisfies

Z ¢ (d (bna) € NA.
Assertion H: Every n € N satisfies

Z Pn,/ ged(i,n) (bgcd(i,n)) € nA.

i=1
Remark: Here, p denotes the Mobius function p : Ni — Z defined by
(n) = (=) i (v, (n) < 1 for every p € PFn)
a 0, otherwise

Besides, ¢ denotes the Euler phi function ¢ : N, — Z defined by
¢(n)=[{me{l,2,...,n}[m Ln}.

We will need some basic properties of the functions p and ¢:

Theorem 6. Any n € N, satisfies the five identities

—DPE i =
() :{ =) ot (15)

0, otherwise

S () =n; (16)

din

Zu(d)z[nzl]; (17)
Zu %: n); (18)

dln

S du(@)o (%) =nn). (19)

dln

Here, for any assertion s, we denote by [] the truth value of > (defined
1, if s is true; )

by [#] = { 0, if s is false

Proof of Theorem 6. First, let us prove the identity (15 . In fact, for every n € N,
the assertions (v, (n) <1 for every p € PFn) and n =[] p are equivalenﬁ; hence,

pePFn
follows directly from . This proves .

In fact,ifn =[] p, then (v, (n) <1 for every p € PF n) (because n equals the product [] p,
pePFn pePFn

and every prime occurs only once in this product), and conversely, if (v, (n) <1 for every p € PFn),
then n = [] p (because every p € PFn satisfies v, (n) < 1 and v, (n) > 1 (since p € PF n yields
pePFn

p | n), so that v, (n) = 1, and consequently, n = [] ptr() = IT »).




Next, let us show (L6]). Let n € Ny. Then, for every m € {1,2,...,n}, the number
ged (m,n) is a divisor of n. Hence, for every m € {1,2,...,n}, there exists one and only
one divisor d of n such that ged (m,n) = d. Thus,

{1.2,..n} = J{m € {1,2,..,n} | ged (m,n) = d} .
d|

Since the sets {m € {1,2,...,n} | ged (m,n) = d} for varying d are pairwise disjoint
(because ged (m,n) cannot equal two distinct numbers for one and the same m), this
yields that

{1,2,..,n}| = Z {m € {1,2,....,n} | ged (m,n) = d}|. (20)
din

For every divisor d of n, the map

{m € {1,2,...,%} Im L g} S {me{1,2,...,n} | ged (m,n) = d}

T — dx

is a bijection (because this map is Well—deﬁnedE], injectivﬂ and surjectiv@, so that

Hm c {1,2,...,%} Im L g}] — {m e {1,2,...n} | ged (m,n) = d}|.

(e o2 s 2= ()

(by the definition of ¢), this becomes

Since

n

QS(E) = |{m € {1,2,...,n} | ged (m,n) = d}]|. (21)

n
n n n d
T € {1,2,...,3} and z L > 80 that dr € {1,2,...,n} (since z € {1’2"“78}) and ged (de,n) =

7 Proof. Let d be a divisor of n. For every = € {me {1,2,...,g}|mj_ }, we have

ged (dx, d%) = dged (x, %) = d, and therefore dz € {m € {1,2,...,n} | ged (m,n) = d}.
—_———
=1 (since
n

mla)
Bsince d # 0

19 Proof. Let d be a divisor of n. Let y € {m € {1,2,...,n} | gcd (m,n) = d}. Then, y € {1,2,...,n}
and ged (y,n) = d. Hence, % € Z (since d = ged (y,n) | y), so that Y e {172,...,3} (since

d
y€{1,2,...,n}) and % € % (sincTeldgcd (cyl’ng) = ged (d%,d%) = ged (y,n) = d yields ged (%, g) =
1). Thus, % € {m € {1,2,...7 E} | m L E} Of course, y = d%. Therefore, there exists some

x € {m € {1,2, - %} |m L %} such that y = dz (namely, z = %) In other words, y lies in the

image of our map.
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Now,

o= o= ¢(%)

n
N, = Np,, d— 7 is a bijection

dn deN, deN),,
=>0(5) =D Hme (1.2} [ged (mn) =} (by (1)
dln din
= [{t.2,n}l  (by @D)

Thus, is proven.
Let us now prove the remaining three identities. Let us denote by P (U) the power

set of any set U. We notice that for every finite set .S of primes, we have

m (Hp> = (-1 (22)

peS

Il

Recall also that every finite set U and every k € N satisfy

serw hsi=r= (") (23)

(This is a classical fact in elementary combinatorics, saying that the number of k-
U

element subsets of the finite set U is (’ I |) .) Thus, it is easy to see that every finite

set U satisfies

Y D= (Ul =0] (24)

SeP(U)

20 Proof. Let S be a finite set of primes. Set N = [[ p. Then, PF N = PF ( I p) = S. We have

peS pES
N=1]]p= ]I p (since S=PFN). Now, (15) yields
peS  pePF N
()N = T p
p(N) = pepi N = (=1)"FN since N = H P
0, otherwise pEPF N
= (—1)¥ (since PFN = §).

This rewritesas p | [[ p| = (—1)|S| (since N = [] p).
pES PES

12

n
here we substituted — for d in the sum, since the map



E1
The map

L:P(PFn) = {deN, | p(d) #0} defined by L(S) :pror every S € P (PFn)

peS

is Well—deﬁne, surjective (since every element e of {d € Ny, | u(d) # 0} satisfies
e = L (S) for some S € P (PFn), namely for S = PFe [ and injectivd®] Hence,
L is a bijection. Besides, every S € P (PF n) satisfies u (L (S)) = (=1)"*! (since (22)

21 Proof of : Let U be a finite set. Then,

PC I ST onF =X {seP) |1 =k} (-1)"

SeP(U) keN SeP(U); keN
1S|=k _(IU]
. k
=H{SePU) |IS|=k}-(-1) (by @3))
U
= Z ( k |) (- =1+ (—1))|U| (by the binomial formula)
keN

1, if |U| -0
= |U| = ) ) — =
’ { 0, otherwise [|U] =0].

This proves .
22Proof. Let S € P(PFn). Then, S is a subset of PFn. Hence, each element p of S is a prime
divisor of n. Therefore, the product [] p of these elements also divides n. In other words, [] p € Nj,.

peS pES
Hence, the formula (22| yields u ( 11 p) = (_1)|S| #0.
peS
Thus, [[p€ {d€N;, | pu(d)#0} (since [T p € Np,).
peS peS
Now, forget that we fixed S. We have thus shown that [ p € {d €N, | u(d)# 0} for each
peS

S € P (PFn). Hence, the map L is well-defined.

23 Proof. Let e € {d €N}, | p(d)#0}. We must prove that e = L(S) for S = PFe. In other
words, we must prove that e = L (PFe).

From e € {d € N},, | p(d) # 0}, we obtain that x (e) # 0. Hence, e = [] p (because otherwise,

pePFe
I ()P ife= T p
(15) would yield p (e) = pePFe = 0, which would contradict p (€) # 0). On the
0, otherwise
other hand, from e € {d € N},, | p(d) # 0}, we obtain e € Nj,,, so that e | n and thus PFe C PFn.
In other words, PFe € P (PFn). Hence, L (PFe) is well-defined. The definition of L (PF e) shows
that L (PFe)= T[] p-
peEPF e
Thus, e = [] p=L(PFe).
pePFe

2gince for every S € P (PFn), we have S = PF ( 11 p> = PF (L (S5)), and thus S can be uniquely
peES

reconstructed from L (.5)

13



yields p (L (S)) = p <H p) = (=¥l because S is a finite set of primes). Now,

Sud=3 n@)= 3 n
dn deNy, deN|,;
p(d)#0

here, we have removed from the sum all addends with p (d) = 0,
but these addends are all zero and thus don’t change the sum

= Z w(L(9)) (since L : P (PFn) — {d €N, | pu(d)#0} is a bijection)
—
SEP(PFn) _ [
= Y ()P =[PFn|=0] (by (24), applied to U = PFn)
SEP(PFn)
=[n=1]

Pl This proves (17).

It remains to prove the remaining two identities and . First, let us show
[):

For any p € PFn, let us denote by U, the subset {m € {1,2,...,n} | (p | m)} of the
set {1,2,...,n}. We have

{me{1,2,...,n} |m Ln}={1,2..,n}\ U {m e {1,2,...,n} | (p|m)}

pePFn

(since an element m € {1,2,...,n} satisfies m L n if and only if there is no p € PFn
such that p | m). In other words,

{me{L,2,..,n}|mLn}={1,2.n}\ |J U, (25)

pePFn

(since {m € {1,2,...,n} | (p|m)} = U, for every p € PFn). But by the principle
of inclusion and exclusionﬁ (applied to the family (U,) of subsets of the set

pePFn
{1,2,...,n}), we have

{1.2,..n}\ |J 4,

pePFn

= > f

SCPFn

(0,

peS

b

Zhecause for an integer n € N, the assertion |PFn| = 0 is equivalent to n = 1, since we have the
following chain of equivalences:

(|IPFn| =0) <= (PFn = @) <= (n has no prime divisors) <= (n = 1)

26The principle of inclusion and exclusion states that if X and U are finite sets, and (Uz)pex €

(P (U)) is a family of subsets of U, then |U\ U U,|= 2 (—1)'5| () U.|, where () U, denotes
zeX SCX TES rED
the whole set U. We are applying this principle to the sets X = PFn and U = {1,2,...,n} and the

family (Ur),ex = (Up) ey € (P (U))™ here.

14



where () U, denotes the whole set {1,2,...,n}. Now, the definition of ¢ yields

pED

op(n)=|{me{1,2,...n}|m Ln}=|{1,2,...,n}\ U U, (by ([25))

pePFn
=Y O v (26)
SCPFn peS
But for every S C PF n, we have
( \

ﬂ U, = ﬂ {me{l,2,..,n}|(p|m)} =¢me{l,2,...,n}| (every p € S satisfies p | m)

peS peES

= {m €{1,2,..,n}| (Hp ] m)}
peS

and thus
_ '{m €{1,2,..,n}| (Hp | m)}‘ = %

this assertion is equivalent to
1T plm, since p is prime for every peS
\ pES )

(10

peS

peES
E} Hence, becomes
n n
o= COMNGI= 3 Y = X eEE) g
SCPFn pes SCPFn m esp SeP(PFn)
- =
_SEP(PFn) _ n
L(S)
since L(S)=T] p
pES
_ Z (d) n here, we have substituted d for L (S) in the sum,
N & B\ since L : P (PFn) — {d €Ny, | pu(d)#0} is a bijection
|ns

p(d)#0
B Z (d) n here, we have added to the sum some addends with u (d) = 0,
B e PTG but these addends are all zero and thus don’t change the sum

|n
n

=> p(d) ¥

dn

Thus, is proven.

2TThis is because [] p is a divisor of n (since each p € S is a prime divisor of n, and thus their
peS

product [] pis also a divisor of n), and each divisor d of n satisfies |[{m € {1,2,...,n} | (d| m)}| = %
peS

(since there are exactly % elements of the set {1,2,...,n} divisible by d, namely d, 2d, 3d, ..., %d)

15



Now, we are going to prove the identity by strong induction over n. So let
m € N be an integer, and assume that the identity holds for every n € N
satisfying n < m. Then, we have to prove that also holds for n = m.

In fact, we have
Zdu 6(5) =ne) (27)

for every divisor e of m satisfymg etm [P
Now,

SN dn@o(5) =D du(do(5) =D @)D 6 (5)-

elm dle elm d|m; dlm e|m;

N~~~ dle dle
=3 N——
d|m; =>
dle dlm e|m,;
dle

Since every divisor d of m satisfies

e e
>o(g)= 2 e(f)= X e
e|m; €EN| JEN|(m,/ a)
dle dle
here, we substituted f for c% in the sum, since the map
{eeN, |(d]|e)} = N a), e— Z is a bijection

(because d | m)

= Z o(f)=m,d (by (16), with n and d replaced by m /d and f),

fl(m,/d)

this becomes

S Y dne(5)

elm dle
e
:;jdmw;gb(a) ;d (d) =m > i)
dle =m —_—
—— =[m=1]
=m/d (by (applied to m instead of n))
B — Litm=1, [ m,iftm=1;, [ 1, ifm=1; —m=1]
SIMEHTMY 0 iftm£1 ) 0, ifm#AL | 0, ifm#£1 T
= Z,u (d) (by (applied to m instead of n))
dlm
=Y ud+Y pd=) pd+
dlm; dlm; ;
d#m d=m d#m

=p(m)

28 Proof of .' Let e be a divisor of m satisfying e # m. Thus, e < m. Also, clearly, e € N.
But we have assumed that the identity holds for every n € N, satisfying n < m. Applying
this to n = e, we conclude that holds for n = e (sinc e € N; and e < m). In other words, we

have > du (d) ¢ (2) = p(e). This proves .
dle

16



Thus,

> nld)+p(m) =D du(d)s (5)

d|m; elm dle
d#m
=Y dude(5)+ XY du(@e ()
elm; dle elm; dle
eFEM N ~~ e=m |
o' ) = du(d)¢<%>
=S nE@+ Y duo (%) = S pld + Y du(@e (%)
elm; dlm dlm; dim
e#m d#m

(here, we substituted d for e in the first sum). Therefore,

p(m) = du(d)o (7).

dlm

In other words, holds for n = m. This completes our induction, and thus is
proven.

Hence, the proof of Theorem 6 is now complete.

Proof of Theorem 5. First, we are going to prove the equivalence of the assertions
C and &. In order to do this, we will prove the implications £ = C and C = £.

Proof of the implication £ = C: Assume that Assertion £ holds. That is, there
exists a family (yn), .y € AV of elements of A such that

b, = Z denq(ya) for every n e N | . (28)
dn

We want to prove that Assertion C holds, i. e., that every n € N and every p € PFn
satisfies (13). Let n € N and p € PFn. Then, p | n, so that n/p € N;, and thus
n,/p € N (since n/p is a divisor of n, and every divisor of n lies in N E[) Thus,

applying to n,/p instead of n yields b, , = Y dYm, p) d(Ya). Now, yields
d|(n,/p)

b= donsa(ya) = D densa(ya)+ D donsa(ya). (29)

dln d|n; d|n;
d|(n/p) df(n,/p)

But for any divisor d of n, the assertions d { (n,/p) and p*»™ | d are equivalen.
Thus,

Z d%on/d (yd) = Z d ©Yn,d (yd) = Z ngn/d (yd) — Omodp”p(")A.

dln; dln; =g mod pUP (") A, dln;
dt(n/p) pPM|d gince pr(M|d pP(M|d

Zbhecause n € N and because N is a nest
30This has already been proven during our proof of Theorem 4.
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Thus, becomes

Z don,q (Ya) Z den a (Ya) = Z don a(ya) +0 = Z den,d (Ya)

d|n; d|n; d|n; dln;

d|(n/p) dH(n/p) d|(n/p) d|(n/p)
=0 mO(I;“P<”)A
> dna(ya) mod p™ A, (30)
d|(n/p)

On the other hand, b, , = > d@m, p) a(ya) yields
d|(n/p)

oo (bnp) =0 | Y AP0 ra (Va)
d|(n/p)

= Z dgpp (n/p)d (Yd)) (since ¢, is a group endomorphism)
di(n/p) g

(%"Poﬂo(n/p)/d)( )
- Z d % ° S%/p)/d) (a)
Atesp) =Pp-(n/p)/d . (due to )

= Z d Pp-(np),d (Ya) Z den,q (Ya) = by mod p¥*™ A
dl(n/p) " d|(n/p)

=¥n,/d

(by ) In other words, is satisfied, and thus Assertion C is proven. We have
therefore shown the implication & = C.

Proof of the implication C = £: Assume that Assertion C holds. That is, every
n € N and every p € PF n satisfies .

We will now recursively construct a family (y,),cy € AN of elements of A which
satisfies the equation

b =Y doma (Ya) (31)

dlm

for every m € N.

In fact, let n € N, and assume that we have already constructed an element y,, € A
for every m € N N{1,2,...,n — 1} in such a way that holds for every m € N N
{1,2,...,n —1}. Now, we must construct an element y, € A such that is also
satisfied for m = n.

Our assumption says that we have already constructed an element y,, € A for every
m € NN{l,2,...,n—1}. In particular, this yields that we have already constructed
an element y; € A for every divisor d of n satisfying d # n (in fact, every such
divisor d of n must lie in N m and in {1,2,...,n— 1} ﬁ, and thus it satisfies
de Nn{l,2,...,n—1}).

Let p € PFn. Then, p | n, so that n,/p € N, and thus n/p € N (since np is
a divisor of n, and every divisor of n lies in N E[) Besides, n/p € {1,2,...,n — 1}.

31hecause n € N and because N is a nest
32hecause d is a divisor of n satisfying d # n
33because n € N and because N is a nest
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Hence, n,/p € NN{1,2,....,n — 1}. Since (by our assumption) the equation holds
for every m € NN{1,2,...,n — 1}, we can thus conclude that holds for m =n_/p.

In other words, b, , = >  dYm,p)a(ya). From this equation, we can conclude (by
d|(m,/p)
the same reasoning as in the proof of the implication £ = C) that

by, /p Z don,q yd

dl(n/p)
Comparing this with , we obtain
Z don,a(Ya) = by, rnodp””(")A. (32)

d|(n/p)

Now, for any divisor d of n, the assertions d { (n,/p) and p»™ | d are equivalen.
Thus,

Z dpn,a (ya) = Z d Ona(Ya) = 0 mod p*™ A.

i 15 i

n/p); pr(M|d; up(n)

i d;én| since pP |d

Hence,

Zdﬂpn/d (Ya)

d|n;

d#n
Z d@n/d yd Z d@n/d yd = Z d@n/d yd Z d@n/d yd
d|n; d|n; d|n;

dt(n,/p); dl(n/p) dl(n/p); dl(n/p)

d#n d#n d#n
—01mod pr() A

since for any divisor d of n, the assertions (d | (n,/p) and d # n) and d | (n,/p)
are equivalent, because if (d | (n,p)), then d # n (since n{ (n/p))

Z den sa (Ya) = b, mod (™ A (by ) )
d|(n/p)

In other words,

b, — E don a4 (Ya) € pr™MA.
d|n;
d;‘én

This relation holds for every p € PF n. Thus,

by, — Z den,a(ya) € ﬂ (p””(")A) =nA (by Corollary 2).
d|n; pePFn
d#n

Hence, there exists an element y,, of A that satisfies b, — > dvy, 4 (ya) = ny,. Fix
dln;
d#n

34This has already been proven during our proof of Theorem 4.
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such a y,. We now claim that this element vy, satisfies for m = n. In fact,

Z ngn/d (yd) = Z d(pn/d (yd) + Z dgpn/d (yd) = Z d()pn/d (yd) + ny, = bn
d|

din A o
d7n d=n d#n
:nﬂon/n(yn)=mp1 (yn):nyn7
due to
(since b, — > dvn 4 (ya) = nyn). Hence, {D is satisfied for m = n. This shows that
dln;
d#n

we can recursively construct a family (y,),cy € AN of elements of A which satisfies

the equation (31| for every m € N. Therefore, this family satisfies b, = > dyy /a (Ya)
dln
for every n € N (by , applied to m = n). So we have proven that there exists
a family (yn),cn € AY which satisfies b, = > dpy, a (ya) for every n € N. In other
din

words, we have proven Assertion £. Thus, the implication C = £ is proven.

Since both implications C = £ and £ = C are proven now, we can conclude that
C < £. Next we are going to show that £ «<— F.

Proof of the implication & = F: Assume that Assertion £ holds. That is, there
exists a family (y,), oy € AV of elements of A such that holds. Then, every n € N

20



satisfies

Z p(d) oa (bna) Z (e bne) (here we substituted e for d in the sum)

dln eln

since by e = > do(ne) a(Ya)
=> (@) e | D dem e a(a) ( dl(ne)
eln

o by (applied to n e instead of n)
= > dgoe(w(n/e)/d(yd))

dl(n/e)
(since pe is a group endomorphism)

= u(e) D doe(Pmeaya) =D ule) Y d(¢eowme, a) (Ya)

eln d|(n/€)

eln d|n;
~—— (weown/eyd)(yd) d|(n/e)
= X
d|n;
d|(n/e)
=3 ule)d| eopm e d =Y > (@) dpeim e a(va)
eln  dln; =Pe(n/e)/d din  e|n; —n
di(n/e) e di(n,c)
=2 X
din  e|n;
d|(n/e)
= Z Z e) dn,a (Ya) Z Z e) dn,a (ya)
eln; e|n;
d\(n/E) el(n/d)
——
= 2
el(n/d)

(since for any d | n and any integer e, the assertion d | (ne) is equivalent to e | (n,/d))

- Z Z e)don, d(ya) = Z [n = d]dey  a (Ya)

din e|(n,/d) dln

since (with n and d replaced by n/d and e) yields Z ple)=[n/d=1]=[n=d

el(nd)
Z n = don,a (ya) + Z d| dgy,a (Ya)

d|n; d|n

detn =0 (smce d#n) Ellzn .

=n=nlngn,n(yn)
(since any divisor d of n satisfies either d # n or d = n)

= > 0dpn a(ya) +[n = n]ngn m () = [0 = 1| n@n m (Yn) = n0nn (Yn) € NA.
d#n

=0

Thus, Assertion F is satisfied. Consequently, the implication £ = F is proven.
Proof of the implication F =—> £: Assume that Assertion F holds. That is, every
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n € N satisfies

Z,u n/d) € nA.

din
Thus, for every n € N, there exists some y, € A such that

=Y u(d)¢a(basa). (33)

din

Fix such a vy, for every n € N. Then, every n € N satisfies

E den,a(Ya) = g epn e (Ye) (here we substituted e for d in the sum)
d ¥
|n €|TL :@n/e(eyc)z since Pn/e
is a group endomorphism

- Z Pn/e (eye Z Pne ZH e/d
eln

eln

-~

=§ M(‘D%z/e(‘ﬁd(be/d)), since ¢y, /e
e

is a group endomorphism

since ey, = Z p(d) pq (be sa) by . (applied to e instead of n)
dle

= Z Z ,u Qpn/e (;Od e/d ZZN Pn/e © Pd e/d ZZH’ P(n,/e)-d be/d)

d = d
_\g (wn/eow)(be/d) eln d||2 ‘syn/.e))d In f;l‘ne
dn; == %
d|e dln e[n;
dle
= 1(d) Y @nsera(besa) (34)
d|n eln;
dle

Now, for any divisor d of n, we have

Z $loerd (bea) Z ©n/ (e d) (bea) Z ©nn (bn)

d‘ *‘pn/(E/d) eeﬂ" PN )
~—
= >
6€N|n;
dle

(here we substituted h for e /d in the sum, since the map

{6€N|n ‘ d‘ }_>N|(n/d) 6'—>€/d
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is a bijection). Thus, becomes

Z dona(Ya) Z p(d Z ©ne)d (besa) Z p(d Z ©nn (br)

d|n dln e|n; dln heN|(n a)
dle
~~ =3 = X
= > ensnlbn) hl(n/d)  hln;
heN|(n, ) h|(n,/d)
=D _n(d Z anbn) =22 3 w(@enmbn) =3 >, #(d)enn(bn)
d|n dln  h|n; hin  d|n;
h|(n/d) h|(n,/d) h|(n,/d)
——
=2 X
hln  d|n;
h|(n/d)

since for any integer d, the assertion h | (n/d) is

= Z Z o (d) @nn (br) ( equivalent to d | (n,h)

hln  d|n;
d|(n/h)
~——

_dun/h)

- Z Z d) pnn (bn) = Z [n = h] on n(bn)

hln d|(n/h) h|n

)

since (applied to nh instead of n) yields Z p(d)=[n/h=1=[n=

d|(n/h)

= Z [n="h]  ©nmn(bn)+ Z [n = h] enn(br)

hln; _ o o h|n;
hatn =0 (since h#n) h=n .

=[n=nlon, n(b0)
(since any divisor h of n satisfies either h # n or h = n)
= Z()gpn/h (bp) +[n = n] Onm (bp) =0+ 1id (b,) = id (by) = by.
——

=p1=id
h;ﬁn (by )

=0

Therefore, Assertion £ is satisfied. We have thus shown the implication F = £.
Now we have proven both implications £ = F and F = £. As a consequence,
we now know that £ <= F. Our next step will be to prove that £ <= G.
Proof of the implication € = G: Assume that Assertion £ holds. Then, we can
prove that every n € N satisfies

> o(d)albnsa) =Y > d(e)dpn alya)

dln din e|(n/d)

(this equation is proven in exactly the same way as we have shown the equation

dSou(d)pa(bnya) =D, >, p(e)don, a(ys) in the proof of the implication & = F,
dn dln e|(n,/d)

only with p replaced by ¢ throughout the proof). Since every divisor d of n satisfies

23
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> ¢(e) =n,d (by , with n and d replaced by nd and e), this becomes
e|(n/d)

D () albaya) =Y, Y, d(e)densa(ya) = (n/d)dpn a(ys) =n)  Pnsalya) € nA.

dn din e|(n/d) din dn
—_——

=n

=n/d

Thus, Assertion G is satisfied. Consequently, the implication &€ => G is proven.
Proof of the implication G = £: Assume that Assertion G holds. That is, every

n € N satisfies
Z gf) n/d € nA.

Thus, for every n € N, there exists some z, € A such that

= 6(d) pa (bnsa) (35)

dln

Fix such a z, for every n € N. For every n € N, we define an element y, € A by

Z,u Ph Zn/h)

h|n
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Thus,

nyn =1y i (h)en (znm) =Y 11(h)on(znn)

hin hln =hn/h
—Zh,u n/h ©n zn/h Zhu ((n/h) zn 1)
h|n h|n
—soh((n/h)zn/h)
(since

n,/h€Z and since ¢y, is
a group endomorphism)

:Zhu(h) ©n Z ¢ (d) pa (bn, n),a)

h|n d|(n,/h)
NS

= 5 o den(valbmna))
d|(n/h)
(since ¢y, is a group endomorphism)

since the equation , applied to n_h instead of n,

( yields (n,/h) z, 1, = Z/ )¢>( ) @a (Do, n),a)

:Z hy (h) Z ¢ (d) #h (¢ (b<n/h>/d)),

h|n d|(n/h) e
=(n0¢a) (bnn),/a)

= by (h ol d Ph 0 Qg bin, b/ d
2 2 7l s (==
\,_/ __ (by (12)) ~%n/ (hd)
= X h
4€N| (/1)
=> hu(h) Y ¢ ( ) @nd (bn/(ha)) -
h\n dEN‘(n/h)

Since every divisor h of n satisfies

> 0 (%d) ena (bnswa) = Y ¢ (%) e (bnse)

dEN|(n n) eéhl\'ﬁn%
€

(here, we have substituted e for hd in the sum, since the map

N|(n/h) — {6€N|n | (h | 6)}, d— hd
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is a bijection, because h | n), this becomes

= Z hy (h) Z o (%) @nd (Do (ha)) Z i (h Z (%) Pe (bne)

h|n deNKn/h) h|n GEI\'IM
N ~ J hle
()t
_ee%‘n. h Pelbn, e :e‘%;
hle hle
S 06 () 0 = 35 6 (E) 20
hln eln; eln  hn;
hle hle
~—— ~~~
=2 2 =2
e\nh‘n; hle
hle
=2 Z’w (—) e (buye) = D 1(e) e (buse)
eln eln

:u(e) (by (19), with
d and n replaced by h and e)

= Z p(d (b, a) (here we substituted d for e in the sum).
dn

In other words, we have proven . From this point, we can proceed as in the proof
of the implication F = £, and we arrive at Assertion £. Hence, we have shown the
implication G = &.

Now we have shown both implications £ = G and G = £. Thus, the equivalence
£ <= G must hold.

Finally, let us prove the equivalence between the assertions G and H. This is very
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easy, since every n € N satisfies

> 0 (d)albnsa) =D d(d)palboya) =Y 6(n/d)nra | buma
dln deN),, deN,, T

n
here we substituted 7 for d in the sum, since the map

n
N, = Np,, d— 7 is a bijection

n
= Z¢(d>90n/d (ba) = Z¢( >90n/d (ba)
- Z\\{m €{1,2,...,n} | ged (m,n) = d} ¢n a (bdz (because of (21]))
= > e ©n,d(ba)

me{l,2,...,n};
ged(m,n)=d

= Z Z ©n,d (ba) = Z Z ¥n,/ ged(m,n) (bgcd(m,n))

dln me{1,2,...,n}; dln me{1,2,....,n};

ged(m,n)=d =%¥n/ ged(m, n)( gcd(myn)) ged(m,n)=d
(since d=gcd(m,n))
= Z Pn/ ged(m,n) (bgcd(m,n)) = Z Pn,/ ged(m,n) (bgcd(m,n))
me{l,2,...,n}; me{l,2,...,n}
ged(m,n)|n

(since every m € {1,2,...,n} satisfies ged (m,n) | n)

= Z Pn/ ged(m,n) (bgcd(m,n)) = Z P/ ged(i;n) (bgcd(i,n)) (here we substituted i for m in the sum).

m=1 =1

Therefore, it is clear that G <= H.

Altogether, we have now proven the equivalences C <= &, £ <— F, £ < G,
and G <= H. Thus, the five assertions C, £, F, G and H are equivalent. This proves
Theorem 5.

We can slightly extend Theorem 5 if we require our group A to be torsionfree. First,
the definition:

Definition 10. An Abelian group A is called torsionfree if and only if
every element a € A and every n € N, such that na = 0 satisfy a = 0.

A ring R is called torsionfree if and only if the Abelian group (R, +) is
torsionfree.

(Note that in [1], Hazewinkel calls torsionfree rings "rings of characteristic zero” -
at least, if I understand him right, because he never defines what he means by ”ring of
characteristic zero”.)

Now, here comes the extension of Theorem b5:

Theorem 7. Let N be a nest. Let A be a torsionfree Abelian group

(written additively). For every n € N, let ¢, : A — A be an endomorphism
of the group A such that and hold.
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Let (b,),cn € AY be a family of elements of A. Then, the six assertions C,
E, & F, G and H are equivalent, where the assertions C, £, F, G and H
are the ones stated in Theorem 5, and the assertion £’ is the following one:

Assertion &': There exists one and only one family (y,), .y € AN of ele-
ments of A such that

b, = Z den sa (yq) for every n € N | . (36)
dln

Obviously, most of Theorem 7 is already proven. The only thing we have to add is
the following easy observation:

Lemma 8. Under the conditions of Theorem 7, there exists at most one
family (y,), .y € AV of elements of A satisfying .

Proof of Lemma 8. In order to prove Lemma 8, it is enough to show that if (y,,),cy €

AN and (y,),cy € AV are two families of elements of A satisfying

b, = Z dna(ya) for every n € N and (37)
din

by, = Z don a(yy) for everyn € N |, (38)
dln

then (n),cn = (Un)pen- S0 let us show this. Actually, let us prove that y,, = y;, for
every m € N. We will prove this by strong induction over m; so, we fix some n € N, and
try to prove that y, = v/, assuming that y,, = y/, is already proven for every m € N

such that m < n. But this is easy to do: We have ) dy, 4 (ya) = D dvn,a(Y))
i o
(because y; = vy}, holds for every divisor d of n satisfying d # n E[) But yields

Z den,a (ya) Z dn, a (ya) + Z dona (ya) Z dion,a (Ya) + niyn

din d|n; d|n; d|n;
d#n d=n d#n
—_————
=NPn/n (yn)
=11 (Yn)=nyn
(due to )

and similarly leads to

bu =Y dpn a (Ys) + 1
d|n;
d;|én

35 Proof. Let d be a divisor of n satisfying d # n. Then, d < n. Moreover, every divisor of n lies in
N (since n € N and since N is a nest), so that d € N (since d is a divisor of n).

Now recall our assumption that y,, = g/, is already proven for every m € N such that m < n.
Applied to m = d, this yields yq = v/, (since d € N and d < n).
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Thus, > dyn, da(Ya) + nyn = by = > dvn,a(y,) + nyl,. Subtracting the equality
d|n; d|n;
d;lén d7|én
Yo don a(ya) = > den,a(y,) from this equality, we obtain ny, = ny,, so that
d|n; d|n;
d;‘én d;|én
n(Yn —y,) = ny, —ny, = 0 and thus y, — y, = 0 (since the group A is torsion-
~—

=ny;,
free), so that y, = y/,. This completes our induction. Thus, we have proven that
Ym = Yy, for every m € N. In other words, (y,) = (Yn)en- This completes the
proof of Lemma 8.

Now the proof of Theorem 7 is trivial:

Proof of Theorem 7. Theorem 5 yields that the five assertions C, £, F, G and H
are equivalent. In other words, C <= £ <— F <= G <= H. Besides, it is obvious
that & = £. It remains to prove the implication £ = &’.

Assume that Assertion £ holds. In other words, assume that there exists a family
(Yn)pen € AN of clements of A satisfying . According to Lemma 8, there exists
at most one such family. Hence, there exists one and only one family (y,),cy € AN
of elements of A satisfying . In other words, Assertion £ holds. Hence, we have
proven the implication £ = &£’. Together with & = &£, this yields £ < &'.
Combining this with C <= £ +— F <= G <= H, we see that all six assertions C,
E, &, F, Gand H are equivalent. This proves Theorem 7.

Just as Theorem 7 strengthened Theorem 5 in the case of a torsionfree A, we can
strengthen Theorem 4 in this case as well:

nenN

Theorem 9. Let N be a nest. Let A be a torsionfree commutative ring
with unity. For every p € PN N, let ¢, : A — A be an endomorphism of
the ring A such that holds.

Let (bn),cn € AV be a family of elements of A. Then, the three assertions
C, D and D’ are equivalent, where the assertions C and D are the ones
stated in Theorem 4, and the assertion D’ is the following one:

Assertion D': There exists one and only one family (z,),.ny € AN of
elements of A such that

(by = wy, ((x4)4en) for every n € N) . (39)

Again, having proven Theorem 4, the only thing we need to do here is checking the
following fact:

Lemma 10. Let N be a nest. Let A be a torsionfree commutative ring
with unity. Let (b,), .y € AY be a family of elements of A. Then, there
exists at most one family (z,), .y € AN of elements of A satisfying .

Proof of Lemma 10. In order to prove Lemma 10, it is enough to show that if
(2n)pen € AV and (2),), .y € AN are two families of elements of A satisfying

(bn =w, ((xk)keN) for every n € N) and (40)
(by = wy () gen) for every n € N, (41)
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then (2,),cny = (21,),cn- S0 let us show this. Actually, let us prove that x,,, = x, for
every m € N. We will prove this by strong induction over m; so, we fix some n € N,

and try to prove that x, = z/, assuming that z,, = 2/, is already proven for every

m € N such that m < n. But this is easy to prove: We have Y da?’® = 37 d (/)"
d|n d|n;
d;|£n d;lén

(because x4 = x; holds for every divisor d of n satisfying d # n E[) But yields

bn:w {EkkeN de"/d Zd"/d+2dn/d den/d—i-nxn

din d|n; d|n; d|n;
d#n d=n d#n
——
—nmz/"
=nzl=nz,

and similarly leads to

Zd n/d

d|n;
d#n
Thus, 3 dz"¥ *+nz, = d, = 3 d ()" “+na!,. Subtracting the equality 3 da”@ =
d|n d|n d|n
d;|én d;|£n d;|£n

S d (2,)™ * from this equality, we obtain nz,, = na,, so that n (z, — ) = na, —na!, =
dln; v
d;‘ZL =naxl,

0 and thus z,, — 2], = 0 (since the ring A is torsionfree), so that x,, = z],. This completes
our induction. Thus, we have proven that z,, = 2/, for every m € N. In other words,
() pen = (@) ,en- This completes the proof of Lemma 10.

Proving Theorem 9 now is immediate:

Proof of Theorem 9. Theorem 4 yields that the two assertions C and D are equiv-
alent. In other words, C <= D. Besides, it is obvious that D' = D. It remains to
prove the implication D = D'.

Assume that Assertion D holds. In other Words assume that there exists a family
(zn),en € AN of elements of A satisfying (39). According to Lemma 10, there exists
at most one such family. Hence there ex1sts one and only one family (xn)ne N €AY
of elements of A satisfying (39). In other words, Assertion D’ holds. Hence, we have
proven the implication D = D’ . Together with D' = D, this yields D < D'.
Combining this with C <= D, we see that all three assertions C, D and D’ are
equivalent. This proves Theorem 9.

Let us record, for the sake of application, the following result, which is a trivial
consequence of Theorems 4 and 5:

Theorem 11. Let NV be a nest. Let A be a commutative ring with unity.
For every n € N, let ¢, : A — A be an endomorphism of the ring A such
that the conditions , and are satisfied.

36 Proof. Let d be a divisor of n satisfying d # n. Then, d < n. Moreover, every divisor of n lies in
N (since n € N and since N is a nest), so that d € N (since d is a divisor of n).

Now recall our assumption that x,, = a7, is already proven for every m € N such that m < n.
Applied to m = d, this yields 24 = &, (since d € N and d < n).
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Let (b,),cn € AY be a family of elements of A. Then, the assertions C, D,
E, F, G and H are equivalent, where the assertions C and D are the ones
stated in Theorem 4, and the assertions £, F, G and H are the ones stated
in Theorem 5.

Proof of Theorem 11. According to Theorem 4, the assertions C and D are equiv-
alent. According to Theorem 5, the assertions C, £, F, G and H are equivalent.
Combining these two observations, we conclude that the assertions C, D, £, F, G and
H are equivalenﬂ, and thus Theorem 11 is proven.

And here comes the strengthening of Theorem 11 for torsionfree rings A:

Theorem 12. Let N be a nest. Let A be a torsionfree commutative ring
with unity. For every n € N, let ¢, : A — A be an endomorphism of the
ring A such that the conditions , and are satisfied.

Let (by),cn € AY be a family of elements of A. Then, the assertions C, D,
D, E E, F,G and H are equivalent, where:

the assertions C and D are the ones stated in Theorem 4,

the assertions £, F, G and H are the ones stated in Theorem 5,

the assertion D’ is the one stated in Theorem 9, and

the assertion &’ is the one stated in Theorem 7.

Proof of Theorem 12. According to Theorem 9, the assertions C, D and D’ are
equivalent. According to Theorem 7, the assertions C, £, &', F, G and H are equivalent.
Combining these two observations, we conclude that the assertions C, D, D', &£, &', F,
G and H are equivalen@, and thus Theorem 12 is proven.

We are now going to formulate the most important particular case of Theorem 12,
namely the one where A is a ring of polynomials over Z:

Theorem 13. Let = be a family of symbols. Let N be a nest, and let
(bn)pen € (Z [Z)" be a family of polynomials in the indeterminates Z.
Then, the following assertions Cz, Dz, D%, &=, &L, F=z, G= and Hg are
equivalent:

Assertion Cz: Every n € N and every p € PF n satisfies
byp (ZF) = b, mod p**™Z[Z] .
Assertion Dz: There exists a family (z,,),,cy € (Z [=])" of elements of Z [Z]

such that
(bn = w, ((mk)keN) for every n € N) )

3THere, of course, we have used that the assertion C from Theorem 5 is identic with the assertion C
from Theorem 4.

38Here, of course, we have used that the assertion C from Theorem 5 is identic with the assertion C
from Theorem 4.
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Assertion Dz: There exists one and only one family (x,), .y € (Z =D of
elements of Z [Z] such that

(bn =w, ((mk)keN) for every n € N) )

Assertion E=: There exists a family (y,), .y € (Z[E])" of elements of Z [=]
such that

b, = Z dyq (E”/d) for every n € N
dn

Assertion EL: There exists one and only one family (yn),cy € (Z =)" of
elements of Z [Z] such that

Z dy for every n € N

Assertion F=: Every n € N satisfies

> u(d) by q (27) € nZ[F).

dn

Assertion G=: Every n € N satisfies

Y ¢(d)baa(E) €nZ[E].

d|n

Assertion Hz: Every n € N satisfies

> bgeagim (™ EM) € nZ[F].

i=1
Before we prove this result, we need a lemma:

Lemma 14. Let a € Z[Z] be a polynomial. Let p be a prime. Then,
a (ZP) = a”? mod pZ [Z].

This lemma is Lemma 4 (a) in [3] (with ¢ renamed as a), so we don’t need to prove
this lemma here.

Proof of Theorem 13. Let A be the ring Z [Z] (this is the ring of all polynomials
over Z in the indeterminates =). Then, A is a torsionfree commutative ring with unity
(torsionfree because every element a € Z [Z] and every n € N such that na = 0 satisfy
a=0).

For every n € N, define a map ¢, : Z[ZE] — Z[Z] by ¢, (P) = P (Z") for every
polynomial P € Z [Z]. It is clear that ¢, is an endomorphism of the ring Z [Z] [] The

39because ¢, (0) = 0(E") = 0, ¢, (1) = 1(2") = 1, and any two polynomials P € Z[Z] and
Q € Z[=] satisty
P (P+Q)=(P+Q)(E") =P (E")+Q(E")=¢n(P)+¢n(Q) and
on(P-Q) = (P-Q)(E") = P(E") - Q(E") = ¢ (P) 9 (Q).



condition (3)) is satisfied, since ¢, (a) = a (=?) = a? mod pZ [Z] (by Lemma 14) holds for
every a € A. The condition is satisfied as well (since p, (P) =P (E')=P(2)=P
for every P € Z[Z]), and the condition is also satisfied (since @, 0 ¥, = @nm for
every n € N and every m € N satisfying nm € N E[) Hence, the three conditions
, and are satisfied. Therefore, Theorem 12 yields that the assertions C, D,
D, E & F,Gand H are equivalent, where:

the assertions C and D are the ones stated in Theorem 4,

the assertions £, F, G and H are the ones stated in Theorem 5,

the assertion D’ is the one stated in Theorem 9, and

the assertion &’ is the one stated in Theorem 7.

Now, comparing the assertions C, D, D', £, &', F, G and H with the respective
assertions Cz, D=, DL, &=, L, Fz, G= and Hz=, we notice that:

e we have C <= Cz (since A = Z[Z] and ¢, (bn, ) = b, p (ZP));

e we have D <= Dz (since A = Z[Z)]);

e we have D' <= DL (since A = Z [Z]);

e we have & <= &= (since A =Z[Z] and ¢, 4 (ya) = ya (E™%));

e we have &' <= &L (since A = Z =] and ¢, a4 (Ya) = Ya (En/d)>5

e we have F <= Fz (since A =Z[E] and ¢4 (bna) = bnya (E%));

e we have § <= Gz (since A = Z[Z] and ¢4 (bn/a) = bnsa (27));

e we have H <= Hz (since A = Z [Z] and ¢,/ ged(isn) (Dged(ing) = bged(iny (2™ 40M)).

Hence, the equivalence of the assertions C, D, D', &, &', F, G and H yields the
equivalence of the assertions Cz, D=, D%, &=, £, F=, G= and H=. Thus, Theorem 13
is proven.

Theorem 13 has a number of applications, including the existence of the Witt
addition and multiplication polynomials. But first we notice the simplest particular
case of Theorem 13:

40 Proof. Let n € N and m € N be such that nm € N. Then, every P € Z [Z] satisfies

(Pnowm) (P)=vn | om (P) | = wn (P(E™)) =P ((En)m)
= ——

=p(=m)

here, (™)™ means the family of the m-th powers of all elements of
the family =" (considered as elements of Z [Z] )

=P (Emn) = Pnm (P) .

Thus, ¢, © ©m = ©nm, qed.
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Theorem 15. Let N be a nest, and let (b,),.y € Z" be a family of
integers. Then, the following assertions Cg, Dy, DL, Ey, £, Fu, Gz and
‘Hs are equivalent:

Assertion Cy: Every n € N and every p € PF n satisfies

b, p = by mod p*rMZ.
Assertion Dy: There exists a family (2,), .y € Z" of integers such that
(bn = w, ((:L‘k)keN) for every n € N) )

Assertion DJ;: There exists one and only one family (x,) e ZN of

integers such that

neN

(bn = w, ((zk)kEN) for every n € N) )

Assertion Ey: There exists a family (y,),, oy € Z" of integers such that

b, = Z dyq for every n € N

din

Assertion El,: There exists one and only one family (y,),.y € ZY of
integers such that

b, = Z dyg for every n € N
din

Assertion Fy: Every n € N satisfies

Z o] (d) bn/d € n.
dln

Assertion Gy Every n € N satisfies

> ¢ (d) by a € nZ.

din

Assertion Hg: Every n € N satisfies
Z bgcd(i,n) € nZz.
i=1

Proof of Theorem 15. We let = be the empty family. Then, Z[Z] = Z (because
the ring of polynomials in an empty set of indeterminates over Z is simply the ring Z
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itself). Every "polynomial” a € Z satisfies a (Z") = a for every n € N [[] Theorem
13 yields that the assertions Cz, Dz, Dz, &z, £, F=, G= and Hz are equivalent (these
assertions were stated in Theorem 13).

Now, comparing the assertions Cz, Dz, D%, &=, L, F=, G= and Hg with the respec-
tive assertions Cy, Dy, Dy, €y, £, Fu, Gz and Hy, we notice that:

we have Cz <= Cy (since Z [Z] = Z and by, -, (EP) = by, p):
we have Dz <= Dy (since Z [Z] = Z);

we have DL <= D, (since Z [Z] = Z);

we have &z <= & (since Z [Z] = Z and y, (27) = yy);
we have &L <= &}, (since Z [Z] = Z and y, (2) = yy);
we have Fz <= F, (since Z[Z] = Z and b, /4 (%) = by, 1a);
we have Gz <= Gy (since Z [Z] = Z and b, 4 (Ed) =bn4);

we have Hz <= My (since Z [Z] = Z and bgea(iny (2™ UM = byeq(in))-

Hence, the equivalence of the assertions Cz, D=, D%, &=, £, F=, G= and Hz yields
the equivalence of the assertions Cy, Dy, DL, £y, £, Fu, G» and Hy. Thus, Theorem
15 is proven.

We notice a simple corollary of Theorem 15:

Theorem 16. Let g € Z be an integer. Then:

(a) There exists one and only one family (z,),,cy, € ZN+ of integers such
that

(q” = Wy, ((xk)k@\u) for every n € N+> .

(b) There exists one and only one family (yn),cn, € ZN+ of integers such
that

q" = Z dyg for every n € N
dn

(c) Every n € N, satisfies

Zu(d) ¢ € nZ.

dn
(d) Every n € N, satisfies

Z¢(d) ¢ enZ.

din

4In fact, a (2") is defined as the result of replacing every indeterminate by its n-th power in the
polynomial a. But since there are no indeterminates, ”replacing” them by their n-th powers doesn’t
change anything, and thus a (") = a.
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(e) Every n € N, satisfies

n

Z @& ¢ n7.

i=1
Proof of Theorem 16. First we note that every n € N, and every p € PF n satisfies
¢"? = ¢" mod pr™7Z. (42)

2

Now let N be the nest Ny. Define a family (b,),cn € ZN by b, = ¢" for every
n € N. According to Theorem 15, the assertions Cy, Dy, DL, €y, €4, Fu, G» and Hy
are equivalent (these assertions were stated in Theorem 15). Since the assertion Cy is
true for our family (b,), .y € Z" (because every n € N and every p € PF n satisfies

busp=q"" =" (by (42))
= b, mod p*™Z

), this yields that the assertions Dy, D, £y, £, Fu, G» and Hy must also be true for
our family (b,), .y € Z". But for the family (b,), .y € Z~,

e assertion D, is equivalent to Theorem 16 (a) (since N = N, and b, = ¢");
e assertion & is equivalent to Theorem 16 (b) (since N = N, and b,, = ¢");
e assertion JF is equivalent to Theorem 16 (c) (since N = N, and b, 4 = ¢"/%);
e assertion Gy is equivalent to Theorem 16 (d) (since N = N, and b, 4 = ¢"7);

e assertion Hy is equivalent to Theorem 16 (e) (since N = Ni and bgea(in) =
qgcd(i,n))'

Hence, Theorem 16 (a), Theorem 16 (b), Theorem 16 (c), Theorem 16 (d) and
Theorem 16 (e) must be true (since the assertions Dy, &, Fu, Gy and Hy are true
for the family (b,),c, € Z"). This proves Theorem 16.

The different parts of Theorem 16 - particularly, parts (b), (c), (d) and (e) (of
course, (e) is just a simple restatement of (d)) appear fairly often in literature about
number theory and combinatorics. For instance, Theorem 16 (d) appears as (4.64) in
the book [4], which gives a number-theoretical proof for every g € Z and a combinatorial

1
proof for the case ¢ > 0. The latter proof shows that, if ¢ > 0, then — > ¢ (d) ¢"@
N dn

“21n fact, pU»(™ | n, and thus there exists some u € Ny such that n = p*(™u. Since v, (n) > 1
(because p € PFn), we have v, (n) — 1 € N, and thus can define an element ¢ € N by £ = v, (n) — 1.

Now, Fermat’s little theorem yields ¢* = (¢*)” = ¢“? mod pZ, and thus (q“)p/Z = (q“P)pz mod p' HZ
(by Lemma 3, applied to k = 1, a = ¢*, b = ¢"? and A = Z). But n,/p = p*»Mu,/p = pr -1y =

plu = up’ yields ¢"/'P = g = (q“)pe7 and n=n,/p-p=up-p’ yields ¢" = g = (q"p)pz. Finally,
oo

14+4=1+ (v, (n) —1) = v, (n). Hence, (q“)pe = (q“p)pe mod p' ™*Z becomes ¢"P = ¢™ mod p”r(MZ

(since ¢"/'P = (q“)pa, " = (q“p)pz and 1+ ¢ = v, (n)). Thus, is proven.
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is the number of all colored necklaces consisting of n beads, where there are ¢ colors
that one can use (of course, one is not forced to use them all!) and one considers two
necklaces equal if they differ from each other only in a cyclic rotation (not an axial
reflection!). Of course, the number of such necklaces must be an integer, and thus
S ¢ (d)¢'? € nZ, proving Theorem 16 (d) in the case ¢ > 0. One can also derive
dn
Theorem 16 (c) in the case ¢ > 0 from a similar observation: Count necklaces again
(identifying any two necklaces which differ from each other only in a cyclic rotation),
but this time count only the aperiodic necklaces (these are the necklaces whose coloring
is not invariant under any cyclic rotation, except of the trivial rotation). This time,
there are %Z p(d) ¢ of them, and this leads to Theorem 16 (c). However, in the
dln

case ¢ < 0, these proofs of Theorems 16 (d) and (c) make no sense, and I don’t know
whether there exist combinatorial proofs for them in this case.

Note also that applying Theorem 16 (c) to a prime number n yields Fermat’s Little
Theorem (in fact, if n is prime, then the only divisors of n are 1 and n, and thus

Su(d)g”? = u(1) ¢ +u(n) ™ = ¢" — q, so that Theorem 16 (c) becomes
din \,1./\/ \,;/\\1,./
= =q" =—1 =q'=¢q

q" — q € nZ, which is Fermat’s Little Theorem).
Now here is a less-known analogue of Theorem 16:

Theorem 17. In the following, for any v € Z and any r € Q, we define
the binomial coefficient (u) by
r

1
(u) =TI (u—k), if r e N;
= ! e=o
0, ifr¢N
In particular, if r € Q \ Z, then (u) is supposed to mean 0.
r

Let ¢ € Z and r € Q. Then:

(a) There exists one and only one family (z,),,oy, € ZN+ of integers such

that
qn
((rn) = w, ((xk)k€N+> for every n € N+) .

(b) There exists one and only one family (y,),cy, € Z"* of integers such
that

qn
= E dy, t N
(rn) Yq ITor every n € N4

dn

(c) Every n € N satisfies
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(d) Every n € N, satisfies

A (iZ;z) € nZ.

dln

(e) Every n € N, satisfies

Z <q ng (z,n)) c nZ.
“— \rged (i, n)
The proof is similar, but verifying Assertion Cy turns out harder than in Theorem

16. To simplify this step as far as possible, we will have to apply an analogue of Lemma
4 (b) from [3] for power series instead of polynomials:

Lemma 18. Let = be a family of symbols. Let a € Z[Z] be a polynomial.
Let p be a prime.

(a) For every ¢ € N, we have (a (Ep))pz = a*" mod p™Z[=).
(b) For every m € N, satisfying p | m, we have (a (2°))™? = o™ mod p*»(™Z [=].

(c) Let Z[[Z]] denote the ring of all power series over Z in the indetermi-
nates Z. If a is a polynomial with constant term 1, then for every m € Z\{0}
satisfying p | m, we have (a (2°))™” = a™ mod p*»™Z[[Z]]. (Note that it
makes sense to speak of (a (22))™” and a™ even for negative m since we
have supposed that a is a polynomial with constant term 1 and therefore
invertible in Z [[Z]]).

Proof of Lemma 18. (a) Lemma 18 (a) is Lemma 4 (b) in [3], and we refer to [3]
for its proof.
(b) We have m,p € N (since p | m). Let ¢ = v,(m,p). Then, v, (m
v, ((m/p) - p) = vy (m,/p)+v,(p) = £+ 1. Thus, p*»™ = p*+1 o that pr(m
—— =

=/ =1

):
| m

becomes p*! | m. Thus, there exists s € N, such that m = sp‘*!. Hence, m/p =
sp™t /p = sp’. Thus,
(a (2)™" = (a (ZP)" = ((a =) = (M“) (by Lemma 18 (a))
= o = a" mod p't'Z [T (since sp™' =m).

In other words, (a (27))™” = a™ mod p»"™Z[Z] (since v, (m) = £ 4 1). This proves
Lemma 18 (b).

(c) Since a is a polynomial with constant term 1, there exists a multiplicative inverse
a~! of a in the ring Z[[Z]]. Clearly, a~! (ZF) is the multiplicative inverse of a (ZP) in
the ring Z [[Z]] (because a™' (E7) - a (ZF) = (" - a) (EF) = 1(27) = 1). Hence, both

=1

)™ P and a™ are well-defined elements of Z [[Z]] (since m/p and m

power series (a (2P
are integers).
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Since m € Z \ {0}, we have either m > 0 or m < 0. In the case m > 0,
we have m € N, so that Lemma 18 (b) yields (a(27))™? = a™ mod p»™Z[Z],
and thus (a(2°))™? = a™mod p»"™Z|[Z]] (since pr™Z[Z] C p»™Z[[Z]]), and
therefore Lemma 18 (c) is proven in the case m > 0. In the case m < 0, we have
—m € N4, so that Lemma 18 (b) (applied to —m instead of m) yields (a (27)) ™" =
a~™ mod p**"™7Z [Z], and thus (a (27)) ™" = =™ mod p>»™Z [[Z]] (since p>»™Z[Z] C
p**=™Z[[Z]]), which becomes (a (27))™™" = a~™ mod p*»"™Z[[Z]] (since v, (—m) =
v, (m)), and multiplying this congruence by a™ (a (27))™? yields
a™ = (a (2°))™ P mod p**™Z [[Z]], which rewrites as (a (27))™? = a™ mod p»™Z [[Z]],
and therefore Lemma 18 (c) is proven in the case m < 0. Hence, Lemma 18 (c) is
proven in each of the cases m > 0 and m < 0. Consequently, Lemma 18 (c) must
always hold, and our proof of Lemma 18 is complete.

A consequence from Lemma 18 is the following congruence between binomial coef-
ficients:

Lemma 19. Let n € N, and let p € PFn. Let ¢ € Z and r € Q. Then,

<qn/p> _ (qn) mod pr ™7, (43)

rn/p ™m

Proof of Lemma 19. Since p € PFn, we know that p is a prime and satisfies p | n.

If rn ¢ N, then Lemma 19 is easily seen to be true@ Hence, in the case when
rn ¢ N, we have proven Lemma 19. Therefore, we can WLOG assume that rn € N for
the rest of the proof. Assume this.

Since rn € N, we have rn > 0. Combined with n > 0, this yields r > 0.

Let m = gn. Then, p | m (since p | n). As an easy consequence from Lemma 18,
we have (14 X?)™? = (1+ X)"™ mod p>™Z [[X]). Hence, for every A € N, we

43 Proof. Assume that rn ¢ N. Then, rn/p ¢ N (because otherwise, we would have rn/p € N,

hence rn= p -rn/p € N-N CN; contradicting rn ¢ N). By the definition of (qn/p>’ we have
— = ™,/ p
eN €N
/ 1 rn,/ p—1 "
() =8 G M, B A EN g e v g ).
p 0, ifrn/p¢N
- qn
By the definition of ( ), we have
m
1 rn=1 .
<qn) - (rn)! kl;lo an=k), rn € 1 =0 (since rn ¢ N).
mn 0, ifrn¢ N

Since (qn/p) =0 and (qn) = 0, both sides of the equality are 0. Thus, the equality
rn,/p rn

holds. In other words, Lemma 19 is true, qged.

4 Proof. Applying Lemma 18 (c) to the family Z = (X) and the polynomial a = 1+X € Z[=] (which
has constant term 1), we obtain (a (E7))"™? = a™ mod p*»(™Z [[Z]]. Since a = 1+ X and therefore
a (2P) =14 XP (because a (EP) is the result of replacing every indeterminate in the polynomial a by
its p-th power), this becomes (1 + X?)™/ P = (1+ X)™ mod p*»(™Z[[X]], qed.
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have

(the coefficient of the power series (1 4+ X?)™? before X A)
= (the coefficient of the power series (1+ X)™ before X*) mod p*r("™Z. (44)

But the binomial formula yields

e L > FARS AR

KEN | /XK rkeEN AepN

:(m/p)
P/ D

(here we substituted A for px, since the map N — pN, k — pk is a bijection)

> 2 ()X

AeN )\EN\}?N\W—/
=0, since
A/ pgN,
since A¢pN
m,/ p> A A <m/ p) A
S ()0 ey (1)
AeN <)\/p AeN\pN AeN )\/p
—_———

=0

and thus every A € N satisfies

<the coefficient of the power series (1 4+ X?)™? before X A) = (7;\1?}9) (45)
p

Besides, the binomial formula yields

L+X)" =) <T)X¥

AeN

Hence, every A € N satisfies

(the coefficient of the power series (1+ X)™ before X*) = (T) (46)

Thus, every A € N satisfies

<m/ p

Y > - <the coefficient of the power series (1 4+ X?)™? before X )‘) (by (49))
p

= (the coefficient of the power series (1+ X)™ before X*) (by ([44))
= (T) mod p**"™Z, (by (46)) .

Since m = qn, this becomes

qn,/’p qn
= dporlaz.
() = () mocts
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Hence,

qn,/’p qn vy (1)
dp\"Z
(30) = () o
(since v, (qgn) = v, (q) +v, (n) > v, (n) yields p»™ | p*@ and thus p»WZ C
——
>0

p”P(”)Z). Applying this to A = rn, we obtain , and thus Lemma 19 is proven.

Proof of Theorem 17. Let N be the nest Ny. Define a family (b,), .y € Z" by

b, = <qn> for every n € N. According to Theorem 15, the assertions Cy, Dy, D, Eg,
n

&L, Fu, Gy and Hy are equivalent (these assertions were stated in Theorem 15). Since
the assertion Cy is true for our family (b,), .y € Z" (because every n € N and every
p € PF n satisfies

b, = (qn/p) _ (qn> (by (@)

rn,/p rn
= b, mod p»™7Z

), this yields that the assertions Dy, D, £y, £, Fu, G» and Hy must also be true for
our family (b,),.y € Z". But for the family (b,), .y € Z",

e assertion D, is equivalent to Theorem 17 (a) (since N = N, and b, = (qn) );
™

e assertion & is equivalent to Theorem 17 (b) (since N = N, and b,, = (qn) );

rm
e assertion Fy is equivalent to Theorem 17 (c¢) (since N = Ny and b,,4 =
qn/d\ .
()
e assertion Gy is equivalent to Theorem 17 (d) (since N = Ny and b, 4 =
qn/d\
<7“n/ d))’

e assertion Hy is equivalent to Theorem 17 (e) (since N = Ny and bgea(in) =
qged (i,n)) )
rged (i,n) )"
Hence, Theorem 17 (a), Theorem 17 (b), Theorem 17 (c), Theorem 17 (d) and
Theorem 17 (e) must be true (since the assertions D, &, Fu, Gz and Hy are true

for the family (b,),cn € Z"). This proves Theorem 17.
Actually, we can do better than Theorem 17 in the case when r is an integer:

Theorem 20. In the following, for any v € Z and any r € Q, we define
the binomial coefficient <u) by
r
1 =1
(u) — I (u—k), if r e N;

r =0

0, ifr¢ N
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u
In particular, if r € Z \ N, then ( ) is supposed to mean 0.
r

Let ¢ € Z and r € Z. Then:

(a) There exists one and only one family (:1cn)n6N+ € ZN+ of integers such

that ,
qn —
((rn B} 1> = w, ((SL’k)keN+> for every n € N+> .

(b) There exists one and only one family (yn),cn, € ZN+ of integers such
that

-1
(qn ) = Z dyq for every n € N,

rn—1
din
(c) Every n € N, satisfies
qn,/d — 1
d Z.
;ﬂ( ) (rn/d— 1) €
(d) Every n € N, satisfies
qn,/d — 1
Z.
;qb(d) (rn/d— 1) e
(e) Every n € N, satisfies
n . . 1
3 (qgcd (,m) > _—
— \rged (i,n) — 1
(f) If r # 0, then every n € N, satisfies

qn/d\ _ ¢
Zu(d) (rn/d) € ;nZ.

dn

(g) If r # 0, then every n € N, satisfies

qn,/d
Z ¢(d <rn/d) nZ

d|n

(h) If » # 0, then every n € N, satisfies
Z (ng (%”)) c 7.
— \rged(i,n) r
The proof of this fact will use an analogue (and corollary) of Lemma 19:
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Lemma 21. Let n € N, and let p € PFn. Let ¢ € Z and r € Q. Assume
that there exist two integers o and 8 with v, (o) > v, () and r = %. Then,

qn/p—1 qn —1 (n)
= AV 4
(rn/p — 1> (rn — 1) mod p (47)

Proof of Lemma 21. Since p € PF n, we know that p is a prime and satisfies p | n.

-1
If r <0, then an/’p = 0 (since r < 0 yields rnp < 0 and thus rn/p—1 <
rn/p—1
-1
0) and (qn 1) = 0 (since r < 0 yields rn < 0 and thus rn — 1 < 0), and thus "
rn —

becomes trivial. Hence, in the case r < 0 we have proven Lemma 21. Therefore, we
can WLOG assume that r» > 0 for the rest of the proof. Assume this.

-1
If rn ¢ N, then (gZ;ﬁ_ 1) = 0 (since rn ¢ N yields rn/p ¢ N and thus

rn/p—1 ¢ N) and (iZ_i = 0 (since rn ¢ N yields rn — 1 ¢ N), and thus
becomes trivial. Hence, in the case rn ¢ N we have proven Lemma 21. Therefore, we
can WLOG assume that rn € N for the rest of the proof. Assume this.

It is also easy to prove Lemma 21 in the case when ¢ = 0 ﬁ Hence, for the
rest of this proof, we can WLOG assume that ¢ # 0. Assume this. Then, v, (¢) is a
well-defined nonnegative integer (not oo).

45 Proof. Assume that ¢ = 0. Recall that

-1
( > =(-1)" for every 7 € N. (48)
r
But since rn € N and
wm=u | | Fum= w(5) Az
o —
] =vp (@) —vp(8)>0

(since vy () >v,(B))

(since p | n), we have p | rn. Thus, p € PF (rn) (since p is a prime) and rn,p € Z. On the other
hand, rn,/p > 0 (since r > 0 and n > 0). Combined with rnp € Z, this yields rnp € N;. Hence,
rn/p—1€N.

On the other hand, rn > 0 (since » > 0 and n > 0). Combining this with rn € N, this yields
rn € N;y. Thus, rn —1 € N.

Now, applying to —1 and rn instead of ¢ and n, we obtain (—1)"™? = (=1)"" mod p*» ("™ Z.
Since p»("™Z C p»(M7Z (because v, (rn) > v, (n)), this yields (=1)" 7 = (=1)"" mod p*»(M Z.
But since ¢ = 0, we have

qn/p -1 _ On/p -1 _ -1 _ (_1)7'n/p—1
™,/ p—1 ™,/ p—1 rm,/p—1
(by , applied to 7 = rn,p — 1 (since rn/p — 1 € N))
= —(=1)"? =~ (=1)" modp*»"MZ (Since (-1)™ P = (=)™ modp“l’(")Z) :
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In the proof of Lemma 19, we have shown that

<q)7\1//;9) = <q)7\1 ) mod p** 7, for every A € N.
In other words, p*»(@) | <q)7\z//;)) - (q;\z )7 so that

() (@)2vem

But any @ € Q and b € Q \ {0} satisfy

a afa—1
(5)=70-) o)
Also, since ¢ = 0, we have

gn—1\  (On—-1\ [ -1 — (—1)™t
m—-1) \m-1) \en—-1/)

(by (48)), applied to 7 =rn — 1 (since rn — 1 € N))
_ (_1)7‘n — (qn/P -1

rn,/p—1

Thus, Lemma 21 is proven in the case when ¢ = 0.

) mod p’r(MZ.
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] Thus,

y qn/p B qn _, | e (e p =1\ anfqn—1
b \/p A "I o Uop—1) " alao
——— ——’ \\,n_/
qn/pqn/p—1\  qnlqn—1 _am
AP\ A p—1) Ta\a-1 A
(by 7 applied to (by , applied to
a=qgn,/p and b=\/p) a=qgn and b=M\)

= (000 -5 00) = (R (G55 -(000))

PN\ p—1 A\A—=1/) P N p—1 A—1

B qn an,/p — 1 qn — 1 qn,/p—1 qgn — 1
- of3) = ((055) - (00— —neen ((0770) - (07)
=vp(qn)—vp(N)

Hence, becomes

) =0+, (Y777 = (7)) 2 ot

This simplifies to
qn/p—1 qn —1
(1) - (000) =

46 Proof. Since b € Q\ {0} = (Q\ N) U (N\ {0}), we must have either b € Q \ N or b € N\ {0}.

afa—1

a a a—1
If h, hus = 5 =0 (si =
b€ Q\N, then b ¢ N and thus (b) b(b_l),becauw <b> 0 (since b ¢ N) and (b—l) 0

(since b ¢ N yields b — 1 ¢ N).
If b € N\ {0}, then b — 1 € N and thus

o H@-n alle-»
<b> = — m = b-_(b—l)! (since kl;[()(a—k):alg(a—k) and b!:b'(b—l)!>
b—1 (b—1)—1

M-8 I (a=k+D)

% . k:(}) )T =5 k=0 o) (here we substituted k for k£ — 1 in the product)

(b—1)—1
;};[o ((e=1)=F) a(a—1>.

a _ ¢
b (b—1)! S b\b—1

= 1 b eN
i —
(S ce )

-1
Hence, in each of the two cases b € Q \ N and b € N\ {0}, we have <Z> S (a ) Since these

b\b—-1
a—1

b—1

a a
two cases cover all possibilities, we have thus proven that ( b) = <

5 > for any a € Q and any
beQ\{0}.
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1 1
In other words, p*»®) | n/p (1 , so that
Ap—1

(80 (5

Applying this to A = rn, we obtain

—1 -1
(qn/p ) = (qn )mOdpvp(Tn)Z.

rn,/p—1 rn — 1
o : a o a
This yields (47) (since r = 3 yields v, (rn) = v, (Bn) = (E) +v, (n) >
——

=vp(a)—vp(B8)>0
(since vp(a)>vp(B))

v, (n), so that p»(™7Z C p*»(M7Z). Thus, Lemma 21 is proven.
Proof of Theorem 20. We know that r is an integer. Thus, there exist two integers

a and § with v, (o) > v, (8) and r = a (namely, « = r and = 1 (since % =1 and

v, (r) >0 =1v,(1))). Hence, yields that every n € N, and every p € PF n satisfy
—1 -1

(qn/p > — <qn )modpvp(n)z- (51)

rn/p—1

-1
Let N be the nest Ny. Define a family (b,,), .y € Z" by b, = m ) for every
rn —

n € N. According to Theorem 15, the assertions Cy, Dy, Dy, €y, €y, Fu, Gz and Hy
are equivalent (these assertions were stated in Theorem 15). Since the assertion Cy is
true for our family (b,), .y € Z" (because every n € N and every p € PF n satisfies

gn/p—1 gn—1
b p = = b 1
D i o G I 1)
= b, mod pr™7Z

), this yields that the assertions Dy, D, £y, £, Fu, G» and Hy must also be true for
our family (b,),.y € Z". But for the family (b,), .y € Z",

-1
e assertion D, is equivalent to Theorem 20 (a) (since N = N, and b, = (qn 1) );
rn —

—1
e assertion & is equivalent to Theorem 20 (b) (since N = N, and b,, = (qn ))’

rn —1
e assertion Fj is equivalent to Theorem 20 (c) (since N = Ny and b, 4 =
qn,/d — 1 )
m/d—1)"
e assertion Gy is equivalent to Theorem 20 (d) (since N = Ny and b,,4 =

qn/d — 1\,
(rn/d—1>)’
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e assertion Hy is equivalent to Theorem 20 (e) (since N = Ny and bgeq(in) =
gged (i,n) — 1
(r ged (i,n) — 1))

Hence, Theorem 20 (a), Theorem 20 (b), Theorem 20 (c), Theorem 20 (d) and
Theorem 20 (e) must be true (since the assertions Dy, &, Fu, Gy and Hy are true
for the family (b,),cn € Z").

Now it remains to prove Theorem 20 (f), Theorem 20 (g) and Theorem 20 (h).

To this end, let us assume that r # 0.
Theorem 20 (f) follows from Theorem 20 (c), since

qn/d B qn/d (gqn,/d—1 g qn,/d —1
%N(CD (rn/d) _;M(d)rn/d (rn/d—l)_r(ﬂznu(d) (Tn/d—1>
qn/d (qn/d — 1 4 h enZ g
:rn/d (Tn/d— 1) r (by Theorem 20 (c))

(by , applied to
a=qn,/d and b=rn/d)

€ =nZ.
r

Theorem 20 (g) follows from Theorem 20 (d), because

qn,/d B qn/d (gqn,/d — 1 q qn,/d — 1
dzh;gb(d) (rn/d) —dzh;qb(d) rn,/ d (rn/d—l) TZ (rn/d—l)
an/d (qn/d — 1 _4a e ’
:’f‘n/d Tn/d— 1) r (by Theorem 20 (d))

(by (50), applied to
a=qn,/d and b=rn/d)

€ gnZ.
r

Theorem 20 (h) follows from Theorem 20 (e), since

- gecd (i,n) _gnazed(in) (qed )~ 1
— rged (i, n) — rged (i,n) \rged (i,n) — 1
1= N — =L N ——

qeed (i,n) (qged (i,n) — 1 4

“rged (i,n) \rged (i,n) — 1 r

(by (50), applied to
a=qged(i,n) and b=rged(i,n))

_4q qgged (i,n) — 1
7.
Z(Tgcd . M) 1)6 r

J

g

enz
(by Theorem 20 (e))

Thus, altogether we have now proven Theorem 20 completely.

Note that Theorem 20 (h) is a generalization of the problem proposed in [5] (in
fact, the problem proposed in [5] follows from Theorem 20 (h) for r = 1).

So much for applications of Theorem 13 for the case when = is the empty family (i.
e. for polynomials in zero variables). We now aim to apply Theorem 13 to nonempty
=. However, at first, let us make a part of Theorem 13 stronger.
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Theorem 22. Let = be a family of symbols. Let N be a nest, and let
(bn),en € (Q [Z])™ be a family of polynomials in the indeterminates Z.

(a) There exists one and only one family (z,),.y € (Q [Z)" of elements
of Q[Z] such that

(bn = w, ((xk)keN) for every n € N) )

We denote this family (z,,),cy by (Zn),cn- Then, we have (7,),.y €
(QE)" and

(bn = w, ((fk)keN) for every n € N) )
(b) The family (z,),.y € (Q [Z])" defined in Theorem 22 (a) satisfies
T, €Q [Z)N‘n] (where Q [bN‘n] means the sub-Q-algebra of Q [Z] generated
by the polynomials by for all d € Nj,,) for every n € N.
(c) Assume that (b,),x € (Z[Z]))". Then, the family (7,),.y € (Q[Z])"

—_

defined in Theorem 22 (a) satisfies (7,,), .y € (Z =)™ if and only if every
n € N and every p € PF n satisfies

by p (EP) = b, mod p*™MZ[Z]. (52)

The proof of Theorem 22 is easy using Theorem 13; in order to formulate it, we
will use a trick:
Let us replace Z by Q throughout Theorem 13. We obtain the following resulﬂ:

Lemma 23. Let = be a family of symbols. Let N be a nest, and let
(bn)peny € (Q [Z)™ be a family of polynomials in the indeterminates Z.
Then, the following assertions C2, D2, D2, £2, 2, F2, G2 and HE are
equivalent:

Assertion Cg . Every n € N and every p € PF n satisfies

by p (EP) = b, mod p»™MQ[Z].

Assertion D2: There exists a family (z,),.y € (Q[Z])" of elements of
Q[ZE] such that

(bn = w, ((xk)keN) for every n € N) )

Assertion D2 : There exists one and only one family (70),en € (Q =)Y
of elements of Q [Z] such that

(bn = w, <(93k)keN) for every n € N) )

4"Don’t be surprised that the assertions C’g, ]—'g, gg and Hg are always fulfilled. I have only
included them to make the similarity between Lemma 23 and Theorem 13 more evident.
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Assertion £2: There exists a family (y,,), .y € (Q [Z])" of elements of Q [Z]
such that

b, = Z dyd for every n € N

Assertion EE: There exists one and only one family (Un)nen € (Q =Z)Y of
elements of Q [Z] such that

b, —Zdy "/d foreverynEN

Assertion ]—"g : Every n € N satisfies

Y n(d)basa (E) € nQIE].

dln

Assertion G2: Every n € N satisfies

Y ¢(d)baa(E) €nQ[E].

dln

Assertion HZ: Every n € N satisfies

Z bgcd(z‘,n) (En/ng(i’n)) € nQ [E] .

=1

Of course, it is obvious that the assertions C2, F2, G2 and H2 are always fulfilled
(since pr™Q[Z] = Q[Z] for every n € N and every p € PFn, and nQ [Z] = Q|[Z] for
every n € N), so the actual meaning of Lemma 23 is that the assertions DQ D/Q 89
and £ are always fulfilled as well.

Proof of Lemma 23. In order to prove Lemma 23, it is almost enough to replace
every appearance of Z by Q (and, of course, every appearance of Cz, D=, DL, &=, &EL,
F=, G= and Hz= by CQ DQ Dﬁ@ SQ SLQ ]:Q QQ and 7—[ , respectively) in the proof
of Theorem 13. The only dlfference is that now, instead of Lemma 14, we need the
following fact:

Lemma 24. Let a € Q[Z] be a polynomial. Let p be a prime. Then,
a (ZP) = a? mod pQ [Z].

But this lemma is trivial, since pQ [Z] = Q[Z]. Hence, Lemma 23 is proven.
Proof of Theorem 22. (a) The family (b,),.y € (Q [=])" satisfies the Asser-

tion Cg of Lemma 23 (since every n € N and every p € PFn satisfies b, , (ZP) =
b, mod p**™MQ [Z], because p**™Q[Z] = Q[Z]). Thus, it also satisfies the Assertion

49



D@ of Lemma 23 (since Lemma 23 yields that the assertions CQ and D~ are equiv-

—_

alent). In other words, there exists one and only one family (z,),.y € (Q =) of
elements of Q [Z] such that

(bn = w, ((:ck)keN) for every n € N) )

This proves Theorem 22 (a).
(b) We want to prove that z,, € Q [len} for every n € N.

We are going to prove this by strong induction over n: Fix some m € N. Assume
that
T, €Q [len} is already proven for every n € N satisfying n < m. (53)

We want to show that 7, € Q [len} also holds for n = m.

According to Theorem 22 (a), we have b, = w, ((Z4),cy) for every n € N. In
particular, for n = m, this yields

b = Won (@t)ey) = D _day 4 =>"diy "+ Y dzy’? = diy” + miy,

dm dlm; d|m; dlm;
d#m d=m d#m
~——

./

~m,/m ~
=mMIm =mMIm

1
— | b — X2 47| . Now, every divisor d of m satisfying d # m must
m d|m;

d#m

satisfy d”’n/d eQ [bN‘m] (in fact, d | m and d # m yield d < m, and thus (applied
to n = d) yields 74 € Q [bN‘d} and thus 745 € Q [bN\m] (since d | m yields Njg C N,
and thus Q [bN‘d] cCQ [bN‘m}) so that dZ77* € Q [lem} ), and clearly by, € Q [lem].

so that z,, =

1
~ = ~m,/d ~
Hence, ,, = p— by — > | dz, eQ [lem] Thus, z,, € Q [bN‘n] holds for
€Q [lem] d#m cq [lem]

n = m. This completes the induction step, and thus we have proven that z,, € Q [bN\n}

for every n € N. This completes the proof of Theorem 22 (b).

(c) Assume that (b,), .y € (Z[Z])". Then, we must prove that the family (Z,), .y €
(Q[Z])" defined in Theorem 22 (a) satisfies (Th)pen € (Z (=)™ if and only if every
n € N and every p € PF n satisfies .

In order to prove this, we must show the following two assertions:

Assertion 1: If the family (,,),cy € (Q =)™ defined in Theorem 22 (a) satisfies
(Ty) ey € (Z [Z])", then every n € N and every p € PFn satisﬁes

Assertion 2: If every n € N and every p € PFn satisfies then the family
(Tn),eny € (QE 1)V defined in Theorem 22 (a) satisfies (Tn)pen € (Z E)ke

Proof of Assertion 1: Assume that the family (7,), .y € (Q[Z])" defined in The-

—_

orem 22 (a) satisfies (Z,,),.y € (Z [Z)™. Remember that the family (Tn) ey Satis-
fies (b, = wy, ((Zy)4en) for every n € N) (according to Theorem 22 (a)). Thus, there
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exists a family (z,),.y € (Z [E)Y satisfying (bp = wy, ((x%) ) for every n € N)
(namely, the family (z,),cny = (Tn),cn). In other words, the assertion D=z of The-
orem 13 is satisfied. Hence, the assertion Cz of Theorem 13 is also satisfied (since the
assertions Cz and Dz are equivalent, according to Theorem 13). In other words, every
n € N and every p € PF n satisfies . Thus, Assertion 1 is proven.

Proof of Assertion 2: Assume that every n € N and every p € PF n satisfies .
Then, the assertion C=z of Theorem 13 is fulfilled. Hence, the assertion D= of Theorem
13 is satisfied as well (since the assertions Cz and Dz are equivalent, according to

—_

Theorem 13). In other words, there exists a family (z,,),.y € (Z [Z)" of elements of
Z =] such that
(bn =w, ((xk)keN) for every n € N) )

This family (x,), .y obviously satisfies (x,), .y € (Q[Z])" (since it satisfies (z,), .y €
(Z[E)" < (@[E)") and

(bn = w, ((xk)keN) for every n € N) )

Hence, this family (x,),,.y must be equal to the family (z, ),y (because, according to
Theorem 22 (a), the only family (2,),.y € (Q [Z])™ of elements of Q [Z] such that

(bn = w, ((:vk)keN) for every n € N)

is the family (Z,),oy). Since this family (z,),.y satisfies (z,),.y € (Z =)™, this
yields that (z,,),.y € (Z [Z)™. This proves Assertion 2.

Thus, both assertions 1 and 2 are proven, and consequently the proof of Theorem
22 (c) is complete.

Now we come to the main application of Theorem 13:

Theorem 25. Let N be a nest. Let m € N. Let = denote the family

(Xk) (kmyeqr,2,.myxn OFf symbols. This family is clearly the union U Xin
’ e ke{1,2,...m}

of the families X, y defined by Xj ny = (ka)neN for each k € {1,2,...,m}.

For each k € {1,2,...,m}, the family X xy = (Xj,n), o consists of [ V] sym-

bols; their union Z is a family consisting of m - |N| symbols. (Consequently,

ZZ) =% [(Xk,n)(k n)e{12...m}><Ni| is a polynomial ring over Z in m - |N|
indeterminates which are labelled Xy, for (k,n) € {1,2,...,m} x N.)
Let f € Z[ay, ag, ..., ayy) be a polynomial in m variables.

(a) Then, there exists one and only one family (z,),.y € (Q [:])N of
polynomials such that

(wn ((wk)keN) = f(wn, (Xin),wn (Xon) o, Wy (X)) for every n € N) )

(54)
We denote this family (z,),cy by (fn),en- Then, we have (f,),cn €
(Q[E)" and

(wn ((fk)keN) = f(wn (Xan) s wn (Xon) s ooy W (X)) for every n € N) )
(b) This family (f,),cy € (Q [E])N satisfies f, € Z [ENM} (where Z [ENM}
means the sub-Z-algebra of Z[Z] generated by the polynomials X 4 for
ke {1,2,..,m} and d € N,,) for every n € N.
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Proof of Theorem 25. Define a family (b,),.y € (Q [Z)" of polynomials in the
indeterminates = by

by = f(w, (Xin), wn (Xan) oy Wy (X)) for every n € N. (55)

Then, Theorem 22 (a) yields that there exists one and only one family (2,),.n €
(Q[EDY of elements of Q [Z] such that

(bn =w, ((xk)keN) for every n € N) )

Since the assertion (bn = w, ((xk) ke N) for every n € N ) is equivalent to |D this

rewrites as follows: There exists one and only one family (x,),.y € (Q[Z])" of ele-
ments of Q [Z] such that

(wn ((@r)pey) = f (Wn (X1 n) , wn (Xon) s ooy wy (X)) for every n € N).

Thus, Theorem 25 (a) is proven.
Next, we are going to prove Theorem 25 (b).
First, notice that every k € {1,2,...,m} satisfies

wy, (Xkn) €Z [EN\n] for every n € N (56)
(because wy, (Xin) = wn (Xim),en) = dZdX,?gd = d% dX,?gd €Z [ENW]’ since
n €N,
Xkd €L [ENM] for every d € Nj,,). Hence,
wq (Xpn) €Z [ENM} for every n € N and every d € Nj,, (57)

(because , applied to d instead of n, yields wq (Xpn) € Z [ENM} C Z [ENM]’

because EN‘d C EN|n7 because Nig € Ny, since d € Nj,).
Further, notice that every n € N satisfies

Q|En,|NZE =2 3, ] (58)

In fact, this follows from a general rule: If U and V' are two sets of symbols such that

UCV,then QUINZV]=Z[U]. [M

481n fact, we have got the following chain of equivalences:

(bn = w, ((xk)keN) for every n € N)
= (f (wn (X1,8) w0 (X2,n) oo Wy (X)) = Wy (@) ) for every n € N) (because of (55))
<= ((54) holds).

49 Proof. In order to verify this, we need to show that any polynomial P € Q[V] satisfies
(P e QU] and P € Z[V)) if and only if it satisfies P € Z [U].

In fact, any polynomial P € Q[V] has the form P = 3. X\, [[ v*"), where A\, € Q for every
aeVh veV
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Now, the family (#,),.y defined in Theorem 22 (a) is the same as the family
(fn)nen defined in Theorem 25 (a) m
Theorem 22 (b) yields that the family (z,),.y € (Q [Z])"™ defined in Theorem

22 (a) satisfies 7, € Q [len} for every n € N. Since the family (7,), ., defined in
Theorem 22 (a) is the same as the family (f,),.y defined in Theorem 25 (a), this
yields that the family (f,),cy defined in Theorem 25 (a) satisfies f,, € Q [bN\n] for
every n € N. Hence, f, € Q [EN\n] (where Q [EN‘H] means the sub-Q-algebra of
Q [Z] generated by the polynomials X4 for k € {1,2,...,m} and d € N,), because
Q [bN‘n] CQ [ENM] (since Q [len} is the sub-Q-algebra of Q[Z] generated by the
polynomials by for all d € Nj,, and every of these polynomials b4 lies in Q [EN\J
because the definition of b, states

ba = [ (wa (X1n),wa (Xon),..,wqg (X)) €Z [ENM} (by , since f € Z[ay, ag, ..., ay))

cQ [EN,J

).
Now we are going to prove that f, € Z[=Z]. In fact, for every k € {1,2,...,m}, let
X ,f’ ~ denote the family of the p-th powers of all elements of the family X}, x (considered

as elements of Z[Xj y]). In other words, we let X}y = (lem)nezv‘ Clearly, = =

U Xk,N ylelds =P = U X,I;N
ke{1,2,...m} ke{1,2,..m}
Obviously,
(n/p)/d . (n/p)/d
Wn,/p (le,N) = Wn,p ((le,n)nEN) - Z d (le,d) SIce Wn,p = Z dx,""?
d|(n/p) " d|(n/p)

_~yPp(n/p)/d_~n/d
_Xk,d _Xk,d

- 3 g
d|(n/p)

ae VA,
e This polynomial P satisfies P € Q [U] if and only if A, = 0 for every a € VI \ UL.
e This polynomial P satisfies P € Z[V] if and only if A\, € Z for every a € V{.

e This polynomial P satisfies P € Z[U] if and only if A, € Z for every a € UL and A, = 0 for
every a € VI \ ULL.

Hence, this polynomial P satisfies (P € Q[U] and P € Z[V]) if and only if it satisfies P € Z [U],
qed.

In fact, the family (Z,), .y defined in Theorem 22 (a) is the only family (z,),.y € (Q E
satisfying (b, = wy ((#%),cy) for every n € N), while the family (fy),,cy defined in Theorem 25 (a)
is the only family (z,),cy € (Q [E])Y satisfying . Since (b, = wy, ((zk)4ey) for every n € N) is
equivalent to 7 this yields that the family (#,), .y defined in Theorem 22 (a) is the same as the
family (fn),cn defined in Theorem 25 (a).
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and

n/d . d
wy, (Xkn) = wy ( Xkn) neN Z X, / since w,, = Z ng/
dn dn
d d /d 4 d
St Y oangts Y et Y L v
d|n; d|n; d|n; dIn; =0 mod p»(MZ[F),
d|(n/p) dt(n/p) d|(n/p) pMNd gince pr(™)|d

= 2
d|(n/p)

since for any divisor d of n, the assertions d { (n,/p) and p**™ | d are equivalent,
as we saw during the proof of Theorem 4

doodxpt+ Y oxpt= > dXp modpr™Z[E]

d|(n/p) d|n; d|(n,/p)
pvp(n)‘d
so that
Wasp (X2 ) = w, (Xiv) modp*™Z[E]. (59)

On the other hand, (b,),.y € (Z [=])Y. Hence, Theorem 22 (c) yields that the
family (7,),.y € (Q [Z])"™ defined in Theorem 22 (a) satisfies (Tn)pen € (Z =) if
and only if every n € N and every p € PF n satisfies . Since the family (Z,),,cx
defined in Theorem 22 (a) is the same as the family (f,), .y defined in Theorem 25
(a), this rewrites as follows: The family (f,),.y defined in Theorem 25 (a) satisfies

(fr)nen € (Z [=])" if and only if every n € N and every p € PF n satisfies . But
since every n € N and every p € PFn satisfies (52]) (because the definition of b, ,
yields

bnp = [ (wn/p (XI,N) » Wn/p (XZ,N) 3+ W /p (Xm,N))
and thus

bn/p (Ep> = f (wn/z) (Xllu,N) » Wn/p (Xg,N> 7y W /p (XZ,N)) = f (wn (XLN) y Wn (XQ,N) yeeey Wn (Xm,N))
(because of (59))

= b, mod p*™MZ[Z]

(by the definition of b,)), this yields that the family (f,), .y defined in Theorem 25
(a) satisfies (f),cn € (Z =)™, Hence, f, € Z[Z] for every n € N. Combining this

with f, € Q [ENM} (which also holds for every n € N), we obtain

fr€Q 2w, | NZE =2 [En,]

(by (B8)). This proves Theorem 25 (b).
Theorem 25 is a very powerful result. Applied to N = N, and m = 3, it yields
Theorem 9.73 in [1PY] Applied to N = {1, p,p?,p% ...} (where p is a prime) and m = 3,

5Keep in mind that the notations in our Theorem 25 are slightly different from the notations in
Theorem 9.73 in [1]:
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Theorem 25 yields Theorem 5.2 in [1} Besides, the m = 3 and N = {1,p,p? p?, ...}
particular case of our Theorem 25 is equivalent to Theorem 5 in [3]@ We can also
apply Theorem 25 to various other nests N and to m > 3 (though in the applications
known to me, only the m < 3 case is ever used, and this is the reason why in [1] our
theorem is only formulated for m = 3).

Let us also remark that Theorem 22, applied to N = {1,p,p? p?,...} (where p is a
prime), is only a little bit weaker than Theorem 3 in [3]@ (weaker because our Theorem
22 (c) requires the assumption (by),.n € (Z [Z])", while Theorem 3 (c) in [3] doesn’t
require the corresponding assumption; however, the difference is irrelevant).

]

[define +y and -y maybe]
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